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Abstract

Conventional marker-based optical motion capture

methods rely on scene attenuation (e.g. by infrared-pass

filtering). This renders the images useless for development

and testing of machine vision methods under natural condi-

tions. Unfortunately, combining, calibrating and synchro-

nising a system for motion capture with a separate camera

is a costly and cumbersome task. To overcome this problem,

we present a framework for efficient, omnidirectional head-

pose initialisation and tracking in the presence of missing

and false positive marker detections. As such, it finally en-

ables easy, accurate and synchronous head-motion capture

as ground truth with or input for other machine vision algo-

rithms.

1. Introduction

Accurate and reliable motion capture is essential to many

applications in the field of robotics and natural human be-

haviour analysis. Of the many different methods for motion

capture, the marker-free, passive, computer-vision-based

approaches appear to be the most practical, as they do

not require a person to wear any special clothing, mark-

ers or other equipment [9]. However, there is still a lot

of progress to be made in the accuracy and robustness of

passive computer-vision-based motion capture. Accurate

ground truth pose information is essential for the develop-

ment of motion capture methods. Especially when it comes

to proper evaluation of performance [5]. Furthermore, with

a method to obtain head pose robustly and accurately, other

methods that may benefit by this information - such as for

facial expression analysis - can already be developed and

tested more easily. This ground truth has to be obtained

using a sufficiently accurate alternative motion capture sys-

tem.

When capturing naturalistic data for development of un-

obtrusive computer-vision-based motion capture methods,

the method to be used for obtaining the ground truth obvi-

ously has to work in such a naturalistic environment. Ide-

ally, the same camera will be used for obtaining the ground

truth motion as well as for capturing naturalistic recordings

of the target behaviour. Not only does this save the cost of

extra hardware, it also implicitly solves the difficult prob-

lem of accurate spatial calibration and time synchronisation

in case two separate data capture systems are used. Unfortu-

nately, optical marker-based methods are aversely affected

by the visual clutter in naturalistic environments. In exist-

ing motion capture systems, this is either solved by letting

the subjects wear black clothing and by using black back-

grounds, or by using markers that emit or reflect infrared

light together with cameras that filter out the visual light.

This compromises the usefulness of the obtained data for

research in computer vision aimed at naturalistic environ-

ments.

The framework that we present here attempts to over-

come this problem and achieve marker-based rigid head-

pose estimation in a cluttered, naturalistic environment,

without the need of attenuating visible light. Besides the

advantage that the proposed method works is not bounded

to near-infrared images, it is also not bounded to a specific

range of orientations. Provided that the markers are placed

in way that allows the non-occluded view of at least 4 mark-

ers simultaneously, pose can be estimated under any orien-

tation.

The rest of this article is organised as follows. First, we

will overview related work on maker-based motion capture

in section 2. Then our proposed framework is outlined and

described in section 3. In section 4 experimental results

are discussed. Our overall conclusions are summarised in

section 5.

2. Related work

The work that has already been done on optical motion

capture is extensive. An exhaustive overview cannot be pro-

vided here, therefore. Instead, we will limit this survey to

the most important work done on the specific problem of

marker-based head-pose estimation.

A practical implementation of marker-based head-pose

estimation has been proposed in [4]. It works with three in-



frared LED markers mounted on a set of glasses. The soft-

ware tool ‘FreeTrack’ uses a similar method of head pose

tracking, and is available online [2]. For the database pre-

sented in [1], the ground truth of head pose was estimated

from 3 green LEDs placed around the face. This required

having a limited intensity of the ambient illumination, as

well as the absence of green colour in the background.

Apart from the method followed in [1], which works un-

der differently restricted conditions, the limitation of cur-

rently proposed methods of optical head motion capture is

that they rely on infrared-emitting markers and having the

visible light attenuated by optical filtering. This means that

1) the methods will not work in environments with ambient

infrared light, such as the outdoors, and 2) that a separate

camera is needed for capturing ground head motion only.

Another limitation is that the way the LEDs are identified in

the image plane limits the freedom of rotation. The meth-

ods cannot be extended to work with 360 degree rotation.

