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1. Introduction 
 

The purpose of this Computer-Based Coursework (CBC) is to provide the students with hands-

on experience in implementing and testing basic machine learning techniques. The techniques 

that will be examined are Decision Trees (DTs) and Neural Networks (NNs). Each of these 

techniques will be used in order to identify six basic emotions from the human facial 

expressions (anger, disgust, fear, happiness, sadness and surprise) either  based on a labelled 

set of facial Action Units (AUs) or directly from the image pixels. AUs correspond to 

contractions of human facial muscles, which underlie each and every facial expression, 

including facial expressions of the six basic emotions. More theory and details on Facial Action 

Units and their relation to emotions will be given in section 3.  The implementation of the 

aforementioned techniques requires understanding of these techniques. For this reason, 

following the lectures of the course is strongly advised.  

 

1.1 Organization  

a) Working Method 

 

Implementation of the algorithms will be done in MATLAB or Python. The students will work 

in groups of 4 students. They are expected to work together on implementation of each machine 

learning technique and the related emotion recognizer. The groups will be formed shortly after 

the first lecture (for lecture schedule see http://ibug.doc.ic.ac.uk/courses/machine-learning-

course-395/ ) and a CBC helper will be assigned to each group. The implementation will be 

either done from scratch or by using special toolboxes. After an assignment is completed, the 

code generated by each group will be evaluated by the CBC helpers. This will be done in the 

lab and by using a separate test set that will not be available to the students. The implemented 

algorithms will have to score a predefined minimum classification rate on this unknown test 

set. In addition, each group must hand in, via the CATE system, a report of approximately 4-5 

pages (excluding result matrices and graphs), and explaining details of the implementation 

process of each algorithm along with comments on the acquired results. Your code (which 

should run on any lab computer) should also be included in the CATE submission. All files 

(including the report) have to be combined in one archive file. 

 

You should also inform us about your team members by email by noon January 24th with the 

following information:  

 Student login  

 Correspondence email 

 CID 

 First and last Name 

 Degree, course/study taken, and the current year in that course. 

 

Fill in the excel form (you can find it on the course website under the section “Group Forming” 

or on http://ibug.doc.ic.ac.uk/media/uploads/documents/courses/ml-cbc-groupform.xls) with 

the above information and email it to us (machinelearningtas@gmail.com). If you cannot form 

a team with 4 members, then email us the above information and we will assign you to a team. 

Please note that we only accept requests for groups of 4. Members in a request for a different 

group size will be assigned randomly to separate groups. Each group should consist of students 

from the same course (i.e., only MSc students or only undergraduates).  

http://ibug.doc.ic.ac.uk/courses/machine-learning-course-395/
http://ibug.doc.ic.ac.uk/courses/machine-learning-course-395/
mailto:machinelearningtas@gmail.com
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Deliverables for every assignment will be described at the end of every section describing the 

assignment in question. Each group is responsible for the way in which the assignments are 

implemented and the reports are prepared and presented. These reports provide feedback on 

the performance of the group as a whole.  

 

b) Role of the CBC helpers 

 

The role of the CBC helpers is to monitor the implementation of the assignments by the 

students. The CBC helpers, however, will not make any substantive contribution to the 

implementation process. Final grading will be exclusively done by the lecturer of the course, 

who will, nevertheless, ask for the recommendations of the CBC helpers concerning the group 

progress.  

c) Communication 

 

Communication between the students and the CBC helpers is very important, and will be done 

in labs during the CBC sessions, via Piazza or via email using the following address: 

machinelearningtas@gmail.com 

Please ALWAYS mention your group number and your assigned helper in the subject line of 

your email; this makes it easier for us to divide the work. In addition, students should visit the 

website of the course, at http://ibug.doc.ic.ac.uk/courses/machine-learning-course-395/, in 

order to download the required data files needed in order to complete the assignments of this 

CBC. Also many useful links and information will be posted onto this website. 

d) Time Management 

 

In total, there are 2 assignments to be completed. As mentioned before, after the completion of 

each assignment a report of approximately 4-5 pages of text must be handed in. The deadlines 

for handing in each assignment are as follows:  

 

 Assignment 1: Monday February 12th – noon. 

 Assignment 2: Monday March 5th – noon. 

 

e) Grading 

 

In this CBC, we expect each group member to actively participate in the implementation of the 

algorithms. Each individual assignment will be graded based on the submitted report and code. 

The final CBC grade will be computed as follows: 

 
assignment_ grade = 0.75* report_content + 0.15* code_performance + 0.1* report_quality 

 

 

CBC_grade = 0.4*assignment_ grade [Ass 1]  + 0.6* assignment_ grade [Ass 2] 

 

code_performance refers to the generalisation of the trained algorithms on new unseen 

examples, report_content refers to what is provided in the report (e.g., results, analysis and 

mailto:machinelearningtas@gmail.com
http://ibug.doc.ic.ac.uk/courses/machine-learning-course-395/
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discussion of the results and how the questions in each assignment have been answered) and 

report_quality refers to quality of presentation. 

 

NOTE: CBC accounts for 32% of the final grade for the Machine Learning Course. In 

other words, final grade = 0.667*exam_grade + 0.32*CBC_grade + 0.013*questionnaire.  

