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Abstract— Many problems in machine learning and computer
vision consist of predicting multi-dimensional output vectors
given a specific set of input features. In many of these
problems, there exist inherent temporal and spacial dependencies
between the output vectors, as well as repeating output patterns
and input-output associations, that can provide more robust
and accurate predictors when modelled properly. With this
intrinsic motivation, we propose a novel Output-Associative
Relevance Vector Machine (OA-RVM) regression framework
that augments the traditional RVM regression by being able
to learn non-linear input and output dependencies. Instead of
depending solely on the input patterns, OA-RVM models output
structure and covariances within a predefined temporal window,
thus capturing past, current and future context. As a result,
output patterns manifested in the training data are captured
within a formal probabilistic framework, and subsequently used
during inference. As a proof of concept, we target the highly
challenging problem of dimensional and continuous prediction
of emotions from naturalistic facial expressions. We demon-
strate the advantages of the proposed OA-RVM regression
by performing both subject-dependent and subject-independent
experiments using the SAL database. The experimental results
show that OA-RVM regression outperforms the traditional
RVM and SVM regression approaches in prediction accuracy,
generating more robust and accurate models.

I. INTRODUCTION

Kernel methods such as Support Vector Machines (SVM),

Relevance Vector Machines (RVM) and Gaussian Processes

(GP) are amongst the most dominant techniques used in

machine learning and computer vision. Many problems

in these fields are inherently related to the prediction of

multi-dimensional, inter-correlated structured outputs (e.g.

pose normalisation, pose estimation). While most machine

learning techniques aim at capturing input relationships and

patterns (e.g. extracted features), many problems expose

an inherent dependency amongst the output dimensions

(e.g. emotion dimensions). Not being able to learn such

co-occurrences can result in less robust and less accurate

predictors, that will not be able to exploit specific output

configurations manifested in the training data.

With these intrinsic motivations, we introduce the output-

associative RVM (OA-RVM) regression, a framework that

extends the traditional RVM regression by being able to

learn temporal output correlations. As we show by means of

various experiments, OA-RVM appears to be advantageous

against traditional RVM not only in terms of prediction

accuracy but also in terms of sparsity of the final model
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(i.e., dependence on a small number of basis vectors), thus

resulting in a simpler and more robust model. To evaluate

the proposed technique, we apply it to a highly challenging

and suitable problem: dimensional and continuous emotion

prediction.

Most research in automatic emotion recognition and pre-

diction has focused on examining posed data acquired in

laboratory settings [1], [2] in terms of basic emotional states

(e.g., happiness, sadness, surprise). However, many studies

show that in everyday life interactions, humans exhibit subtle

affective states that do not fall under the basic emotional

states (e.g. bored or interested). In order to represent and

model such states, a dimensional and continuous description

of human affect is employed, where an affective state can be

described by a number of latent dimensions [3]. We focus on

the two dimensions which are considered to cover most of

the affect variability [4]: The valence dimension (V) which

describes how positive or negative an emotional state is, and

the arousal dimension (A) which relates to how excited or

apathetic an emotional state is [5].

Our motivation for the work presented in this paper is

three-fold. Firstly, dimensional and continuous affect predic-

tion (as opposed to discrete and quantised recognition) and

output-associative structured prediction are two highly inter-

related problems. Psychological evidence has shown that the

V-A dimensions are inter-correlated [4], [6]–[8]. Therefore,

the proposed scheme aims to enable the learning of such

correlations and generate more substantiated predictions by

embedding in the model an initial output estimation (using

RVM) together with the original input features. Secondly,

temporal dynamics play a significant role in emotion recog-

nition [1], [2]. The proposed OA-RVM regression aims to

capture the temporal dynamics by employing a temporal

window (covering a set of past and future outputs) in order

to accommodate temporal (output) patterns both in past

and future context. Thirdly, dimensional and continuous

prediction of emotions is a relatively unexplored area in the

field of affective computing, and which prediction method is

best suited to the task is still unknown. Therefore, as well as

validating the proposed OA-RVM model with comprehensive

experiments, we also compare it to traditional regression

techniques such as RVM and Support Vector Regression

(SVR). In the following, we briefly review related work

on output-associative structured regression and dimensional

and continuous emotion prediction, and subsequently list the

contributions of our work.

Output-Associative Structured Regression: Output-

associative structured regression has gained much popularity
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over the last years within the pattern recognition community.

Kernel Dependency Estimation (KDE) was proposed in 2002

by Weston [9], with a goal of learning output dependencies

using Kernel Principle Component Analysis (KPCA) and

ridge regression. KDE was reformulated in 2005 by Cortes

et al. [10] discarding the need for KPCA and adopting the

optimisation of a cost function. KDE has been applied to

problems such as string matching and image reconstruction.

Previous efforts on modeling input and output covariances

have motivated the extension of models such as Kernel

Ridge Regression (KRR), SVM for regression [11] and

GP [12]. [11] optimises an output-associative functional

which incorporates outputs and inputs using primal/dual

formulations and adapts the model to KRR and SVR. [12]

develops the Twin GP model, which employes GP priors

to model input and output relations. The Kullback−Leibler

divergence is applied on the input and output distributions.

Subsequently, the output targets are estimated by the

minimisation of the KL divergence. Both works have been

applied to modeling human pose estimation.

We choose to extend RVM as it is considered more

efficient than GP [12]. Compared to the models presented

in [11], [12] we offer a specific output temporal window

parameter for fine-tuning our model. Furthermore, com-

pared to [11], our OA-RVM regression framework offers a

probabilistic formulation of the output-associative function

by following the original RVM framework and providing

explicit noise modelling.

