Course 395: Machine Learning - Lectures
* Lecture 1-2: Concept Learning (M. Pantic)

L_ecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis)
> eLecture 5-6: Evaluating Hypotheses (S. Petridis)

Lecture 7-8: Neural Networks | (S. Petridis)

L_ecture 9-10: Neural Networks Il (S. Petridis)

Lecture 11-12: Neural Networks 11 (S. Petridis)

Lecture 13-14: Genetic Algorithms (M. Pantic)
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Evaluating Hypotheses — Lecture Overview

« Training / Parameter Optimisation / Evaluation
- Holdout Method
- Cross-validation

« Measures of classification performance
— Confusion Matrix
— Classification Error/Rate
— Unweighted Average Recall (UAR)
— Recall, Precision, F1 measure
— Imbalanced Datasets
— Overfitting

« Estimating hypothesis accuracy
— Sample Error vs. True Error
— Confidence Intervals

« Comparing Learning Algorithms
— t-test
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Holdout Method

« Split your dataset into 3 disjoint sets: Training, Validation, Test

« Ifalot of data are available then you can try 50:25:25 otherwise
60:20:20.
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From: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

Stavros Petridis Machine Learning (course 395)




Holdout Method

 Identify which parameters need to be optimised
- e.g. number of hidden neurons, number of hidden layers etc

« Select a performance measure to evaluate the performance on the
validation set

- F1, Classification Rate etc
- Appropriate measure depends on the application, if the test set is
Imbalanced etc
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Holdout Method
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From: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

 Train your algorithm on the training set multiple times, each time
using different values for the parameters you wish to optimise.

 For each trained classifier evaluate the performance on the
validation set (using the performance measure you have selected).
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Holdout Method
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« Keep the classifier that leads to the maximum performance on the
validation set (in this example the one trained with 35 hidden neurons).

« This is called parameter optimization/tuning, since you select the set of
parameters that have produced the best classifier.
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Holdout Method
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From: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

You can either merge the training and validation sets and train a new
classifier using the optimal set of parameters OR you can simply use the
best classifier (trained only on the training set).

Test the performance on the test set.
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Holdout Method
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From: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

« The test set should NOT be used for training or validation. It is used
ONLY in the end for estimating the performance on unknown examples,
I.e. how well your trained classifier generalises.

* You should assume that you do not know the labels of the test set and
only after you have trained your classifier they are given to you.
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Holdout Method
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From: https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.htmi

* We need a model which we will use for classifying new examples.

« Either use the one trained on the training set or on training + validation

sets OR train a new model on the entire dataset using the optimal set of
parameters.
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Cross Validation

test data —p error estimate 1 test data — error estimate 2
train data +validation data train data + validation data
test data —— eror estimate K ~Total error estimate:e =+ » €

i=1
train data + validation data

« When we have a lot of examples then the division into training/validation/test
datasets is sufficient.

« When we have a small sample size then a good alternative is cross validation.

Stavros Petridis Machine Learning (course 395)




Cross Validation — Test Set Performance
Estimation

test data —p error estimate 1 test data —p error estimate 2

train data +validation data train data + validation data

test data — error estimate K *Total error estimate:& = Z e
i=1

train data + validation data

Divide dataset into k (usually 10) folds using k-1 for training+validation

and one for testing

Test data between different folds should never overlap!

Training+Validation and test data in the same iteration should never overlap!
In each iteration the error on the left-out test set is estimated

Error estimate: average of the k errors
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Cross Validation— Test Set Performance
Estimation

Inputs

Targets

The k-1folds should be divided into | | I | ” | | | \ w

training and validation folds, e.g. k-2 m— be 1 vangations

folds for training and 1 for validation. MHM“W

alidation 2 Tratfing 2 Testing 2

S. Marsland, Machine learning: An algorithmic perspective

Train on the training set, optimise parameters on the validation set and test

on the test set.

We can only estimate the test set performance. In other word we evaluate how
our implementation (and the way we optimise the parameters) generalises on
unknown test sets.