 

f) Assignment submission guidelines 

In order to avoid negative consequences related to CBC assignment submission, strictly 

follow the points listed below.  

 You should work in groups. Take note that only one report per group will be accepted. 

 Send a timely email to the THs with the full list of group members, and the following 

information for each and every group member (use the excel form from the website – 

http://ibug.doc.ic.ac.uk/media/uploads/documents/ml-cbc-groupform.xls): 

 

- Student login  

- Correspondence email 

- CID 

- Full first Name 

- Family Name 

- Degree, course/study taken, and the current year in that course. 

 

 The text in your report should be approximately 4-5 pages.  

 Make sure you mention your group number in each of your reports, as well as at each 

communication with the CBC helpers. 

 Strictly follow the assignment submission deadlines and times specified on CATE.  

 Each and every group member individually has to confirm on CATE that they are part 

of that particular group, for each and every assignment submission (under the pre-

determined group leader) before each assignment submission deadline.  

 

g) Outline of the manual 

 

The remaining of this CBC manual is organized as follows. Section 3 introduces the Facial 

Action Coding System (FACS). It explains the meaning of each AU as well as the relation 

between the AUs and the six basic emotions. Section 4 introduces the basic system-evaluation 

concepts including K-fold cross-validation, confusion matrices, recall and precision rates. 

Section 5 contains the first (optional) assignment by providing an introduction on MATLAB 

fundamentals via a number of exercises. Sections 6, 7, and 8 explain the assignments 2-4 and 

the machine learning techniques that have to be implemented.  

 

1.2 The Facial Action Coding System and the basic emotions 
 

One of the great challenges of our times in computer science research is the automatic 

recognition of human facial expressions. Machines capable of performing this task have many 

applications in areas as diverse as behavioural sciences, security, medicine, gaming and human-
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machine interaction (HMI). The importance of facial expressions in inter-human 

communication has been shown by numerous cognitive scientists. For instance, we use our 

facial expressions to synchronize a conversation, to show how we feel and to signal agreement, 

denial, understanding or confusion, to name just a few. Because humans communicate in a far 

more natural way with each other then they do with machines, it is a logical step to design 

machines that can emulate inter-human interaction in order to come to the same natural 

interaction between man and machine. To do so, machines should be able to detect and 

understand our facial expressions, as they are an essential part of inter-human communication.  

 

a) FACS 

 

Traditionally, facial expression recognition systems attempt to recognize a discrete set of facial 

expressions. This set usually includes six 'basic' emotions: anger, disgust, fear, happiness, 

sadness and surprise. However, the number of possible facial expressions that humans can use 

numbers about 10,000, many of which cannot be put in one of the six basic emotion categories 

(think for example of expressions of boredom, 'I don't know', or a brow-flash greeting). In 

addition, there is more than one ways to display the same feeling or emotion. Therefore, 

describing a facial expression in such loose terms as 'happy', 'sad' or 'surprised' is certainly not 

very exact, greatly depending on who is describing the currently displayed facial expression 

while leaving a large variation of displayed expressions possible within the emotion classes. 

The activation of the facial muscles on the other hand can be described very precisely, as each 

muscle or group of muscles can be said to be either relaxed or contracted at any given time. As 

every human has the same configuration of facial muscles, describing a facial expression in 

terms of facial muscle activations would result in the same description of a facial expression, 

regardless of the person displaying the expression and regardless of who was asked to describe 

the facial expression. The Facial Action Coding System (FACS1,2), proposed by psychologists 

Ekman and Friesen, describes all the possible facial muscle (de)activations that cause a visible 

change in the appearance of the face. Every muscle activation that causes visible appearance 

changes is called an Action Unit (AU). The FACS consists of 44 AUs (see Fig. 1 for examples). 

 

 

 

 

 
Figure 1: Examples of AUs 

b) Action Units and emotions 
 

The same psychologists who proposed the FACS also claimed that there exist six 'basic' 

emotions (anger, disgust, fear, happiness, sadness and surprise) that are universally displayed 

and recognized in the same way. As we already mentioned, many research groups have 

                                                 
1 P. Ekman and W.V. Friesen, The Facial Action Coding System: A Technique for the Measurement of Facial 

Movement, San Francisco: Consulting Psychologist, 1978 
2 P. Ekman, W.V. Friesen and J.C. Hager, "The Facial Action Coding System: A Technique for the 

Measurement of Facial Movement", San Francisco: Consulting Psychologist, 2002 
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proposed systems that are able to recognize these six basic emotions. Almost all proposed 

emotion detectors recognize emotions directly from raw data. In this CBC we will use a 

different approach to emotion detection. Instead of directly classifying a set of features 

extracted from the images into emotion categories, we will use AUs as an intermediate layer 

of abstraction. The rules that map AUs present in a facial expression into one of the six basic 

emotions are given in Table 1. In this CBC we will not use these rules directly but instead we 

will try to learn emotional classification of AUs using different machine learning techniques. 

Also, in this CBC we consider the step of AU detection to be solved. Students are provided 

with a dataset that consists of a list of AUs and the corresponding emotion label. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Typical smile includes activation of AU6, AU12 and AU25. 

