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Many problems in machine learning and computer vision consist of predicting multi-dimensional output vec-
tors given a specific set of input features. In many of these problems, there exist inherent temporal and spatial
dependencies between the output vectors, as well as repeating output patterns and input–output associations,
that can provide more robust and accurate predictors when modeled properly. With this intrinsic motivation,
we propose a novel Output-Associative Relevance Vector Machine (OA-RVM) regression framework that
augments the traditional RVM regression by being able to learn non-linear input and output dependencies.
Instead of depending solely on the input patterns, OA-RVM models output covariances within a predefined
temporal window, thus capturing past, current and future context. As a result, output patterns manifested in the
training data are captured within a formal probabilistic framework, and subsequently used during inference. As
a proof of concept, we target the highly challenging problem of dimensional and continuous prediction of emotions,
and evaluate the proposed framework by focusing on the case of multiple nonverbal cues, namely facial expres-
sions, shoulder movements and audio cues. We demonstrate the advantages of the proposed OA-RVM regression
by performing subject-independent evaluation using the SAL database that constitutes naturalistic conversational
interactions. The experimental results show that OA-RVM regression outperforms the traditional RVM and SVM
regression approaches in terms of accuracy of the prediction (evaluated using the Root Mean Squared Error)
and structure of the prediction (evaluated using the correlation coefficient), generating more accurate and robust
prediction models.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Kernel methods such as Support Vector Machines (SVM), Rele-
vance Vector Machines (RVM) and Gaussian Processes (GP) are
amongst the most dominant techniques used in machine learning
and computer vision. Many problems in these fields are inherently
related to the prediction of multi-dimensional, inter-correlated struc-
tured outputs (e.g. pose normalization, pose estimation). While most
machine learning techniques aim at capturing input relationships and
patterns (e.g. extracted features), many problems expose an inherent
dependency amongst the output dimensions (e.g. emotion dimen-
sions). Not being able to learn such co-occurrences can result in less
robust and less accurate predictors, that will not be able to exploit
specific output configurations manifested in the training data.

With these intrinsic motivations, we introduce the output-
associative RVM (OA-RVM) regression, a framework that extends
the traditional RVM regression by being able to learn temporal output
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correlations. As we show by means of various experiments, OA-RVM
appears to be advantageous against traditional RVM not only in
terms of a variance-and-bias-based evaluation with Root Mean
Squared Error (RMSE, i.e., how much prediction and ground-truth
values vary), but also with a structure-based evaluation with the cor-
relation coefficient (COR, i.e., evaluating the covariance of the predic-
tion with the ground truth), resulting in a more accurate and robust
model. In order to evaluate whether the proposed technique's perfor-
mance is cue and modality invariant, we focus on a highly challenging,
yet a very suitable problem: dimensional and continuous emotion
prediction from nonverbal heterogeneous cues (i.e., facial expressions,
shoulder movements and audio cues).

Most research in automatic emotion recognition and prediction
has focused on examining posed data acquired in laboratory settings
[1,2] in terms of basic emotional states (e.g., happiness, sadness, sur-
prise). However, many studies show that in everyday life interactions,
humans exhibit subtle affective states that do not fall under the basic
emotional states (e.g. bored or interested). In order to represent and
model such states, a dimensional and continuous description of
human affect is employed, where an affective state can be described
by a number of latent dimensions [3]. We focus on the two
gression for dimensional and continuous emotion prediction, Image
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dimensions which are considered to cover most of the affect variability
[4]: The valence dimension (V) which describes how positive or nega-
tive an emotional state is, and the arousal dimension (A) which relates
to how active or inactive an emotional state is [5].

Our motivation for the work presented in this paper is three-fold.
Firstly, dimensional and continuous affect prediction (as opposed to
discrete and quantized recognition) and output-associative struc-
tured prediction are two highly inter-related problems. Psychological
evidence has shown that the V-A dimensions are inter-correlated
[6,7,4,8]. Therefore, the proposed framework aims to enable the
learning of such correlations and generate more substantiated predic-
tions by embedding in the model an initial output estimation (using
RVM) together with the original input features. Secondly, temporal
dynamics play a significant role in emotion recognition [1,2]. The pro-
posed OA-RVM regression aims to capture the temporal dynamics by
employing a temporal window (covering a set of past and future out-
puts) in order to accommodate temporal (output) patterns both in
past and future context. Thirdly, dimensional and continuous predic-
tion of emotions is a relatively unexplored area in the field of affective
computing, and which prediction method is best suited to the task is
still unknown. Therefore, as well as validating the proposed OA-RVM
model with comprehensive experiments, we also compare it to tradi-
tional regression techniques such as RVM and Support Vector Regres-
sion (SVR).
2. Related work

In the following, we briefly review related work on output-
associative structured regression and dimensional and continuous
emotion prediction, and subsequently list the contributions of our
work.
2.1. Output-associative structured regression

Output-associative structured regression has gained much popu-
larity over the last years within the pattern recognition community.
Kernel Dependency Estimation (KDE) was proposed in 2002 by
Weston [9], with a goal of learning output dependencies using Kernel
Principle Component Analysis (KPCA) and ridge regression. KDE was
reformulated in 2005 by Cortes et al. [10] discarding the need for
KPCA and adopting the optimization of a cost function. KDE has
been applied to problems such as string matching and image recon-
struction. Previous efforts on modeling input and output covariances
have motivated the extension of models such as Kernel Ridge Regres-
sion (KRR), SVM for regression [11] and GP [12]. [11] optimizes an
output-associative functional which incorporates outputs and inputs
using primal/dual formulations and adapts the model to KRR and
SVR. [12] develops the Twin GP model, which employs GP priors to
model input and output relations. The Kullback–Leibler divergence
is applied on the input and output distributions. Subsequently, the
output targets are estimated by the minimization of the KL diver-
gence. Both works have been applied to modeling human pose
estimation.