We know nothing about the optimal set of parameters. We find a different set of
optimal parameters in each fold.
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Cross Validation — Parameter Estimation

——> Validation Validation
datal T error 1 Training
Training tta
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We can use cross validation to estimate the optimal set of parameters
k-1folds for training, 1 fold left out for validation (using the entire dataset)
For each parameter set run the k fold cross-validation

Select the parameters that result in the best average performance
over all k left out folds
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Parameter Optimisation—Performance
Estimation - Summary

« CASE 1: A lot of data are available (Holdout Method)
1) Tune parameters on validation set
2) Estimate generalization performance using the test set
3) Train on entire dataset using optimal set of parameters

« CASE 2: Data are limited (Cross validation)
1) Run cross validation to estimate the test set performance
- Training, validation, test folds
- Optimise parameters in each iteration
2) Run cross validation to estimate optimal parameters
- Training, Validation folds only
3) Train on entire dataset using optimal set of parameters
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Classification Measures — Confusion Matrix

Class 1 Class 2  Class 1: Positive
Predicted Predicted Class 2: Negative

Class 1 TP FN e« TP: True Positive

Actual « FN: False Negative
Class 2 FP TN « FP: False Positive
Actual

« TN: True Negative

 Visualisation of the performance of an algorithm
 Allows easy identification of confusion between classes
e.g. one class is commonly mislabelled as the other
« Most performance measures are computed from the confusion matrix
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Classification Measures — Classification Rate

Class 1 Class 2  Class 1: Positive
Predicted Predicted Class 2: Negative

Class 1 TP FN e« TP: True Positive

Actual « FN: False Negative
Class 2 FP TN  FP: False Positive
Actual

« TN: True Negative

TP+TN
TP+ TN+ FP + FN

« Number of correctly classified examples divided by the total
number of examples

« Classification Error = 1 — Classification Rate

« Classification Rate = Pr(correct classification)

 Classification Rate / Accuracy:
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Classification Measures — Recall

Class 1 Class 2  Class 1: Positive
Predicted Predicted Class 2: Negative

Class 1 TP FN e« TP: True Positive

Actual « FN: False Negative
Class 2 FP TN  FP: False Positive
Actual .
« TN: True Negative
TP
* Recall:
TP +FN

Number of correctly classified positive examples divided by the total
number of positive examples

High recall: The class is correctly recognised (small number of FN)
Recall = Pr(correctly classified | positive example)
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Classification Measures — Precision

Class 1 Class 2  Class 1: Positive
Predicted Predicted Class 2: Negative

Class 1 TP FN e« TP: True Positive

Actual « FN: False Negative
Class 2 FP TN « FP: False Positive
Actual :
« TN: True Negative
 Precision: rp
TP + FP

« Number of correctly classified positive examples divided by the total
number of predicted positive examples

« High precision: An example labeled as positive is indeed positive
(small number of FP)

 Precision = Pr(positive example | example is classified as positive)
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Classification Measures — Recall/Precision

Class 1 Class 2  Class 1: Positive
Predicted Predicted Class 2: Negative

Class 1 TP FN e« TP: True Positive

Actual « FN: False Negative
Class 2 FP TN  FP: False Positive
Actual .
« TN: True Negative
Recall: il Precision: i
ecall:  —o—Fw recision: 5o

« High recall, low precision: Most of the positive examples are correctly
recognised (low FN) but there are a lot of false positives.

« Low recall, high precision: We miss a lot of positive examples (high FN)
but those we predict as positive are indeed positive (low FP).
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Classification Measures — F1 Measure/Score

« Itisuseful to have one number to measure the performance of the classifier

Precision*Recall

e F,=(1+a?)

a?+Precision+recall

PrecisionxRecall

* Wheno=1-2>F, =2

Precision+recall
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Classification Measures — UAR

Class 1 Class 2  Class 1: Positive
Predicted Predicted Class 2: Negative

Class 1 TP FN e« TP: True Positive

Actual « FN: False Negative
Class 2 FP TN  FP: False Positive
Actual

« TN: True Negative

« We compute recall for classl (R1) and for class2 (R2)

« Unweighted Average Recall (UAR) = mean(R1, R2)
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Classification Measures — Extension to

Multiple Classes

- In the multiclass case it is still
Predicted | Predicted | Predicted very useful to compute the

ZI;?JZ Il confusion rr_latrix.
—— = — - « We can define one class as |
Actual positive and the others as negative.
Class3  FP ? N  We can compute the performance
Actual measures in exactly the same way.