 

 

 

 
 

 

 

 

 

Table 1. Rules for mapping Action Units to emotions, according 

to FACS. A||B means 'either A or B' 

c) DATA 

 

The data for the first assignment will be provided to the students in the form of mat files. Each 

file contains the following two variables: 

 

 A matrix x, which is an N×45 matrix, where N is the total number of examples and 45 

is the total number of AUs that can be activated or not. In case an AU is activated, the 

value of the corresponding column will be 1. Otherwise, it will be 0. For instance, the 

following row  



 8 

[1 1 0 0 1 0 …0] 

     would mean that AU1, AU2 and AU5 are activated. 

 A vector y of dimensions N×1, containing the emotion labels of the corresponding 

examples. These labels are numbered from 1 to 6, and correspond to the emotions anger, 

disgust, fear, happiness, sadness and surprise respectively. 

 

During this CBC, the students will work with two types of data: clean and noisy data, each 

given as a separate mat file. Clean data was obtained by human experts. The AU and emotion 

information in this type of data is considered correct for every example. On the other hand, the 

AUs in the noisy data were obtained by an automated system for AU recognition3. Since the 

system is not 100% accurate, the output of the system can contain wrongly detected AUs and 

some AUs can be missing. 

 

1.3 System Evaluation 
 

In this section, the basic system evaluation concepts that will be used throughout this CBC are 

given. These include: 

 K-fold Cross Validation 

 The Confusion Matrix 

 Recall and Precision Rates 

 The Fα-measure 

 

a) Basic terms 

Class is a collection of similar objects, which in this CBC is a set of examples with the same 

emotion label. The set of labels is denoted by Ω = {𝑙: 1 ≤ 𝑙 ≤ 6}, where each integer stands 

for an emotion as described in the previous section. 

Features or attributes are characteristics of objects. In this CBC it is AUs. If a feature 

(AU) f is activated (present) for an object (example) n, then the value of the element 𝑎𝑓𝑛 of the 

matrix generated as described in 3c) is 1. Otherwise, it is 0. You will be given N examples 𝑧𝑛 ∈
ℜ45, 1 ≤ 𝑛 ≤ 𝑁, as each of the examples has 45 AUs (attributes) that are either activated (with 

value 1) or not (with value 0). The class label of example 𝑧𝑛 is denoted by 𝑙(𝑧𝑛) ∈ Ω. 

Classifier is any function: 𝐷: ℜ𝑚 → Ω, where m is the number of attributes. In this 

CBC, you will create algorithms for finding classifiers 𝐷: ℜ45 → {𝑙: 1 ≤ 𝑙 ≤ 6}, where 𝑙 is an 

emotion label. You will consider a set of six discriminant functions 𝐺 = {𝑔𝑙(𝑥): 1 ≤ 𝑙 ≤ 6}, 

where x is an example and 𝑔𝑙: ℜ45 → ℜ, each giving a score for lth class. Usually, an example 

x is given a label in the class of the highest score, the labelling choice called the maximum 

membership rule. That is, 𝐷(𝑥) = 𝜔∗ ∈ Ω ↔ 𝑔∗(𝑥) = max
1≤𝑙≤6

{𝑔𝑙(𝑥)}. When there is a tie, i.e. an 

example is given two or more labels, a possible solution could be to randomly allocate one of 

the tied labels. When no label has been allocated, then a possible solution could be to allocate 

randomly one of all six labels. 

                                                 
3 M.F. Valstar and M. Pantic, “Fully automatic facial action unit detection and temporal analysis”, Proc. IEEE 

Int’l Conf. Computer Vision and Pattern Recognition, vol 3, p. 149, 2006 
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b) Training and testing 

After classifier D has been trained with training examples, we will test its performance on a 

new set of data, test examples. Its performance may be measured in terms of error rate, i.e. a 

quotient of number of test examples classified incorrectly and the total number of examples.  

 

𝐸𝑟𝑟𝑜𝑟(𝐷) =
1

𝑁𝑡𝑒𝑠𝑡
∑ {1 − ℑ(𝑙(𝑧𝑛), 𝑠𝑛)}

𝑁𝑡𝑒𝑠𝑡

𝑛=1

, 

 

where 𝑁𝑡𝑒𝑠𝑡 is the number of examples 𝑧𝑛 tested, 1 ≤ 𝑛 ≤ 𝑁𝑡𝑒𝑠𝑡, 𝑠𝑛 is the label given by 

classifier D to 𝑧𝑛 and ℑ(𝑙(𝑧𝑛), 𝑠𝑛) = 1 iff 𝑙(𝑧𝑛) = 𝑠𝑛 and ℑ(𝑙(𝑧𝑛), 𝑠𝑛) = 0, otherwise. 

 It is a good practice to have three sets of data: the training data, the validation data and 

the test data. The first set is used to train classifiers, the second is used to optimise the 

parameters of classifiers (e.g. the number of hidden neurons when neural networks are used), 

and the third set is used to calculate the error rate for the final set of parameters.  

 

The procedure for training a classifier is as follows: 

1) The training data are used to train multiple classifiers using a different set of 

parameters each time (e.g. number of hidden neurons for neural networks). 

2) The trained classifiers are tested on the validation set and the classifier which results in 

the best performance is selected. This is called parameter optimization because we 

select the set of parameters that led to the best classifier and in case we need to train a 

new classifier on the training set we will use this optimal set already found. 