We choose to extend RVM as it is considered to be more efficient
than traditional GP, and is known to provide a sparse solution. Note
that other works on extending RVM have also been proposed, e.g.
[13] proposed a robust RVM which models outlier noise while [14]
proposed a multi-variate version of RVM.

Compared to the models presented in [11,12] we offer a specific
output temporal window parameter for fine-tuning our model. Fur-
thermore, compared to [11], our OA-RVM regression framework of-
fers a probabilistic formulation of the output-associative function by
following the original RVM framework, and provides explicit model-
ing of the noise component.
Please cite this article as: M.A. Nicolaou, et al., Output-associative RVM re
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2.2. Dimensional and continuous emotion prediction

Dimensional and continuous recognition or prediction of emo-
tions is a relatively unexplored area in the field of affective comput-
ing, with the first workshop organized on this topic only recently [15].

To date, the most commonly employed strategy in automatic
dimensional affect recognition from visual signals has been to reduce
the recognition problem to a two-class problem (positive vs. negative
or active vs. passive classification; e.g., [16,17]) or a four-class prob-
lem (classification into the quadrants of 2D A-V space; e.g., [18,19]).

Currently, there are also a number of works focusing on dimen-
sional and continuous prediction of emotions from the visual modality
[20,21]. The work by Gunes and Pantic focuses on dimensional predic-
tion of emotions from spontaneous conversational head gestures by
mapping the amount and direction of head motion, and occurrences
of head nods and shakes into arousal, expectation, intensity, power
and valence level of the observed subject using SVRs [20].

Similarly to the affect recognition from visual signals, the most
commonly employed strategy in automatic dimensional affect recog-
nition from audio signals has been to reduce the recognition problem
to a two-class problem (positive vs. negative or active vs. passive clas-
sification; e.g., [22]) or a four-class problem (classification into the
quadrants of 2D arousal-valence (A-V) space; e.g., [23]).

As far as actual continuous dimensional affect prediction (without
quantization) is concerned, there exist a number of methods that deal
exclusively with speech (i.e., [23–25]). The work by Wöllmer et al.
uses the SAL Database and Long Short-TermMemory neural networks
and Support Vector Machines for Regression (SVR) [24]. Grimm and
Kroschel use the Vera am Mittag database [26] and SVRs, and compare
their performance to that of the distance-based fuzzy k-Nearest Neighbor
and rule-based fuzzy-logic estimators [25]. The work by Espinosa et
al. also use the Vera am Mittag database [26] and examine the impor-
tance of different groups of speech acoustic features in the estimation
of continuous PAD dimensions (Pleasure, Arousal and Dominance)
[27].

When it comes to dimensional emotion recognition using multiple
modalities the focus has mainly been on discriminating between
more coarse categories, such as positive vs. negative [16] and active
vs. passive [28]. Of these, Caridakis et al. [28] use the SAL database,
combining auditive and visual modalities. Nicolaou et al. focus on
audio-visual classification of spontaneous affect into negative or pos-
itive emotion categories using facial expression, shoulder and audio
cues, and utilizing 2- and 3-chain coupled Hidden Markov Models
and likelihood space classification to fuse multiple cues and modali-
ties [16]. Kanluan et al. [29] combine audio and visual cues for affect
recognition in A-V space by fusing facial expression and audio cues,
using SVRs and late fusion with a weighted linear combination with
discretized labels (on a 5-point scale in the range of [−1,+1] for
each emotion dimension). Wöllmer et al. use multimodal acted data
that contain face (obtained from motion capture and video) and audio
information, and recognize 3–5 levels of A-V values using various clas-
sification techniques [30]. More recent works focus on dimensional
and continuous prediction of emotions from multiple modalities. For
instance, Eyben et al. [31] propose a string-based approach for fusing
the behavioral events from visual and auditivemodalities (i.e., facial ac-
tion units, head nods and shakes, and verbal and nonverbal audio cues)
to predict human affect in a continuous dimensional space (in terms of
arousal, expectation, intensity, power and valence dimensions). Metal-
linou et al. in [32] focus on analyzing the vocal and body language be-
havior (via MoCap features) of pairs of actors improvising diadic
interactions. For each actor's recording, they computed the Spearman
correlation coefficient between the mean annotation and the MLE
curve. Activation and dominancewere predicted from visual and audio-
visual cues reasonably well. However, for valence, the MLE mapping
curves failed to track the changes and the respective median correla-
tions were close to zero. Another representative approach is that of
gression for dimensional and continuous emotion prediction, Image
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Fig. 1. Outline of the proposed method. The tracked features (from facial expressions, shoulder movements and audio) are fed into an initial regressor (here, RVM) to obtain an
initial prediction. A temporal window v is applied on the multi-dimensional output of valence and arousal, constructing the output feature vectors (yiv). Both the input features
xi and the output features yiv are fed into the OA-RVM model which provides the final prediction.

1 We denote that ti is a multidimensional vector containing all the values to be pre-
dicted for each frame (in our case, both valence and arousal). Nevertheless, the
methods we apply are inherently single output methods. Thus, a different function is
learnt for each output dimension (ti).
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Gilroy et al. [33] that propose a dimensional multimodal fusion scheme
based on the PAD space to support detection and integration of sponta-
neous affective behavior of users (in terms of audio, video and attention
events) experiencing arts and entertainment.

Despite the increased interest in dimensional representation of
emotions, none of the works proposed to date have explored input–
output associations and spatio–temporal dependencies between the
output vectors for dimensional and continuous emotion prediction.

2.3. Contributions

This work has been inspired by the pioneering works of [34] and
[35] that capitalized on the fact that the arousal and valence dimen-
sions are correlated, and presented an approach that fuses spontaneous
facial expression, shoulder movement and audio cues for dimensional
and continuous prediction of emotions in valence-arousal space. They
proposed an output-associative fusion framework that incorporates
correlations between emotion dimensions. Their findings suggested
that incorporating correlations between affect dimensions provides
greater accuracy for continuous affect prediction.