This is due to ambiguities that are inherent to solving the

2D to 3D pose inference from 3 points. However, merely

adding a forth marker would not help, due to another prob-

lem that the above approaches cannot solve for rotation of

90 degrees or more. This is the problem of ’marker identifi-

cation’: To determine which detected marker location in the

image corresponds to which marker of the target structure.

In the OPTOTRAK system (www.ndigital.com), this is

solved by turning on one LED marker at a time. This means

the LED markers need to be synchronised with the camera

system and a series of images is required to estimate the

head-pose. Unless high-speed cameras are used, this ap-

proach reduces the capture speed and causes problems with

motion.

A more flexible solution to the marker-association prob-

lem is by searching for the best match between the known

rigid structure and the detected marker locations. Such

an approach has been adopted by Pintaric and Kaufmann

[7]. Their method allows the use of multiple rigid marker-

ensembles (“targets”) in the same environment. The method

assumes a high contrast of the markers in the infrared light

spectrum and triangulation of detected marker locations be-

tween cameras. Because of the marker identification re-

lies on triangulated point depths, multiple cameras are re-

quired. And similar most of the monocular methods men-

tioned above, it also depends on attenuation of visible light

in order to segment the infrared-reflecting markers from the

background.

The work presented here is based on the principle of

finding a unique pattern of markers under a specific pose,

as also followed in [7]. However, contrary to [7], the way

we reduce the search space of marker identifications works

with a single camera view and is robust to false positive

marker detections. This means that our method is suitable

for monocular pose estimation in applications where visi-

(a) (b)

Figure 1. Head-wearable marker structure. (a) The metal frame.

(b) Detection of the passive white markers under a difficult lighting

condition. The estimated locations of markers are indicated with

‘*’.

ble light needs to be captured (for other computer vision

methods) and/or ambient infrared light is present (such as

outdoors).

3. Motion Capture Framework

Our motion capture framework consists of several essen-

tial elements, being: (1) A light-weight structure with mark-

ers that can be easily and securely worn on the head, (2) a

camera and the parameters that model its perspective- and

non-linear distortion, (3) a marker-structure model that con-

tains the relative three-dimensional locations of the markers

that need to be tracked, (4) a marker-detection method that

can detect and accurately localise marker-like shapes in an

image with clutter, (5) an efficient perspective 3-point pose

estimation procedure, (6) an initialisation procedure that as-

signs the detected marker locations in the image to the cor-

rect markers of the marker-structure, without prior informa-

tion of pose, (7) an efficient tracking approach to limit the

complexity of identifying the detected markers when the ap-

proximate pose is already known and (8) a refinement pro-

cedure to automatically adapt the marker-structure model

when it might be flexed or deformed with respect to the

original model.

3.1. The Light­Weight marker structure

The marker structure is formed out of 1.35mm thick gal-

vanised metal wire and nine glued-on ‘paper balls’ of 10mm

diameter. See figure 1. To make it black and less cold to the

touch, it can be covered by black heat-shrink tubing.

The placement of markers is important, but does not re-

quire a high precision. In fact, a regularity in the placement

introduces ambiguity in point correspondences. Symmetry

causes an ambiguity in the direction from which the pattern

is viewed. The marker structure used in our experiments

has not been optimised for this purpose and has been de-

signed to be used only with angles up to 90 degrees from

frontal view. Fortunately, the imprecision of the structure’s



symmetry is large enough for our pose estimation method

to distinguish front from back.

But probably most importantly, the markers should not

easily be occluded by each other, or by a person’s head or

hair.

3.2. Obtaining the Prior Models

The initial marker structure model was obtained from a

close-up frontal flash-photo on a dark background, without

self-occlusions, using a conventional, uncalibrated photo

camera. From this, the individual markers can be easily seg-

mented. The apparent sizes of the markers can be converted

into relative distances. This very rough model is used as

the seed for an iterative refinement procedure, constrained

by accurately measured physical distances between pairs of

the markers. If a sufficient amount of accurately measured

point-to-point distances are provided, the converged result

can be a highly accurate three-dimensional model.