3) The test error is calculated on the test data for evaluating the performance of the 

classifiers. 

 

It is a good practice to stop the training process when the difference between the training error 

and the validation error (obtained on classifying validation data) starts to increase, which is 

illustrated by the diagram below (Fig. 3). If the values of the validation error increase while the 

values of the training error steadily decreases then a situation of overfitting may have occurred. 

That is, the classifiers allocate the label perfectly on the training data, but poorly for the 

validation (new) data. It may be due to fitting the characterestics of the training data, which are 

not present in a general pool of the data (or at least not in the validation data). 

 
 

Fig.3: The values of training error are shown in blue, the values of the validation error in red for each iteration 

(as joined points by a smooth curve). On the horizontal axis, we have number of iterations and on the vertical 

axis, the values of training and validation errors. (Source: https://en.wikipedia.org/wiki/Overfitting) 
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c) Cross-validation 

Since the amount of data for training and testing is limited, we can reserve part of the data for 

testing. To guarantee that the part retained for testing is representative, one may employ K-fold 

cross-validation. One splits the data into K folds (parts) and hold out one for testing while using 

the other K-1 folds for training. The process is repeated K times, each time a different fold is 

retained for testing. The total error estimate is the arithmetic mean of Error(D) obtained for 

each of K times of testing.  

 

 
 

 
Fig.4: K-fold cross-validation process.  

 

In this CBC, you will perform 10-fold cross-validation, in which you will split the dataset into 

10 folds and subsequently use each one for testing. Note that the 9 folds should be further 

divided into training and validation sets. 

 

d) Confusion matrix 

A confusion matrix is a visualization tool typically used to present the results attained by a 

learner. Each column of the matrix represents the instances in a predicted class, while each row 

represents the instances in an actual class. One benefit of a confusion matrix is that it is easy to 

see if the system is confusing two classes (i.e. commonly mislabelling one as another). In the 

example confusion matrix below (Table 2), of the 8 actual cats, the system predicted that three 

were dogs, and of the six dogs, it predicted that one was a rabbit and two were cats. We can 

see from the matrix that the system in question has trouble distinguishing between cats and 

dogs, but can make the distinction between rabbits and other types of animals pretty well. 

  Predicted Class 

  Cat Dog Rabbit 

Actual 

Class 

Cat 5 3 0 

Dog 2 3 1 

Rabbit 0 2 11 
Table 2: A simple confusion matrix 
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True positives (TPs) are the examples that were classified correctly as members of a 

given class. In Table 2, if we consider the class Cat as the positive one we have 5 TPs. True 

negatives (TNs) are the examples that were classified correctly as members of the negative 

classes (dog and rabbit). In Table 2 we have 3+2+1+11=17 TNs. False positives (FPs) are the 

examples that were classified incorrectly as members of the positive class. In Table 2 we have 

2+0=2 FPs. They are found in the column of Predicted Class Cat. False negatives (FPs) are the 

examples that were classified incorrectly as members of the negative classes. In Table 2 we 

have 3+0=3 FNs. They are found in the row of Actual Class Cat. 

 

 

 

  Predicted 

Class 

  Cat Other 

Actual 

class 

Cat 5 

(TP) 

3 

(FN) 

Other 2 

(FP) 

17 

(TN) 
Table 3: The number of TPs, TNs, FPs, FNs for class Cat 

 

 

e) Recall and Precision Rates 

To be able to compare the two classifiers, the recall and precision rates are used. Recall and 

Precision Rates measure the quality of an information retrieval process, e.g. a classification 

process. Recall Rate describes the completeness of the retrieval. It is defined as the portion of 

the positive examples, i.e. TPs retrieved by the process versus the total number of existing 

positive examples (including the ones not retrieved by the process), i.e. TPs and FNs. Precision 

Rate describes the actual accuracy of the retrieval, and is defined as the portion of the positive 

examples (TPs) that exist in the total number of examples retrieved (TPs and FPs). Based on 

the recall and precision rates, we can justify if a classifier is better than another, i.e. if its recall 

and precision rates are significantly better. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100%  

 
For the example of class Cat discussed above we obtained: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑟𝑎𝑡𝑒 =
5

5 + 3
× 100% ≈ 63% 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
5

5 + 2
× 100% ≈ 71% 

f) Fα measure 

While recall and precision rates can be individually used to determine the quality of a 

classifier, it is often more convenient to have a single measure to do the same assessment. 

The Fα measure combines the recall and precision rates in a single equation: 
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recallprecision

recallprecision
F







 )1( , 

 

where α defines how recall and precision rates will be weighted. In case recall and precision 

rates are evenly weighted then the F1 measure is defined as follows: 

 

recallprecision

recallprecision
F




 21 . 

 

For the example of class Cat discussed above we obtained: 

 

𝐹1 = 2 ×
63% × 71%

63% + 71%
≈ 67% 
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2. Assignment 1: Decision Trees Algorithm 
 

The goal of this assignment is to implement a decision tree algorithm.  The results of your 

experiments should be discussed in the report. You should also deliver the code you have 

written. 

a) Implementation 

Part I: Loading data 

Make sure the clean data (x, y) is loaded in the workspace where  x  is an N×45 array, N is the 

total number of examples and 45 is the number of action units (or features/attributes) and  y is 

an N×1 vector, containing the labels of the corresponding examples. These labels are numbered 

from 1 to 6, the same as the total number of emotions. In order to construct a decision tree for 

a specific emotion, the labels in y should be remapped according to that particular emotion. For 

example, if you train for happiness, with label 4, then the labels with that value should be set 

to 1 (positive examples) and all the others to 0 (negative examples).  