Building upon the idea that arousal and valence dimensions are
correlated, we further explore input–output associations and spatio–
temporal dependencies between the output vectors. More specifically,
our work (i) proposes a novel, sparse and probabilistic regression
model with output-association (OA-RVM, henceforth), taking advan-
tage of the traditional RVM framework, and (ii) investigates the feasi-
bility and the usefulness of the proposed OA-RVM framework on the
highly challenging problem of dimensional and continuous prediction
of emotions from heterogeneous nonverbal cues.

An earlier version of this paper appeared in the Proceedings of
IEEE International Conference on Automatic Face and Gesture Recog-
nition [21]. There are two major deviations from the previous work
that merit being highlighted: 1) the previous work did not investigate
the feasibility and the usefulness of the proposed OA-RVM framework
on dimensional and continuous prediction of emotions from nonver-
bal heterogeneous cues (the focus was only on facial expression cues);
and 2) the proposed model was not evaluated in terms of the predic-
tion covariance with respect to the ground truth, a measure of struc-
tural agreement of the two signals. The current paper addresses these
issues by exploring how the behavior of the OA-RVM model changes
(in terms of prediction accuracy and spatio–temporal structure)
depending on the expressive cue/modality employed, by adopting a
leave-one-subject-out (subject-independent) experimental setup.
Please cite this article as: M.A. Nicolaou, et al., Output-associative RVM re
Vis. Comput. (2012), doi:10.1016/j.imavis.2011.12.005
The outline of the proposed method is presented in Fig. 1. The
tracked/extracted features (from facial expressions, shoulder move-
ments and audio) are fed into an initial (cue-specific) regressor,
which in our case is chosen to be RVM (trained separately for each
cue). An initial, noisy prediction is obtained by RVM. A temporal win-
dow v is applied on the multi-dimensional output of valence and
arousal, thus constructing a set of new vectors which we call output
features (yiv). Both the input features xi and the output features yiv

are fed into the OA-RVM model which learns specific weights for
each input and output feature vector. The final prediction is a linear
combination of the kernel-projected input and output features.

The rest of the paper is organized as follows. In Section 3, we briefly
revisit the RVM and SVM models in order to provide a basis for OA-
RVM, introduced and explained in Section 4. Section 5 describes the
data set employed in our experiments, as well as the feature extrac-
tion and tracking process. Section 6 provides a demonstration of the
behavior of the model when learning continuous emotion dimension
values, while Section 7 presents the experiments and discusses the
results. Finally, Section 8 concludes the paper.
3. RVM and SVM revisited

In this section, we briefly describe the two generic methods used,
namely, Relevance Vector Machine (RVM) and Support Vector
Machines (SVM) for Regression (i.e. SVR).

We assume a (multidimensional) regression problem with N
training examples, (xi, ti).1 In the Bayesian framework applied in
RVM, our goal is to learn the functional

ti ¼ wTϕ xið Þ þ εi ð1Þ

where the εi are assumed to be independent Gaussian samples with
zero mean and σ2 variance, εi∼N 0;σ2

� �
. ϕ is a typically non-linear

projection of the input features, xi. The method infers the set of
weights w along with the noise estimation, given the training data.

The graphical model of RVM is presented in Fig. 2.
gression for dimensional and continuous emotion prediction, Image

http://dx.doi.org/10.1016/j.imavis.2011.12.005


... ...

... ...

...

0a Na 1ζ Nζ

0w Nw 1u Nu

1t

...

...

0a Na

0w Nw

...
1t NtNt

OA-RVM RVM

Fig. 2. Graphical model comparison of RVM and OA-RVM. Shaded nodes are observed
variables.

4 M.A. Nicolaou et al. / Image and Vision Computing xxx (2012) xxx–xxx
In SVR, the functional

ti ¼ wTϕ xið Þ þ b

is learned, where ϕ is an implicit mapping to a kernel space, w repre-
sents the set of weights, and b represents the bias. Lagrangian optimi-
zation is employed to determine the optimal parameters of the
problem. In contrast to Bayesian regression methods, there is no ex-
plicit noise modeling in SVR. The structural risk minimization princi-
ple is applied to minimize the risk of overfitting.

4. Output-associative RVM regression

In this section we describe the proposed OA-RVM framework. The
graphical models of both OA-RVM and RVM are illustrated in Fig. 2,
while an overview of the algorithm for training and prediction in
OA-RVM framework is presented in Alg. 1.

Firstly, to obtain the output associative functional, we increment
Eq. (1) as follows:

ti ¼ wTϕw xið Þ þ uTϕu yvi
� �þ εi ð2Þ

Where each yiv is a vector of multi-dimensional outputs over a
temporal window of [i−v, i+v]2 The yiv features are called the output
features, while x are called the input features, henceforth. Note that
the output features can be estimated by predicting the multi-
dimensional ground truth using any (noisy and imperfect) prediction
scheme. The goal now becomes learning not only the set of weights
(w) for the input features, but also the set of weights (u) for the out-
put features along with the noise estimate, (εi).3

4.1. The framework

In this sectionwe describe the Bayesian framework that ourmodel is
based on. Firstly,we considerΦw (N×Mw) to be the basismatrix attained
by applying a selected kernel to the input features x, and Φu

v (Φu
v

(N×Mu)) respectively, for the output features yv (Mu and Mw, referring
to the number of basis vectors). Then, by extending Eq. (2) we obtain:

t ¼ Φww þΦv
uuþ ε ¼ Φwuwu þ ε ð3Þ

where Φwu=[Φw|Φu
v] is the N×(Mw+Mu) OA-RVM design matrix:

Φwu ¼
Kw x1; x1ð Þ … Kw x1;xnð Þ Ku yv1; y

v
1

� �
… Ku yv1; y

v
n

� �
⋮ ⋮ ⋮ ⋮

Kw xn;x1ð Þ … Kw xn; xnð Þ Ku yvn; y
v
1

� �
… Ku yvn; y

v
n

� �

2
4

3
5

with Kw and Ku being the kernel applied to input and output features re-
spectively. Typically, an extra unit column is appended to the kernel to
account for the bias. Furthermore, wu ¼ w1…wMw

h ���u1…uMu
�T repre-

sents the concatenated vector of weights. Thus, the complete data set
likelihood is formulated as:

P
�
t w;u;σ2
���

�
¼ ∏

N

i¼1
N wTϕw xið Þ þ uTϕu yvi

� �
;σ2

� �

¼ ∏
N

i¼1
N wu

T ϕw xið Þ½ jϕu yvi
� �� i

;σ2
� ð4Þ

Following the Bayesian approach of RVM [36], we need to set the
hyperpriors on our weights. Each set of weights (w;u) is assigned a
2 For frame based online application, we can limit the context to past input only, i.e.
[i−v, i]. Furthermore, the output window regards only the output dimensions since we
study the effect of output-covariances.