The intrinsic calibration of the camera that will be used

for pose estimation can be obtained with a flat regular

checkerboard pattern and a toolbox such as Callab [8], or

the Camera Calibration Toolbox for Matlab of Jean-Yves

Bouguet. To accurately estimate focal length, the images of

the checkerboard pattern must contain significant perspec-

tive distortion, while an accurate estimate of the non-linear

distortion requires that the pattern fills the whole image.

3.3. Marker Detection and Localisaton

Figure 1 shows the markers and the detected marker lo-

cations in the images. The appearance of the passive mark-

ers depends highly on the illumination. In this example,

most of the light is coming from above, slightly backwards.

This changes the bright areas of the markers to a moon-

like shape on the edge, and causes the detected marker lo-

cations in the image to be shifted from the middle. Because

of this, the estimated 3D marker locations will be shifted by,

at most, 5mm towards the light source (within the radius of

the white spheres). However, such a shift does not neces-

sarily affect the estimation of the head orientation, since all

estimated marker locations are shifted similarly when the

markers are lit from the same direction.

The non-distinctive and variable appearance of the mark-

ers makes it difficult to rely on local image descriptions such

as SIFT or SURF features. Therefore, we have instead cho-

sen for a generic ‘bright-spot-filter’, based on the principle

of the Laplacian of Gaussian (LoG) filter:
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Figure 2. (a) Filter responses for different settings of γ of the

adaptable marker filter M(x, f, τ, γ), for τ = 20 and a dirac pulse

1D image function f(x) = δ(x). The response of the comparable

LoG filter L(x, f, σ) with σ = τ/
√

3 is shown as well. (b) Root

mean square error (rmse) of marker detection and localisation,

measured from the two-dimensional euclidean distances between

estimated locations ps and the true marker location. Marker detec-

tion was done in synthetically generated images, of disk shapes on

randomised backgrounds. Results with the proposed marker filter

M(x, f, 20, γ) are shown for different values of γ. The result with

a comparable LoG filter L∗(x, f, 12/
√

3) is shown as well.

M computes the difference between the value of the

Gaussian-filtered image f at position x and the maximum

value at eight points on a circle with radius τ around x.

τ corresponds to the maximum radius of a disk-shape for

which this filter is expected to work well. G(x, f, σ) is a

two-dimensional Gaussian filtering of image f with stan-

dard deviation σ.

Figure 2 (a) shows the responses of M(x, f, τ, γ) to a

dirac pulse, for different values of γ and a τ = 20 pixels,

compared to a LoG filter L(x, f, σ) with scale σ = τ/
√

3.

The parameter γ allows a trade-off between invariance to

the size of a disk-shaped marker with a radius smaller than

τ (when γ = 0), or having less influence of clutter around a

marker on the estimated location (when γ → 1).

The optimal value of γ was determined experimentally



on synthetic images of disk shapes with random back-

ground clutter. The results of marker localisation with

M(x, f, τ, γ) are shown in figure 2 (b) for τ = 20 pixels

and several values of γ. With a small γ, the accuracy for

smaller markers is increased. But if γ is too small, the filter

becomes sensitive to the background clutter when it is ap-

plied to larger markers. We have repeated the experiments

for different values of τ , and always found the best trade-off

around γ = 0.3. τ can be intuitively chosen as the maxi-

mum marker radius that can be expected in the image.

The precise location pm of the local maximum of

M(x, f, τ, γ) is still influenced by the surrounding back-

ground clutter. To get a better estimate, the closest local

maximum pg is found in the intermediate two-dimensional

Gaussian filtering G(x, f, σ). A sub-pixel correction c of

the marker location is determined separately for the hori-

zontal and vertical dimension, by first-order linear approxi-

mation, using the slopes of G on both sides of pg:

c = (ca + cb)/2, (2)

ca = (µb − µa)/2da, (3)

cb = (µb − µa)/2db, (4)

µa = (g(α) + g(α + 1))/2, (5)

µb = (g(−α) + g(−α − 1))/2, (6)

da = g(α) − g(α + 1), (7)

db = g(−α) − g(−α − 1). (8)