Part II: Creating Decision Tree 

You need to write a function that takes as arguments a matrix of examples, where each row is 

one example and each column is one attribute, a row vector of attributes, and the target vector 

which contains the binary targets. The target vector will split the training data (examples) into 

positive examples for a given target and negative examples (all the other labels). The table 

below provides a pseudo code for the function. 

function DECISION-TREE-LEARNING(examples,attributes,binary_targets) returns a decision tree for a 

given target label 

if all examples have the same value of binary_targets  

then return a leaf node with this value 

else if attributes is empty  

       then return a leaf node with value = MAJORITY-VALUE(binary_targets) 

else 

        best_attribute   CHOOSE-BEST-DECISION-ATTRIBUTE(examples,attributes, 

binary_targets) 

                     tree  a new decision tree with root as best_attribute 

                     for each possible value υi of best_attribute do (note that there are 2 values: 0 and 1) 

  add a branch to tree corresponding to best_attibute = υi   

  {examplesi , binary_targets i} {elements of examples with best_attribute = υi and the 

corresponding binary_targetsi } 

  if examplesi is empty  

  then return a leaf node with value = MAJORITY-VALUE(binary_targets) 

else subtree  DECISION-TREE-LEARNING(examplesi ,attributes-{best_attribute}, 

binary_targetsi)   

 return tree 

 
Table 1. Pseudo code for the decision tree algorithm 

The function MAJORITY-VALUE(binary_targets) returns the mode of the binary_targets. 

The function CHOOSE-BEST-DECISION-ATTRIBUTE chooses the attribute that results in 
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the highest information gain. Suppose that the set of training data has p positive and n negative 

examples. Each attribute has two values 0 and 1. Suppose p0 is the number of positive examples 

for the subset of the training data for which the attribute has the value 0, and n0 is the number 

of the negative examples in this subset. Suppose p1 is the number of positive examples for the 

subset of the training data for which the attribute has the value 1, and n1 is the number of the 

negative examples in this subset. Then, 

𝐺𝑎𝑖𝑛(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒)  =  𝐼(𝑝, 𝑛) –  𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒), where 

𝐼(𝑝, 𝑛) = −
𝒑

𝒑+𝒏
𝒍𝒐𝒈𝟐 (

𝒑

𝒑+𝒏
) −

𝒏

𝒑+𝒏
𝒍𝒐𝒈𝟐(

𝒏

𝒑+𝒏
)  and 

𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) =
𝑝0+𝑛0

𝑝+𝑛
𝐼(𝑝0, 𝑛0) +

𝑝1+𝑛1

𝑝+𝑛
𝐼(𝑝1, 𝑛1). 

The resulting tree must be a MATLAB structure / Python class with the following: 

 tree.op : a label for the corresponding node (e.g. the attribute that the node is testing). 

It must be empty for the leaf node. 

 tree.kids : a cell array which will contain the subtrees that initiate from the 

corresponding node. Since the resulting tree will be binary, the size of this cell array 

must be 1x2, where the entries will contain the left and right subtrees respectively. This 

must be empty for the leaf node since a leaf has no kids, i.e. tree.kids = []. 

 tree.class : a label for the leaf node. This field can have the following possible values: 

o 0 - 1: the value of the examples (negative-positive, respectively) if it is the same 

for all examples, or with value as it is defined by the MAJORITY-VALUE 

function (in the case attributes is empty). 

o It must be empty for an internal node, since the tree returns a label only in the 

leaf node. 

Bonus (5 points): Write a function to visualise the tree. 

Part III: Evaluation 

Now that you know the basic concepts of decision tree learning, you can use the clean dataset 

provided to train 6 trees, one for each emotion and visualize them (bonus points). Then, 

evaluate your decision trees using 10-fold cross validation on both the clean and noisy datasets. 

6 trees should be created in each fold, and each example needs to be classified as one of the 6 

emotions. You should expect that slightly different trees will be created per each fold, since 

the training data that you use each time will be slightly different. Use your resulting decision 

trees to classify your data in your test set. Write a function:  

• predictions = testTrees(T, x2),  

which takes your trained trees (all six) T and the features x2 and produces a vector of label 

predictions. Both x2 and predictions should be in the same format as x, y provided to you. 
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Think how you will combine the six trees to get a single output for a given input sample.  Try 

at least 2 different ways of combining the six trees. 

NOTE: In case you use Python you should provide clear instructions how to test your code. 

 

Report average cross validation classification results (for both clean and noisy data):  

 Confusion matrix.  

(Hint: you should get a single 6x6 matrix) 

(Hint: you will be asked to produce confusion matrices in almost all the assignments 

so you may wish to write a general purpose function for computing a confusion matrix) 

 

 Average recall and precision rates per class. 

(Hint: you can derive them directly from the previously computed confusion matrix) 

 

 The F1-measures derived from the recall and precision rates of the previous step. 