3 Note that in the output-associative formulation, the noise component can now be
considered as the sum of the noise generated by the input features σx and the output
features σyv, i.e. εi∼N(0,σy

2+σx
2)=N(0,σ2).

Please cite this article as: M.A. Nicolaou, et al., Output-associative RVM re
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Gaussian zero-mean prior to express preference over smaller weights,
thus infer smoother, less complex functions and induce sparsity:

P wjαð Þ ¼ ∏
Mu

i¼0
Ν 0;α−1

i

� �
ð5Þ

P ujζð Þ ¼ ∏
Mw

i¼1
N 0; ζ−1

i

� �
ð6Þ

Wehave now introduced two vectors of hyperparameters,α control-
ling the distribution of the weightsw (as originally used in RVM), and ζ
controlling the distribution of the weights u (for our output features).

4.2. Inference

The goal is to infer the unknown parameters of our problem given
the training data. The posterior is decomposed as:

P w;u;α; ζ ;σ2jt
� �

¼
P tjw;u;α; ζ ;σ2
� �

P w;u;α; ζ ;σ2
� �

p tð Þ ð7Þ

Ideally, given a new test data x , we would like to predict target t :

p t�jtð Þ ¼ ∫P t�jw;u;α; ζ ;σ2
� �

P w;u;α; ζ ;σ2 tj Þdwdudαdζdσ2
�

ð8Þ

Unfortunately, the above equation is intractable, thus an approxi-
mation is needed. Therefore, similarly to the original RVM formula-
tion [36], we decompose the posterior as follows:

P w;u;α; ζ ;σ2 tj Þ ¼ P w;u t;α; ζ ;σ2
���

�
P α; ζ ;σ2 tj Þ
���

ð9Þ

Using the Bayes theorem we obtain:

P w;ujt;α; ζ ;σ2
� �

¼
P tjw;u;σ2
� �

P w;ujα; ζð Þ
P t α; ζ ;σ2

�� �� ð10Þ

This calculation is tractable, since all components are Gaussian
distributions and it is well known that products and divisions of
Gaussian distributions result also in Gaussian distributions. We will
firstly examine the joint probability. By assuming independence, we
obtain P w;u α; ζj Þð , a zero-mean Gaussian distribution with a covari-
ance matrix AZ=diag(α1…αMw

,ζ1…ζMu
).

P tjα; ζ ;σ2
� �

¼ ∫P tjw;u;σ2
� �

P w;u α; ζj Þdwduð ð11Þ

is a convolution of Gaussian and after replacing withwu, Az andΦwu,
it can be shown [36] to be a zero-mean Gaussian distribution with
covariance matrix σ2IþΦwuA

−1
Z ΦT

wu.
Finally, Eq. (10) is considered to be a Gaussian distribution with a

mean μ ¼ σ2ΣΦT
wut and a covariancematrixΣ ¼ AZ þ σ2ΦT

wuΦwu

� �−1
.

gression for dimensional and continuous emotion prediction, Image
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Returning to the second component P α; ζ ;σ2 tj Þ�
of the posterior

in Eq. (9), by following the Bayes rule, we find it to be proportional to:

P α; ζ ;σ2 tj Þ∝P tjα; ζ ;σ2
� �

P αð ÞP ζð ÞP σ2
� ��

ð12Þ

By assuming uniform uninformative hyperpriors [36], we need to
maximize the marginal likelihood, P t α; ζ ;σ2

�� ��
with respect to the

hyperparameters. Again, we have a convolution of Gaussians (Eq. (11))
which in turn generates another zero mean Gaussian distribution with
covariance matrix σ2IþΦwuAz

−1ΦT
wu. The maximization of the mar-

ginal likelihood can be performed by expectation maximization as
described in [36] or the faster marginal maximization algorithm pro-
posed in [37]. Themost probable values (MP) are selected by the chosen
optimization procedure ([36,37]), while we adopt an approximation of
P α; ζ ;σ2 tj Þ�

in Eq. (9) by replacing the distribution with a delta func-
tion at its mode.

4.3. Prediction

Given a new (multi-dimensional) input data x�; yv� , we want to cal-
culate t given the training data. By considering αz=[a1…aMw

,ζ1…ζMu
]

and using Eqs. (8) and (10) we obtain:

P t�jt;αzMP ;σ
2
MP

� �
¼ ∫P t�jwu;σ

2
MP

� �
P wujt;αzMP ;σ

2
MP

� �
dwu ð13Þ

Again, this is a convolution of Gaussians and it can be shown that

P t�jt;αzMP ;σ
2
MP

� �
∼N t�jσ2

�
� �

ð14Þ

where

t� ¼ μT
wu ϕw x�ð Þ½ jϕu yv�

� �� ð15Þ

σ2
� ¼ σ2

MP þ ϕw x�ð Þ½ jϕu yv�
� ��TΣ ϕw x�ð Þ½ jϕu yv�

� �� ð16Þ

with t being the test point prediction, and σ2 being the prediction
variance (relating to confidence in the obtained prediction). The
parameter vector μwu contains the weights for the input and output
relevance vectors, i.e. μwu=[μw|μu]. The basis matrix for a new set of
test points should now contain both the distances from the new test
input features x� to all the input feature relevance vectors, as well
as the test output feature yv� distances to the output feature relevance
vectors.