« CR =number of correctly classified examples (trace) divided by the
total number of examples.

« Recall and precision and F1 are still computed for each class.

« UAR =mean(R1, R2, R3,..., RN)
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Classification Measures — Balanced Test Set

« CR:80%
° . 0
Class 1 Class 2 Recafll_ (cl.1): 70%
Predicted Predicted * Precision (cl.1): 87.5%
Class 1 70 30 « F1(cl.l):77.8%
Actual « UAR: 80%
Class 2 10 90 « Recall (cl.2): 90%

Actual « Precision (cl.2): 75%

. F1(cl.2): 81.8%

« Balanced Dataset: The number of examples in each class
(of the test set) are similar

« All measures result in similar performance
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Classification Measures — Imbalanced Test Set
Case 1: Both classes are classified with same recall as before

Class 1 Class 2 )
Predicted Predicted *

Class 1 700 300 y
Actual .
Class 2 10 90 .
Actual

CR: 71.8%

Recall (cl.1): 70%
Precision (cl.1): 98.6%
F1 (cl.1): 81.9%

UAR: 80%

Recall (cl.2): 90%
Precision (cl.2): 23.1%
F1 (cl.2): 36.8%

« Imbalanced Dataset: Classes are not equally represented

« CR goes down, is affected a lot by the majority class

« Precision (and F1) for Class 2 are significantly affected —
- 30% of class1 examples are misclassified—> leads to a
higher number of FN than TN due to imbalance

Stavros Petridis
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Classification Measures — Imbalanced Test Set
Case 2: One class is completely misclassified

« CR:63.6%
° . 0)
Class 1 Class 2 Recafll_ (cl.1): 70%
Predicted Predicted * Precision (cl.1): 87.5%
Class 1 700 300 * Fl(cl.1):77.8%
Actual « UAR: 35%
Class 2 100 0 . Recall (cl.2): 0%

Actual « Precision (cl.2): 0%

« F1 (cl.2): Not defined

« CRis misleading, class 2 is completely misclassified.
« F1 for class 2 shows that something is wrong.
* UAR also detects that there is a problem.
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Classification Measures — Imbalanced Test Set
Conclusions

CR can be misleading, simply follows the performance of the
majority class

UAR is useful and can help to detect that one class is completely
misclassified but it does not give us any information about FP

F1 is useful as well but is also affected by the class imbalance
problem

- We are not sure if the low score is due to one class being
misclassified or class imbalance

That’s why we should always have a look at the confusion matrix
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Classification Measures — Imbalanced Test Set
Some solutions

Class 1 Class 2 t[;it\;:dneutrglbzhre Class 1 Class 2
Predicted | Predicted of examples Predicted | Predicted

Class 1 per class N Class 1
Actual Actual
Class 2 10 90 Class 2 0.1 0.9
Actual Actual

« Report performance ALSO on the “normalised matrix™

CR: 71.8% « CR:80%
Recall (cl.1): 70% « Recall (cl.1): 70%
« Precision (cl.1): 98.6% «  Precision (cl.1): 87.5%
 F1(cl.1):81.9% > « F1(cl.l): 77.8%
«  UAR: 80% «  UAR: 80%
Recall (cl.2): 90% * Recall (cl.2): 90%
Precision (cl.2): 23.1% « Precision (cl.2): 75%
F1 (cl.2): 36.8% « F1(cl.2): 81.8%
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Classification Measures — Imbalanced Test Set
Some solutions

Class 1 Class 2 t[;it\;:dneutrglbzhre Class 1 Class 2
Predicted | Predicted of examples Predicted | Predicted