 Average classification rate (NOTE: classification rate  = 1 – classification error) 

Comment on the results of both datasets, e.g. which emotions are recognised with high/low 

accuracy, which emotions are confused. 

 

Part IV: Pruning function 

Run the pruning_example function, which is provided, using the clean and noisy datasets. 

b) Questions 

In your report you will have to answer the following questions. 

Noisy-Clean Datasets Question 

Is there any difference in the performance when using the clean and noisy datasets? If yes/no 

explain why. Discuss the differences in the overall performance and per emotion. 

Ambiguity Question 

Each example needs to get only a single emotion assigned to it, between 1 and 6. Explain how 

you made sure this is always the case in your decision tree algorithm. Describe the different 

approaches you followed (at least two) to solve this problem and the advantages/disadvantages 

of each approach. Compare the performance of your approaches on both clean and noisy 

datasets and explain if your findings are consistent with what you described above.   

Pruning Question 

Briefly explain how the pruning_example function works. One figure with two different curves 

should be generated for each dataset (clean and noisy). Include the two figures in your report 

and explain what these curves are and why they have this shape. What is the difference between 

them? What is the optimal tree size in each case? 
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c) Deliverables 

For the completion of this part of the CBC, the following have to be submitted electronically 

via CATE: 

1. All the code you have written. 

2. The 6 trees you have trained on the entire clean dataset ( in .mat or .pkl (pickle) format). 

3. A report of approximately 4-5 pages (excluding figures and tables) containing the 

following: 

 brief summary of implementation details (e.g., how you performed cross-

validation, how you selected the best attribute in each node, how you compute 

the average results, anything that you think it is important in your system 

implementation); 

 diagrams of the six trees trained on the entire dataset (bonus points) 

 commented results of the evaluation including the average confusion matrix, the 

average classification rate and the average precision, recall rates and F1-measure 

for each of the six classes; for both clean and noisy datasets. 

 Answers to noisy-clean, ambiguity and pruning questions. 

 

 

d) Grading scheme 

 

Final Grade = 0.75* Report content + 0.15* Code performance + 0.1* Report quality 

 

Code Performance = CR on unseen data + 15 

 

 

 

Code (total : 100) 

 Results on new test data  :  100 

Make sure that your testTrees function runs. If not you will be asked to 

resubmit the code and lose 30% of the code mark. 

 

 

Report content (total : 100) 

 Implementation details : 15 

 Confusion matrix : 8 

 Recall/precision/F measure/Classification rate : 7 
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 Analysis of the cross validation experiments: 10 

 Answer to the clean-noisy question: 15 

 Answer to the ambiguity question : 25 

 Answer to the pruning question : 20 

Bonus (total: 5) 

 Visualisation of tree: 5  

Report quality (total : 100) 

 Quality of presentation.  
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3. Appendix 
 

3.1 Matlab 
 

This section aims to provide a brief introduction to some basic concepts of MATLAB without 

assessing students' acquisition, application and integration of this basic knowledge. The 

students, are strongly encouraged to go through all the material, experiment with various 

functions, and use the MATLAB help files extensively (accessible via the main MATLAB 

window).  

Type “doc” on the MATLAB command line to open the help browser. MATLAB blogs also 

provide useful information about how to program in MATLAB (http://blogs.mathworks.com). 

a) Vectors and Arrays 

A vector in MATLAB can be easily created by entering each element between brackets and 

assigning it to a variable, e.g. :  
 

a = [1 2 3 4 5 6 9 8 7] 

 

Let's say you want to create a vector with elements between 0 and 20 evenly spaced in 

increments of 2: 
 

t = 0:2:20 

 

MATLAB will return:  
     t = 

          0  2  4  6  8  10  12  14  16  18  20 

Manipulating vectors is almost as easy as creating them. First, suppose you would like to add 

2 to each of the elements in vector 'a'. The equation for that looks like:  
 

b = a + 2 

 

     b = 

          3  4  5  6  7  8  11  10  9 

Now suppose you would like to add two vectors together. If the two vectors are the same length, 

it is easy. Simply add the two as shown below:  
 

c = a + b 

 

     c = 

          4  6  8  10  12  14  20  18  16 

In case the vectors have different lengths, then an error massage will be generated. 

Entering matrices into MATLAB is the same as entering a vector, except each row of elements 

is separated by a semicolon (;) or a return:  
 

B = [1 2 3 4;5 6 7 8;9 10 11 12] 

 

     B = 

          1    2    3     4 

          5    6    7     8 

          9   10   11    12 

 

B = [ 1  2  3  4 

      5  6  7  8 

http://blogs.mathworks.com/
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      9 10 11 12] 

 

     B = 

          1    2    3     4 

          5    6    7     8 

          9   10   11    12 

 

Matrices in MATLAB can be manipulated in many ways. For one, you can find the transpose 

of a matrix using the apostrophe key:  
 

C = B' 

 

     C = 

          1   5    9 

          2   6   10 

          3   7   11 

          4   8   12 

Now, you can multiply the two matrices B and C together. Remember that order matters when 

multiplying matrices.  
 