The graphical model of OA-RVM with respect to the original RVM
can be seen in Fig. 2. An overview of the OA-RVM training and predic-
tion procedures is presented in Algorithm 1.

Algorithm 1. OA-RVM algorithm
Training. Data: xi; tið Þ, i=1,…, N

1. Obtain output features yvi
2. Construct basis matrix Φwu ¼ Φw½ jΦv

u�
2a. Apply kernel Kw for obtaining Φw for input features x
2b. Apply kernel Ku for obtaining Φv

u for output features yv

3. Marginal likelihood maximization
3a. Determine hyperparameters (α,ζ,σ2)
3b. μ ¼ σ2ΣΦT

wut, Σ ¼ AZ þ σ2ΦT
wuΦwu

� �−1

Prediction for test point x�:

1. Obtain output features yv�
2. Predict and estimate variance:

2a. t� ¼ μT
wu ϕw x�ð Þ½ jϕu yv�

� ��
2b. σ2

� ¼ σ2
MP þ ϕw x�ð Þ½ jϕu yv�

� ��TΣ ϕw x�ð Þ½ jϕu yv�
� ��
Please cite this article as: M.A. Nicolaou, et al., Output-associative RVM re
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4.4. Window size

The output feature window length v for OA-RVM is treated as a
regular parameter in the framework. Therefore, many heuristics and
validation techniques can be employed in order to define the param-
eter for a given training set. The most direct method would be to per-
form cross-validation (i.e. similarly to SVM) in order to determine the
optimal value for the specific error metric employed. Another way is
to compare the maximized marginal likelihood of each model trained
with a specific window size (i.e. a maximum likelihood test). Assum-
ing we have a set V of windows to be evaluated, for each vi∈V the
marginal likelihood Lvi∼N 0;σ2Iþ Φw½ jΦvi

u

� �
Az

−1 Φw½ jΦvi
u �T Þ is maxi-

mized. The window size providing the maximum likelihood can
then be selected, i.e. v ¼ argmaxvi Lvi .

4.5. A generalized view

In this section we aim to provide a more general perspective of the
proposed framework while comparing it to other static regression
frameworks (e.g. SVM and RVM).

In a typical static regression framework (e.g. SVM and RVM), we
consider only the current input to participate in the prediction, i.e.

P ti x1…xi…xNj Þ ¼ P ti xij Þðð

In the proposed framework, each prediction not only depends on
the current input but also on the output features, which essentially
represent a temporal noisy version of the targets to be estimated:

P ti x1…xi…xNj Þ ¼ P ti xi; y
v
i

�� ���

The output features yvi represent a noisy prediction of the targets
over time (a pre-defined temporal window). Therefore,

P ti x1…xi…xNj Þ ¼ P tijxi; t̂ i−v;…; t̂ i;…; t̂ iþv

� ��

where each t̂ i is the noisy prediction of ti at input datum i. The predic-
tion is thus conditioned both on the current input frame, as well as
the noisy prediction of the multi-dimensional targets over the speci-
fied temporal window.

Conditioning on the intermediate noisy predictions can be consid-
ered as a form of ensemble learning, specifically of stacked generalization
[38,39] with continuous labels. A specific stacked generalization algo-
rithm could also be investigated for training OA-RVM to obtain insight
on its benefits for method generalization.

4.6. Complexity

The optimization algorithm of RVM generally involves the optimi-
zation of a non-convex function. The inversion of an MxM matrix is
required, where M is the number of basis vectors in the model, thus
inducing O(M3) computational complexity. In OA-RVM, without loss
of generality, we assume that we have 2M basis vectors: A dimen-
sionality ofM for the input features and an additionalM for the output
features. Thus, the complexity is O((2M)3)=O(M3). Furthermore, the
output features in OA-RVM are obtained by utilizing the original RVM
algorithm. If for a d-dimensional output problem, the complexity of
the original RVM algorithm is O(dC), then for OA-RVM the complexity
would be 2O(dC)which is stillO(dC). In conclusion, the theoretical com-
plexity of OA-RVM is of the same order as RVM. Nevertheless, in prac-
tice OA-RVM has a higher computational complexity than RVM, since
it involves executing the original RVM algorithm as well as OA-RVM,
which implies an augmented kernel with twice the number of candi-
date basis vectors compared to RVM.
gression for dimensional and continuous emotion prediction, Image
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5. Data set and feature extraction

As a proof of concept, the proposed OA-RVM regression is applied
to the highly challenging problem of dimensional and continuous pre-
diction of emotions from heterogeneous nonverbal cues, namely facial
expressions, shoulder movements and audio-cues. Our aim is to ex-
plore how the behavior of the OA-RVM model changes (in terms of
prediction accuracy and spatio–temporal structure) depending on
the expressive cue/modality employed.

5.1. Data set

For experimental validation we use the Sensitive Artificial Listener
(SAL) Database [40]. It contains audio-visual, naturalistic affective
conversational data taking place between a participant and an avatar
(operated by a human). Each avatar is considered to have a different
personality: Poppy is happy, Obadiah is gloomy, Spike is angry and
Prudence is pragmatic.

The recordings were made in a controlled laboratory setting with
one camera, microphones, uniform background and constant lighting
conditions. As our aim is to achieve continuous emotion prediction,
we could take advantage only of the amount of data which was anno-
tated in the valence-arousal dimensional affect space.

This corresponds to a portion of the database that contains data
from 4 subjects (subjects 1 and 2 are female, and subjects 3 and 4
are male) and their respective annotations (provided by 3–4 coders).

Example frames from this portion of the SAL database, together
with the trackings of facial points, are shown in Fig. 3. Based on the
annotations provided, we used a set of automatic segmentation and
ground truth generation algorithms [41] that generated segments of
positive/negative emotional displays. More specifically, we generated
segments capturing transitions to an emotional state and back (e.g.,
going from non-positive to positive and back to non-positive). Hence-
forth, we refer to these classes as positive for the transition to a positive
emotional state, and negative for the transition to a negative emotional
state. In total, we used 61 positive and 73 negative segments, and
approximately 30,000 video frames.