Class 1 per class N Class 1
Actual Actual
Class 2 10 90 Class 2 0.1 0.9
Actual Actual

» These would be the results if we had the same number of
examples and the performance of the classifier remained the
same

* We don’t have the same number of examples and there is no
guarantee that the performance will remain the same (but still

it’s one solution to the problem)
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Classification Measures — Imbalanced Training Set
Some solutions

« Upsample the minority class
« Downsample the majority class
- e.g. select randomly the same number of examples as the minority class.
- Repeat this procedure several times and train a classifier each time
with a different training set.
- Report the mean and st. dev. of the selected performance measure

« Japkowicz, Nathalie, and Shaju Stephen. "The class imbalance problem:
A systematic study." Intelligent data analysis 6.5 (2002): 429-449.

Our experiments allowed us to conclude that the class imbalance problem is a relative
problem that depends on 1) the degree of class imbalance; 2) the complexity of the concept

represented by the data; 3) the overall size of the training set; and 4) the classifier involved.
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It’s not all about accuracy

The “Best” Machine Learning Method

Interpretable Simple

Accurate

Fast

(to train and test) Scalable

http://radar.oreilly.com/2013/09/gaining-access-to-the-best-machine-learning-methods.html
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Innovation
by Mike Masnick

Fri, Apr 13th 2012
12:07am

Filed Under:
contest, data,
recommendation
algorithm,
streaming
Companies:
netflix

Permalink.

Why Netflix Never Implemented The Algorithm That Won
The Netflix $1 Million Challenge

from the fimes-change dept

You probably recall all the excitement that went around when a group finally won the big Netflix
$1 million prize in 2009, improving Netflix's recommendation algorithm by 10%. But what you
might not know, is that Netflix never implemented that solution itself. Netflix recently put up a
blog post discussing some of the details of its recommendation system, which (as an aside)
explains why the winning entry never was used. First, they note that they did make use of an
earlier bit of code that came out of the contest:

A year into the competition, the Korbell team won the first Progress Prize with an
8.43% improvement. They reported more than 2000 hours of work in order to come
up with the final combination of 107 algorithms that gave them this prize. And, they
gave us the source code. We looked at the two underlying algorithms with the best
performance in the ensemble: Matrix Factorization (which the community generally
called SVD, Singular Value Decomposition) and Restricted Boltzmann Machines
(RBM). SVD by itself provided a 0.8914 RMSE (root mean squared error), while RBM
alone provided a competitive but slightly worse 0.8990 RMSE. A linear blend of
these two reduced the error to 0.88. To put these algorithms to use, we had to work
to overcome some [imitations, for instance that they were built to handle 100
million ratings, instead of the more than 5 billion that we have, and that they were
not built to adapt as members added more ratings. But once we overcame those
challenges, we put the two algorithms into production, where they are still used as
part of our recommendation engine.

Neat. But the winning prize? Eh... just not worth it:

We evaluated some of the new methods offline but the additional accuracy gains

that we measured did not seem to justify the engineering effort needed to bring
them into a production environment.

https://www.techdirt.com/blog/innovation/articles/20120409/03412518422/
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Overfitting

« Given a hypothesis space H, he H overfits the training data if
there exists some alternative hypothesis h ‘e H such that h has
smaller error than h ” over the training examples, but h " has
smaller error than h over the entire distribution of instances.

€
A
- * Red: error on Test set
Underfitting A (unseen examples)
Just riaht  Blue: error on Training set
ust ri -
: D Overfitting

« Overfitting: Small error on training set, but large error on unseen examples.
« Underfitting: Larger error on training and test sets.
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Overfitting

|

« Green: True target function
« Red: Training points
« Blue: What we have learned (overfitting)

L

(by Tomaso Poggio, http:/imwww.mit.edu/~9.520/spring12/slides/class02/class02.pdf)

« The algorithm has learned perfectly the training examples, even
the noise present in the examples and cannot generalise on
unseen examples.
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Overtitting

« Qverfitting can occur when:
— Learning is performed for too long (e.g. in Neural Networks).