D = B * C 

 

     D = 

         30    70   110 

         70   174   278 

        110   278   446 

 

D  = C * B 

 

     D = 

        107   122   137   152 

        122   140   158   176 

        137   158   179   200 

        152   176   200   224 

Another option for matrix manipulation is that you can multiply the corresponding elements of 

two matrices using the .* operator (the matrices must be the same size to do this).  
 

E = [1 2;3 4] 

F = [2 3;4 5] 

G = E .* F 

     E = 

          1   2 

          3   4 

     F = 

          2   3 

          4   5 

     G = 

          2   6 

         12  20 

MATLAB also allows multidimensional arrays, that is, arrays with more than two subscripts. 

For example, 

 
R = randn(3,4,5); 

 

creates a 3-by-4-by-5 array with a total of 3x4x5 = 60 normally distributed random elements. 

 



 20 

b) Cell arrays and structures 

Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other 

arrays. A cell array of empty matrices can be created with the cell function. But, more often, 

cell arrays are created by enclosing a miscellaneous collection of things in curly braces, {}. The 

curly braces are also used with subscripts to access the contents of various cells. For example 

 
C = {A sum(A) prod(prod(A))} 

 

produces a 1-by-3 cell array. There are two important points to remember. First, to retrieve the 

contents of one of the cells, use subscripts in curly braces, for example C{1} retrieves the first 

cell of the array. Second, cell arrays contain copies of other arrays, not pointers to those arrays. 

If you subsequently change A, nothing happens to C.  

Three-dimensional arrays can be used to store a sequence of matrices of the same size. Cell 

arrays can be used to store sequences of matrices of different sizes. For example, 

 
M = cell(8,1); 

for n = 1:8 

   M{n} = magic(n); 

end 

M 

produces a sequence of magic squares of different order: 
M =  

    [           1] 

    [ 2x2  double] 

    [ 3x3  double] 

    [ 4x4  double] 

    [ 5x5  double] 

    [ 6x6  double] 

    [ 7x7  double] 

    [ 8x8  double] 

Structures are multidimensional MATLAB arrays with elements accessed by textual field 

designators. For example, 

 
S.name = 'Ed Plum'; 

S.score = 83; 

S.grade = 'B+' 

creates a scalar structure with three fields. 

 
S =  

     name: 'Ed Plum' 

    score: 83 

    grade: 'B+' 

Like everything else in MATLAB, structures are arrays, so you can insert additional elements. 

In this case, each element of the array is a structure with several fields. The fields can be added 

one at a time, 

 
S(2).name = 'Toni Miller'; 

S(2).score = 91; 

S(2).grade = 'A-'; 

Or, an entire element can be added with a single statement. 

 
S(3) = struct('name','Jerry Garcia',... 

               'score',70,'grade','C') 

Now the structure is large enough that only a summary is printed. 
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S =  

1x3 struct array with fields: 

    name 

    score 

    grade 

There are several ways to reassemble the various fields into other MATLAB arrays. They are 

all based on the notation of a comma separated list. If you type 

 
S.score 

 

it is the same as typing 

 
S(1).score, S(2).score, S(3).score 

 

This is a comma separated list. Without any other punctuation, it is not very useful. It assigns 

the three scores, one at a time, to the default variable ans and dutifully prints out the result of 

each assignment. But when you enclose the expression in square brackets, 

 
[S.score] 

 

it is the same as 

 
[S(1).score, S(2).score, S(3).score] 

 

which produces a numeric row vector containing all of the scores. 

 
ans = 

    83    91    70 

Similarly, typing 

 
S.name 

just assigns the names, one at time, to ans. But enclosing the expression in curly braces, 

 
{S.name} 

creates a 1-by-3 cell array containing the three names. 

 
ans =  

    'Ed Plum'    'Toni Miller'    'Jerry Garcia' 

And  

 
char(S.name) 

calls the char function with three arguments to create a character array from the name fields, 

 
ans = 

Ed Plum     

Toni Miller 

Jerry Garcia 

c) Functions 

To make life easier, MATLAB includes many standard functions. Each function is a block of 

code that accomplishes a specific task. MATLAB contains all of the standard functions such 

as sin, cos, log, exp, sqrt, as well as many others. Commonly used constants such as pi, and i 

or j for the square root of -1, are also incorporated into MATLAB.  
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sin(pi/4) 

 

ans = 

 

     0.7071  

To determine the usage of any function, type help [function name] at the MATLAB command 

window.  

MATLAB allows you to write your own functions with the function command. The basic 

syntax of a function is: 
 

function [output1,output2] = filename(input1,input2,input3) 

A function can input or output as many variables as are needed. Below is a simple example of 

what a function, add.m, might look like: 

function [var3] = add(var1,var2) 

%add is a function that adds two numbers 

var3 = var1+var2; 

If you save these three lines in a file called "add.m" in the MATLAB directory, then you can 

use it by typing at the command line:  

y = add(3,8) 

 

Obviously, most functions will be more complex than the one demonstrated here. This example 

just shows what the basic form looks like. 

d) Loops 

If you want to repeat some action in a predetermined way, you can use the for or while loop. 

All of the loop structures in MATLAB are started with a keyword such as "for", or "while" and 

they all end with the word "end".   