5.2. Facial expressions

For extracting facial expression features, we employ the Patras–
Pantic particle filtering tracking scheme [42] for tracking the facial
feature movements displayed during the naturalistic interactions.
We track the corners of the eyebrows (4 points), the eyes (8 points),
the nose (3 points), the mouth (4 points) and the chin (1 point). For
each video segment containing n frames, the tracker results in a fea-
ture set with dimensions n⁎20⁎2. We register each set of points in
(a)

Fig. 3. Examples of the data at hand from the SAL database. (a) Facial
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a given frame to the corresponding coordinate system centered at
the fixed point of the face (the average of the inner eye points and
the tip of the nose). We thus end up with a simple translation applied
to every point in every frame (also using the fixed point itself as a fea-
ture). Fig. 3(a) shows examples from the data set employed together
with the tracking of the facial feature points.

5.3. Shoulder movements

The motion of the shoulders is captured by tracking 2 points on
each shoulder and one stable point on the torso, usually just below
the neck (see Fig. 3(b)). We initialize the tracked points in the first
frame of each sequencemanually, while the standard Auxiliary Particle
Filtering (APF) [43] is subsequently used to track the shoulder points.
This scheme is less complex and faster compared to the Patras–Pantic
particle filtering tracking scheme, it does not require learning the
model of prior probabilities of the relative positions of the shoulder
points, while resulting in sufficiently high accuracy. For each video seg-
ment containing n frames, the tracker results in a feature set with di-
mensions n⁎5⁎2. The SAL database consists of challenging data with
sudden body movements and out-of-plane head rotations. As the
focus of this paper is on dimensional and continuous affect prediction,
wewould like tominimize the effect of imperfect and noisy point track-
ing on the automatic prediction. Therefore, both facial point tracking
and shoulder point tracking have been done in a semi-automatic
manner (with manual correction when tracking is imperfect).

5.4. Audio features

Our audio features include Mel-frequency Cepstrum Coefficients
(MFCC, MFCC-Delta) [44] and prosody features (the energy of the sig-
nal, the root mean squared energy and the pitch obtained by using a
Praat pitch estimator [45]).

We used 6 cepstrum coefficients, thus obtaining 6 MFCC and 6
MFCC-Delta features for each audio frame. We have essentially
extracted the typical set of features used by other works (e.g., [46])
for automatic affect recognition. Along with pitch, energy and RMS
energy, we obtained a set of features with dimensionality 15 (per
audio frame).

6. Why output-association for continuous emotion prediction?

In this section, we would like to demonstrate how the proposed
OA-RVM regression framework is efficiently applicable to the prob-
lem of automatic emotion prediction in a continuous dimensional
space. We focus our analysis and discussion on Fig. 4. The figure illus-
trates how employing the original RVM and the proposed OA-RVM
(b)

expression tracking (20 points) (b) Shoulder tracking (5 points).
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provides continuous prediction of valence and arousal dimensions for
one training sequence (consisting of 315 frames) extracted as
explained in Section 5.

The predictions generated by RVM are shown in Fig. 4(a,b) while
the OA-RVM generated predictions with a window of v=0 and
v=4 are shown in Fig. 4(c,d) and (e,f), respectively. The ground
truth for both the valence and the arousal dimensions is shown in
all figures as gTruth, for comparison purposes. The generated predic-
tions for valence appear on the left column of Fig. 4, while the gener-
ated predictions for arousal appear on the right. The window of v=0
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is meant to represent the most sparse results, while a window of
v=4 is deemed sufficient for a sequence of 315 frames as it embeds
9 temporal steps (frames) in terms of past (4 frames), present (cur-
rent frame) and future (4 frames) context.

In this particular sequence, the subject appears to be displaying
negatively valenced emotions (e.g., sadness, disappointment), with a
decreasing arousal over time (towards a more passive emotional
state). In the figure we observe how the RVM framework generates
predictions (depicted with RVM line) by using 32 relevance vectors
(RVs) for valence (Fig. 4a) and 39 RVs for arousal (Fig. 4b). Fig. 4(c,d)
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Table 1
Evaluating SVM, RVM and OA-RVM in terms of RMSE for predicting arousal and valence
from face, shoulder and audio cues. Results are averaged across four-fold subject-
independent cross-validation. Best results are indicated in bold.

Valence Arousal

Class Cue SVM RVM OA-RVM SVM RVM OA-RVM

POS Face 0.200 0.166 0.160 0.157 0.166 0.147
Shoulders 0.257 0.177 0.171 0.164 0.146 0.132
Audio 0.176 0.179 0.171 0.146 0.144 0.130

NEG Face 0.150 0.940 0.088 0.365 0.374 0.342
Shoulders 0.110 0.103 0.097 0.355 0.371 0.354
Audio 0.101 0.102 0.097 0.339 0.339 0.300
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then illustrates how the proposed OA-RVM framework generates pre-
dictions for the sequence at hand, for valence and arousal, with a tem-
poral window of v=0. Note how OA-RVM is able to learn a smoother
and more accurate model by using 7 RVs for valence and 6 RVs for
arousal, respectively.

As specified in Eq. (2), OA-RVM depends on both the input
features (x, depicted as IF in the figure) and the output features (yv ,
depicted as OF in the figure). To illustrate the behavior of the frame-
work, we decompose the relevance vectors (RVs) selected by OA-
RVM into the RVs centered around the input features (RV-IF) and
the RVs centered around the output features (RV-OF).