Here, α ∈ {1, 2, . . .} is the distance at which both slopes

are measured and g(i) is a measure from the output of the

two-dimensional Gaussian filtering at pg + i, with pg being

the pixel location of the local peak in G. This estimation is

based on the assumption that g(i) is the shifted version of

a symmetrical function g0(i), strictly increasing and differ-

entiable for i < 0 and strictly decreasing and differentiable

for i > 0. For a small horizontal shift of g0, the difference

between values at any symmetric pair of locations around 0,

approximates 2× the local derivative on either side. Equa-

tion 2 reduces the effect of violating this assumption, by

averaging the two estimations ca and cb. Note that this es-

timation does not require concavity, nor differentiability, at

the peak location of g.

To prevent erratic results when numerical derivatives da

or da are close to 0, c is clipped to [−0.5, 0.5]. Robustness

of c to such errors depends on the choice of α. We have

found α = 2 to be a good trade-off between robustness and

accuracy, although the differences from using different α
are small.

3.4. Efficient Perspective 3­Point Pose Estimation

Three is the minimum amount of points necessary to

estimate three-dimensional pose (location and orientation)

from two-dimensional image locations. Closed-form solu-

(a)

(b)

Figure 3. Reference camera orientations for triplets of points of the

marker structure model. The six camera views for each triplet are

centered around the mean location of the three points and perpen-

dicular to the three different edges, from both sides in the plane

spanned by the triangle. (a) shows the six views for the most equi-

lateral triangle, (b) the 72 views for the 12 most equilateral trian-

gles

tions can narrow the estimation down to, at most, four pos-

sible poses. However, they are known to be inefficient [6].

On the other hand, iterative algorithms require a good initial

estimate.

Our approach to 3-point pose estimation is based on two

important observations. First of all, out-of-camera-plane ro-

tation cannot be estimated accurately when the three points

are equidistant to the camera plane, since, from such a pose,

any out-of-plane orientation change contributes to negligi-

ble change in image locations. Secondly, (near) co-linearity

of the points causes pose ambiguity. This means that the

computational effort can best be spent on the sets of three

points that form (near) equilateral triangles with their face

oriented dominantly along the camera viewing axis.

To obtain an initial pose estimate, a reference view is

chosen from one of six pre-defined views for the respective

triplet of points, as shown in figure 3 (a). The choice is nar-

rowed to two views, by choosing the views perpendicular

to the triplet’s edge that appears the largest in the image. A



deviation from the reference pose is estimated using sim-

ple geometry that neglects perspective distortion. This ini-

tial guess is refined using the iterative Levenberg-Marquardt

method.

The validity of both options is tested against one or more

additional detected marker locations in the image. The loca-

tions of the nine points of the marker structure model should

correspond to detected marker locations in the image, when

the model is projected using the estimated pose. More de-

tails follow in section 3.5.

3.5. Pose Initialisation

Because the associations of detected marker candidates

in the images with the marker structure model are not

known initially, a search strategy should be applied to

choose from all possible associations. Because all markers

look similar in the image, they cannot be directly related

to the correct points of the three-dimensional marker struc-

ture. Instead, we use a sampling consensus approach based

on the 3-point method described in paragraph 3.4.

A minimal number of inliers must be set to ensure the

validity of a sample, while preventing to confuse any incor-

rect association with detected marker locations in the image.

This number can be anywhere between 4 and the number

of markers in the structure. The minimum required num-

ber of non-occluded markers depends on the set range for

inlier detection in the image. The more strict this can be

set, the lower the number of inliers are required to prevent

false point-association. The required tolerance for inlier de-

tection depends on the accuracy of marker localisation in

the image, the accuracy of the camera calibration and the

accuracy of the marker-structure model. Especially before

refinement of the marker-structure model, the tolerance for

image locations needs to be set high, which consequently

requires to raise the limit on the number of non-occluded

markers.

The 84 possible combinations of 3 points out of 9 mark-

ers is reduced to a smaller set, between 10 or 20 triplets. As

shown in figure 3 (b), 12 triplets already give a full cover-

age of the sphere of possible viewing directions and even

some redundancy to handle occlusions. Still, the number

of possible correspondences with image points is large. To

reduce the number of image points, only moving points are

considered during the initialisation step. This excludes false

marker detections in a static background.