The for loop is written around some set of statements, and you must tell MATLAB where to 

start and where to end. Basically, you give a vector in the "for" statement, and MATLAB will 

loop through for each value in the vector: For example, a simple loop will go around four times 

each time changing a loop variable, j:  

 
for j=1:4, 

j 

    end 

If you don't like the for loop, you can also use a while loop. The while loop repeats a sequence 

of commands as long as some condition is met. For example, the code that follows will print 

the value of the j variable until this is equal to 4: 
     j=0 

     while j<5 

      j 

      j=j+1; 

     end 

You can find more information about for loops on http://blogs.mathworks.com/ 

loren/2006/07/19/how-for-works/ 

e) Reading from files / Writing to files 

Before we can read anything from a file, we need to open it via the fopen function. We tell 

MATLAB the name of the file, and it goes off to find it on the disk. If it can't find the file, it 

http://blogs.mathworks.com/%20loren/2006/07/19/how-for-works/
http://blogs.mathworks.com/%20loren/2006/07/19/how-for-works/
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returns with an error; even if the file does exist, we might not be allowed to read from it. So, 

we need to check the value returned by fopen to make sure that all went well. A typical call 

looks like this:  

 
  fid = fopen(filename, 'r'); 

  if (fid == -1) 

    error('cannot open file for reading'); 

  end 

 

There are two input arguments to fopen: the first is a string with the name of the file to open, 

and the second is a short string which indicates the operations we wish to undertake. The string 

'r' means "we are going to read data which already exists in the file." We assign the result of 

fopen to the variable fid. This will be an integer, called the "file descriptor," which we can use 

later on to tell MATLAB where to look for input.  

There are several ways to read data from a file we have just opened. In order to read binary 

data from the file, we can use the fread  command as follows:  

 
A = fread(fid, count) 

 

where fid is given by fopen and count is the number of elements that we want to read. At the 

end of the fread, MATLAB sets the file pointer to the next byte to be read. A subsequent fread 

will begin at the location of the file pointer. For reading multiple elements from the file a loop 

can be used in combination with fread. 

If we want to read a whole line from the file we can use the fgets command. For multiple lines 

we can combine this command with a loop, e.g. : 

 
while (done_yet == 0) 

 

    line = fgets(fid); 

    if (line == -1) 

      done_yet = 1; 

    end 

 

Before we can write anything into a file, we need to open it via the fopen function. We tell 

MATLAB the name of the file, and give the second argument 'w', which stands for 'we are 

about to write data into this file'.  

 
  fid = fopen(filename, 'w'); 

  if (fid == -1) 

    error('cannot open file for writing'); 

  end 

 

When we open a file for reading, it's an error if the file doesn't exist. But when we open a file 

for writing, it's not an error: the file will be created if it doesn't exist. If the file does exist, all 

its contents will be destroyed, and replaced with the material we place into it via subsequent 

calls to fprintf. Be sure that you really do want to destroy an existing file before you call fopen!  

There are several ways to write data to a file we have just opened. In order to write binary data 

from the file, we can use the fwrite  command, whose syntax  is exactly the same as fread. In 

the same way, for writing multiple elements to a file, fwrite can be combined with a loop. 

If we want to write data in a formatted way, we can use the fprintf  function, e.g. : 

 
fprintf(fid, '%d %d %d \n', a, b, c); 
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which will write the values of a,b,c into the file with handle fid, leaving a space between them. 

The string %d specifies the precision in which the values will be written (single), while the 

string \n denotes the end of the line. 

At the very end of the program, after all the data has been read or written, it is good practice to 

close a file:  

 
  fclose(fid); 

 

f) Avoiding “Divide by zero” warnings 

 

In order to avoid “Divide by zero” warnings you can use the eps function.  Eps(X) is the positive 

distance from abs(X) to the next larger in magnitude floating point number of the same 

precision as X. For example if you wish to divide A by B, but B can sometimes be zero which 

will return Inf and it may cause errors in your program, then use eps as shown: 

 

C = A / B; % If B is 0 then C is Inf 

C = A / (B + eps); % Even if B is 0 then C will just take a very large value and not Inf. 

 

g) Profiler / Debugging 

 

The profiler helps you optimize M-files by tracking their execution time. For each function in 

the M-file, profile records information about execution time, number of calls, parent functions, 

child functions, code line hit count, and code line execution time. To open the profiler graphical 

user interface select Desktop->Profiler. So if the execution of your code is slow you can use 

the profiler to identify those lines of code that are slow to execute and improve them. 

 

Another useful function that can be used for debugging is the dbstop function. It stops the 

execution of the program when a specific event happens. For example the commands 

 

dbstop if error 

dbstop if warning  

 

stop execution when any M-file you subsequently run produces a run-time error/warning, 

putting MATLAB in debug mode, paused at the line that generated the error. See the MATLAB 

help for more details. Alternatively, you can use the graphical user interface to define the events 

that have to take place in order to stop the program. Just select Debug menu -> Stop if 

Errors/Warnings. 
 

3.2 Python 
The numerical library for Python is Numpy. You can find introductory tutorials in the following 

links: 

 https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html 

 https://docs.scipy.org/doc/numpy-dev/user/quickstart.html 

 

https://docs.scipy.org/doc/numpy-dev/user/numpy-for-matlab-users.html
https://docs.scipy.org/doc/numpy-dev/user/quickstart.html