For the valence dimension, the 7 RVs used for the OA-RVM model
can be decomposed into 4 RVs corresponding to input features (the
relevant frames shown in Fig. 4c) and 3 RVs corresponding to output
features (shown in Fig. 4(a,b) as Val OA-RV). A similar analysis is per-
formed for the arousal dimension. For the sequence at hand, in Fig. 4d
we can see that 6 RVs are needed by OA-RVM. Note how for this pre-
diction, only one input feature RVis used by OA-RVM. The remaining
5 RVs centered around the output features are depicted in Fig. 4(a,b)
as Ar OA-RV. An interesting observation is that, in frame 1 and frame
15 the arousal begins to decrease, and is accompanied by a change
of sign in the valence dimension. The OA-RVM framework is able to
capture this in its valence and arousal prediction via two common
RVs centered around the output-features in frame 1 and frame 15.

To conclude this section, in Fig. 4(e,f), we show the results of
applying OA-RVM with a temporal window of v=4 (Eq. (2)). Note
how the learned OA-RVM model provides a nearly perfect fit by
using no more RVs than the original RVMmodel (fromwhich the out-
put features are generated). Yet, both the MSE and COR metrics are
improved. Although the complexity of the model is observed to in-
crease with an increase in the window size, overall, the OA-RVM
model appears to generalize to new data very well while avoiding
overfitting.

7. Experiments and results

7.1. Experimental setting

We apply the proposed OA-RVM regression to the highly challeng-
ing problem of dimensional and continuous prediction of emotions from
heterogeneous nonverbal cues, namely facial expressions, shoulder
movements and audio cues. Our aim is to conduct comprehensive ex-
periments in order to explore how the behavior of the OA-RVM model
changes (in terms of prediction accuracy and spatio–temporal struc-
ture) depending on the expressive cue/modality employed.

We use the traditional RVMas the baseline for our comparisonswith
OA-RVM. We also use SVR as it is one of the most widely adopted
regression techniques in the field. The kernel used for the construction
of the basis matrices is a Gaussian, K x; xið Þ ¼ exp − x−xið Þ2

� �
=r2

n o

where r stands for the width of the function. The window parameter v
in the output-associative functional we employ (Eq. (1)) is generally
varied in the range [0−30] and determined by cross-validation. It
should be noted that for the probabilistic regression methods (RVM,
OA-RVM), the hyperparameters are determined by optimizing the
likelihood function (by using fast marginal likelihood maximization
algorithm proposed in [37]). We use RVM to obtain the initial
(noisy) output estimation (i.e., the output features) for OA-RVM. For
SVRwe apply cross-validation employing an ε-insensitive loss function.

In our current setting, we assume that the segments contained
in our data set (Section 5) have been coarsely classified into either pos-
itive or negative, prior to the prediction (regression) procedure. 4The
classification stage is beyond the scope of this paper, and can be
achieved by applying an accurate (coarse) classifier, e.g. [16], as the
4 Note that each sequence usually contains some portion of both positively/negatively
valenced frames.
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basis for the current framework. This assumption is motivated by the
fact that we would like to focus on the prediction results in detail, and
study them in isolation for each class (e.g., which dimension is easier
to predict for which class). Based on the aforementioned assumptions,
we conduct experiments using subject-independent cross-validation,
where we train the model using data from three subjects and evaluate
the trainedmodel using the data from the subject left out for evaluation.
Results are averaged across four-fold subject-independent cross-
validation.

Note that subject-independent evaluation using this database is
considered highly challenging [24] as annotated data is only available
for a small number of subjects. More specifically, during training, the
model is able to learn only a limited (subject-specific) subspace of
the human affective variability. Moreover, performing regression in
a continuous space (rather than classification into a predetermined
set of labels) poses additional challenges.

As evaluation metrics we use both the root mean squared error
(RMSE) and the correlation (COR) between the prediction and the
ground truth values. RMSE evaluates the prediction by taking into
account the squared error of the prediction from the ground truth.
As discussed in [34], the RMSE, which represents the bias error and
variance of the prediction, can be misleading with regard to how
realistic the prediction of a regression technique can be. The correla-
tion coefficient (COR) provides an evaluation of the linear relationship
between the prediction and the ground truth, and subsequently, an
evaluation of whether the model has managed to capture the linear
structural patterns inhibited in the data at hand.

7.2. Experimental results and analysis

In this section, we will discuss the results of the proposed OA-RVM
model, focusing on prediction accuracy as evaluated by the root mean
squared error (RMSE), presented in Table 1, and the correlation coef-
ficient (COR) presented in Table 2.

Firstly, we observe that for both emotion dimensions and classes,
OA-RVM outperforms RVM and SVM in terms of both COR and
RMSE. The improvement is especially noticeable in terms of COR rather
than RMSE. This can be justified by the fact that the goal of OA-RVM is
to enforce common, temporal output patterns, thus increasing the co-
variance of the prediction with the ground truth. The prediction results
provided by SVR and RVM are fairly similar, with RVM in general
achieving better correlation with the ground truth. Given the above-
mentioned results, we will focus our attention to the OA-RVM predic-
tion results and compare them to the results we have previously
presented in [21].

Focusing on the RMSE results of each class in isolation, we denote
that for the positive class arousal appears to be easier to predict than
valence. This is in agreement with the results presented in [21]. Never-
theless, for the same class, the COR achieved is higher for valence,
showing that the structure of the valence dimension is modeled more
accurately. When analyzing the results obtained for the negative class
we observe that valence prediction is better than arousal prediction.
In fact, considering the RMSE metric, arousal prediction for the
gression for dimensional and continuous emotion prediction, Image
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Table 2
Evaluating SVM, RVM and OA-RVM in terms of COR for predicting arousal and valence
from face, shoulder and audio cues. Results are averaged across four-fold subject-
independent cross-validation. Best results are indicated in bold.

Valence Arousal

Class Cue SVM RVM OA-RVM SVM RVM OA-RVM

POS Face 0.28 0.30 0.43 0.09 0.09 0.16
Shoulders 0.01 0.16 0.32 0.12 0.19 0.30
Audio 0.02 0.03 0.19 0.04 0.07 0.21

NEG Face 0.14 0.20 0.27 0.13 0.18 0.27
Shoulders 0.14 0.28 0.29 0.09 0.09 0.22
Audio 0.01 0.05 0.10 0.23 0.23 0.38

9M.A. Nicolaou et al. / Image and Vision Computing xxx (2012) xxx–xxx
negative class appears to be the most challenging case for the OA-RVM
prediction framework.