A further reduction in computation time per frame is

achieved by spreading the search for triplets over multiple

frames. It is better to take more frames to do the pose initial-

isation than to spend a long time on the correct initialisation

in one frame. An initialisation will be useless if it does not

represent an accurate prior for tracking in the next frame

that is processed. The upper right image in figure 4 shows

the first frame in which the pose has succesfully initialised

(frame number 16). Frame number 15 is shown to the left.

3.6. Pose Tracking

Contrary to the pose initialisation explained in paragraph

3.5, during tracking, all of the 84 combinations of three

markers are considered. Instead, the search for the cor-

rect associations of triplets is reduced in two different ways.

First of all, for each of the three points in a marker triplet,

only those detected marker locations are considered that

are close to the back-projected locations of the estimated

marker locations in the previous frame. Secondly, the es-

timated 3-point pose is rejected before even considering to

validate it, if it is not close to the previous pose, both in

location as well as orientation. This does not only reduce

the possibility of false matches, but also reduces the valu-

able step of comparing back-projected model points to im-

age point locations to evaluate the number of inliers.

Instead of pre-computing a rough pose estimate, the pose

of the previous frame is now used as the initial pose for the

Levenberg-Marquardt optimisation.

3.7. Marker Structure Refinement

Because the marker structure is flexible to allow a com-

fortable fit on different heads, the marker structure will be

slightly different every time it is used. To ensure accurate

and robust tracking, the marker-structure model has to be

refined automatically. This is done by collecting poses and

corresponding image locations where all markers are visible

and detected in the image. The estimated poses and the orig-

inal (imprecise) marker structure are then used as an initial

guess for multi-view bundle adjustment that refines both the

estimated poses as well as the structure. If necessary, this

process can be repeated several times, or the marker struc-

ture can be updated continuously during tracking.

4. Results and Discussion

The robustness and accuracy of our proposed motion

capture framework is demonstrated in figure 4. The results

of head pose tracking are shown for 15 frames in a video

sequence of 9.4 seconds, recorded at 60 frames per second

at a resolution of 780x580 pixels. The video sequence can

be viewed online at [3]. The tracking was successfully ini-

tialised in frame 16, shown in the top right (with frame 15

to its left). Although the marker structure was designed for

frontal view estimation, it works for a 360 degree rotation.

The current suboptimal implementation in Matlab runs at

17 frames per second on a 2GHz quad core PC. This al-

ready allows for real-time motion capture of some slower

movements.

Many improvements can be added to the proposed

framework to increase accuracy or robustness. First of all,

the sequence of estimated poses can be filtered to eliminate

jitter that comes from changes in the set of markers that are



Figure 4. Frame results of head motion capture in a 9.4 seconds sequence, recorded at 60 frames per second and 780x580 pixels. Chrono-

logical order is from left to right and top to bottom. The 30 or less brightest detected marker locations are indicated with the smallest,

yellow asterisks. The trails of moving markers are marked with larger, red asterisks. The 9 back-projected locations of the posed marker

structure are indicated with the largest, blue asterisks. A white square indicates the estimated 3D pose of the face, relative to the marker

structure and back-projected onto the image. The video sequence can be viewed online at [3].



included in the pose estimation. Secondly, an odd-one-out

verification step may be added that rejects proposed marker

locations with a deviating image-appearance. Thirdly, an

automatic registration has to be added that accurately aligns

facial points to the marker structure. When rigid facial

points are detected and tracked in several frames under dif-

ferent head poses, their three-dimensional locations can be

estimated using the estimated rigid head motion.

5. Conclusions

We have proposed a framework for monocular marker-

based head-pose estimation that works under natural illu-

mination and any orientation that leaves at least 4 mark-

ers unoccluded. The framework combines an efficient auto-

matic pose initialisation with an efficient and robust track-

ing approach, as well as an automatic model-refinement

procedure. We have discussed considerations and choices

of how to reduce complexity or increase accuracy and ro-

bustness in each of the framework elements. Furthermore,

we have demonstrated successful tracking under fast 360

degree head motion.
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