— The examples in the training set are not representative of all
possible situations.

— The model we use is too complex.

d = 1 (under-fit) d=2 d = 6 (over-fit)

price
X

house size house size house size

http://www.astroml.org/sklearn_tutorial/practical.html
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Estimating accuracy of classification measures

« QI1: What is the best estimate of the accuracy over future examples
drawn from the same distribution?

- If future examples are drawn from a different distribution then we
cannot generalise our conclusions based on the sample we already
have.

« Q2. What is the probable error in this accuracy estimate? We want to
assess the confidence that we can have In this classification measure.
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Sample error & true error

« The True error of hypothesis h is the probability that it will
misclassify a randomly drawn example x from distribution D:

f:true target
function
« The Sample error of hypothesis h based on a data sample S:

1

errorg(h)==> 8(f (x),h(X)) sg,nen=1 irseney
N yes o(f(x),h(x))=0 if f(x)=h(x)

errory (h)=Pr[f(x)= h(x)]

n: number of examplesin S

« We want to know the true error but we can only measure the
sample error.
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Sample Set Assumptions

« We assume that the sample S is drawn at random using the same
distribution D from which future examples will be drawn.

« Drawing an example from D does not influence the probability that
another example will be drawn next.

« Examples are independent of the hypothesis (classifier) h being tested.
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Sample Error as Estimator

« QI1: What is the best estimate of the accuracy over future examples
drawn from the same distribution?

« The best estimate of the true error is the sample error.

* Proof can be found in Mitchell’s book (chapter 5). Not examinable.
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Confidence interval

« Q2: What is the probable error in this accuracy estimate? We want to
assess the confidence that we can have in this classification measure.

« What we really want to estimate is a confidence interval for the true
error.

« An N% confidence interval for some parameter p is an interval that
IS expected with probability N% to contain p.

e.g. a 95% confidence interval [0.2,0.4] means that with probability
95% p lies between 0.2 and 0.4.
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Confidence interval - Theory

Given a sample S with n >= 30 on which hypothesis h makes r
errors, we can say that:

Q1: The most probable value of errory(h) is error (h)
Q2: With N % confidence, the true error lies in the interval:

error. ()£ 2, \/ error, (h)(ln— error, (h))

with:

N%:|50% 68% 80% 90% 95% 98% 99%
zy: 10.67 1.00 1.28 1.64 1.96 2.33 2.58
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Confidence interval — example (2)

Given the following extract from a scientific paper on multimodal
emotion recognition:

We trained the classifiers with 156 samples and tested with
50 samples from three subjects.

Table 3. Emotion recognition results for 3 subjects using
156 training and 50 testing samples.

Attributes I‘:umber of Classifier Correctly

Classes classified
Face* 67 8 C4.5 78 %
Body® 140 6 BayesNet 90 %

For the Face modality, what is n? What is error (h)?

Exercise: compute the 95% confidence interval for this error.
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Confidence interval — example (3)

Given that error (h)=0.22 and n= 50, and z,=1.96 for N = 95%, we can
now say that with 95% confidence errorg(h) will lie in the interval:

{0_22_1_96 \/0.22(1—0.22), 09911 96 \/0.22(1—0.22)}:

50 50
0.11,0.34]

What will happen when n — o0 ?
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Comparing Two Algorithms
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« Consider the distributions of the classification errors of two different
classifiers derived by cross-validation.

« The means of the distributions are not enough to say that one of the
classifiers is better!! In all cases the mean difference is the same.

« That’s why we need to run a statistical test to tell us if there is indeed a
difference between the two distributions.
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Statistical Tests

There are several statistical tests: T-test, Wilcoxon, Randomisation etc.

A set of observations x and y (e.g. classification error) for each algorithm
are needed.

Two-sample T-test: X, y could be the classification errors on two different
datasets

Paired T-test: X, y could be the classification errors on the same folds of

cross-validation from two different algorithms. The test folds are the same,
l.e. they are matched.

The t-test tells us if the means of the two sets are significantly different.
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