Let us now compare the results obtained by employing different
sets of nonverbal cues. When utilizing the facial expression cues,
the correlation between the prediction and the ground truth appears
to be equivalent for both emotion dimensions. In general, correlation
obtained for the negative class appears to be highly dependent on the
set of cues employed.

Related work on dimensional emotion recognition reported that
arousal can be much better predicted than valence using audio cues
[24,25,47]. Results obtained from our experiments are in line with
such findings, showing that audio cues appear to provide the best
prediction results (in terms of RMSE) for the arousal dimension.
When considering the COR metric and the negative class, audio cues
again appear to provide the best prediction results (0.38) compared
to facial expression (0.27) and shoulder cues (0.22). For the positive
class, while the audio cues still provide better correlation compared to
using the facial expression cues, the shoulder cues appear very capable
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of capturing the arousal structure (and perform better than the audio
cues).

It is well known that the facial expression cues are very informa-
tive for predicting valence. Our RMSE-based results confirm this, uti-
lizing the facial expression cues provides better prediction results for
the valence dimension. The shoulder cues also appear to be better at
capturing useful information regarding the valence dimension com-
pared to the audio cues.

When evaluating the valence prediction models in terms of the cor-
relation metric, the models trained using the visual cues in general
appear to perform better than the models trained using the audio
cues (see Table 2). Additionally, for the negative class, the prediction
models trained on the shoulder cues appear to slightly outperform
the models trained on the facial expression cues.

In Fig. 5, we illustrate the average results for both classes evaluated
in terms of RMSE and COR. Overall, we observe that regardless of the set
of cues utilized or dimensions predicted, there is a significant increase
in terms of correlation when applying OA-RVM. As denoted earlier,
compared to OA-RVM and RVM, SVM provides the lowest correlation.
Additionally, it can be seen that prediction models trained with facial
expressions provide the lowest RMSE for the valence dimension, and
the prediction models trained using the audio cues provide the lowest
RMSE for the arousal dimension.

In Fig. 6 we also provide an illustrative comparison between the
predictions generated by OA-RVM and RVM, on test data, with re-
spect to the ground truth (utilizing different cues).

Overall, naturalistic emotional expressions are highly subject-
dependent [1]. However, from our experiments we conclude that
automatic, subject-independent, dimensional and continuous predic-
tion of emotions becomes feasible by utilizing input and output asso-
ciations as well as temporal context.
Valence Arousal

Valence Arousal

Valence Arousal

.00

.05

.10

.15

.20

.25

.30
SVM RVM OA-RVMFACE/ RMSE

b)

d)

f)

.00

.05

.10

.15

.20

.25

.30
SVM RVM OA-RVMSHOULDERS / RMSE

0

.05

0.1

.15

0.2

.25

0.3
SVM RVM OA-RVMAUDIO / RMSE

utilizing (a,b) facial expressions, (c,d) shoulder movement and (e,f) audio cues.

gression for dimensional and continuous emotion prediction, Image

http://dx.doi.org/10.1016/j.imavis.2011.12.005


0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

Frames

V
al

en
ce

OA−RVM
RVM
GT

(a)

(b)

(c)

0 20 40 60 80 100 120 140
−0.2

−0.1

0

0.1

0.2

0.3

Frames

A
ro

us
al

OA−RVM
RVM
GT

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Frames

A
ro

us
al

OA−RVM
RVM
GT

Fig. 6. An illustrative comparison between the predictions generated by OA-RVM
and RVM, on test data, with respect to the ground truth (GT), utilizing different cues:
(a) facial expressions, (b) shoulder movements, and (c) audio cues.

10 M.A. Nicolaou et al. / Image and Vision Computing xxx (2012) xxx–xxx
Psychological research findings suggest that there exist gender-
related differences in expressing emotions (e.g., women appear to
be more facially expressive than men [48]). In our experiments we
found no consistent differentiations between male and female sub-
jects. However, the data set employed is relatively small in order
to draw generalizing conclusions regarding gender-related differences.

8. Conclusions and discussion

In this paper, we proposed a novel Output-Associative Relevance
Vector Machine (OA-RVM) regression framework that augments tradi-
tional RVM by being able to learn non-linear input–output dependencies.
Instead of depending solely on the input patterns, OA-RVMmodels out-
put structure and covariances within a predefined temporal window,
thus capturing past and future context.We successfully applied the pro-
posed framework for dimensional and continuous prediction of emo-
tions from heterogeneous nonverbal cues (facial expressions, shoulder
movement and audio cues) and demonstrated its advantages and ef-
ficiency over a comprehensive set of experiments using subject-
independent cross-validation. Our experimental results show that:

• OA-RVM outperforms both RVM and SVR in terms of prediction ac-
curacy (RMSE) and prediction structure (COR), regardless of the set
of cues utilized or emotion dimensions predicted. Employing a tem-
poral (output)window,which induces the learning of past and future
context, contributes significantly to the prediction accuracy. The size
Please cite this article as: M.A. Nicolaou, et al., Output-associative RVM re
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of the optimal temporal window may vary depending on the task
and the data at hand.

• Although there is an inherent, subject-dependent characteristic at-
tributed to naturalistic emotional expressions; automatic, subject-
independent, dimensional and continuous prediction of emotions
is possible by utilizing input and output associations, and temporal
context.

As future work, the proposed model remains to be evaluated on
databases with a larger number of subjects (e.g., SEMAINE) in order
to (i) obtain deeper insights into the accuracy improvement provided
by the OA-RVM model, and (ii) evaluate thoroughly the generaliza-
tion capability of the OA-RVM model over different data set(s) and
subjects. It will also be interesting to investigate how (any) additional
properties could be added to the proposed framework to fuse features
coming from multiple heterogenous cues and modalities.
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