Dimensional and Continuous Emotion Prediction: Past

work on dimensional affect recognition was based on clas-

sifying emotional states by quantising the real values, into

coarse binary categories of positive vs. negative [13], into

quadrants of the V-A space [14] or into dense quantised

levels (e.g. 7 levels [15]). [16] fuses facial expression and

audio cues exploiting SVM for regression (SVR) and late

fusion, using weighted linear combinations, and uses discre-

tised annotations (on a 5-point scale, for each dimension).

The works that focused on predicting continuous and real

values are few. Using speech features, [15] employs recurrent

neural networks (Long Short-Term Memory) and SVR, while

[16] uses SVR, k-NN and a fuzzy logic estimator. None

of these works have explored input-output associations and

spatio-temporal dependencies between the output vectors for

dimensional and continuous emotion prediction.

Contributions: Based on the aforementioned literature

review, and to the best of our knowledge, this paper presents

the first approach in the affective computing field that utilises

input-output associations for dimensional and continuous

prediction of emotions. More specifically, our work (i) pro-

poses a novel, sparse and probabilistic regression model with

output-association (OA-RVM, henceforth), taking advantage

of the traditional RVM framework, and (ii) investigates the

feasibility and the usefulness of the proposed OA-RVM

framework on the highly challenging problem of dimensional

and continuous prediction of emotions from naturalistic

facial expressions.

The rest of the paper is organised as follows. In Section

II, we briefly revisit the RVM and SVM models in order to

provide a basis for OA-RVM, introduced and explained in

Section III. Section IV describes the data set employed in our

experiments, as well as the feature extraction and tracking

process. Section V explains the experimental settings em-

ployed. Section VI provides a demonstration of the behaviour

of the model on learning dimensional emotion annotations,

while Section VII presents the experiments and and discusses

the results. Finally, Section VIII concludes the paper.

II. RVM AND SVM REVISITED

In this section, we briefly describe the two generic meth-

ods used, namely, Relevance Vector Machine (RVM) and

Support Vector Machines (SVM) for Regression (i.e. SVR).

We assume a (multidimensional) regression problem with

N training examples, (xi, ti). In the Bayesian framework

applied in RVM, our goal is to learn the functional:

ti = wTφ(xi) + εi (1)

where the εi are assumed to be independent Gaussian sam-

ples with zero mean and σ2 variance, εi ∼ N (0, σ2). φ is

a typically non-linear projection of the input features, xi.

The method infers the set of weights w along with the noise

estimation, given the training data.

In the SVR, the functional ti = wTφ(xi) + b is learnt,

where φ is an implicit mapping to a kernel space, w repre-

sents the set of weights and b the bias. Lagrangian optimisa-

tion is employed to determine the optimal parameters provide

the final model. In contrast to Bayesian regression methods,

there is no explicit noise modelling in SVR while the

structural risk minimisation principle is applied to minimize

the risk of overfitting.

III. OUTPUT-ASSOCIATIVE RVM REGRESSION

In this section we describe the proposed OA-RVM frame-

work. Firstly, to obtain the output associative functional, we

increment Eq. 1 as follows:

ti = wTφw(xi) + uTφu(y
v
i ) + εi (2)

Where each yv
i is a vector of multi-dimensional outputs

over a temporal window of [i − v, i + v]1 The yv
i features

are called the output features, while x are called the input
features, henceforth. Note that the output features can be

estimated by predicting the multi-dimensional ground truth

using any (noisy and imperfect) prediction scheme. The goal

now becomes learning not only the set of weights (w) for

the input features, but also the set of weights (u) for the

output features along with the noise estimate, (εi)
2.

1For frame based online application, we can limit the context to past
input only, i.e. [i − v, i]. Futhermore, the output window regards only the
output dimensions since we study the effect of output-covariances.

2Note that in the output-associative formulation, the noise component can
now be considered as the sum of the noise generated by the input features
σx and the output features σyv , i.e. εi ∼ N(0, σ2

y + σ2
x) = N(0, σ2).
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A. The Framework

In this section we specify the Bayesian framework which

describes our model. Firstly, we consider Φw (NxMu) to

be the basis matrix attained by applying a selected kernel

to the input features x, and Φu (NxMw) respectively for

the output features, yv (the columns, Mu and Mw, refer to

the complete set of basis vectors though usually both are of

dimensionality N ). Then, by extending Eq. 2 we obtain:

t = Φww +Φuu+ ε = Φwuwu + ε (3)

where Φwu = [Φw|Φu] is an Nx(Mu + Mw) matrix

and wu = [w1 . . .wMw |u1 . . .uMu ]
T

is the concatenated

vector of weights. Thus, the complete data set likelihood

is formulated as:

P (t|w,u, σ2) =
N∏
i=1

N(wTφw(xi) + uTφu(y
v
i ), σ

2)

=
N∏
i=1

N(wu
T [φw(xi)|φu(y

v
i )], σ

2)

Following the Bayesian approach of RVM [17], we need

to set the hyperpriors on our weights. Each set of weights

(w,u) is assigned a Gaussian zero-mean prior to express

preference over smaller weights, thus infer smoother, less

complex functions and induce sparsity:

P (w|α) =

Mu∏
i=0

N (0, α−1
i ) (4)

P (u|ζ) =
Mw∏
i=1

N (0, ζ−1
i ) (5)

We have now introduced two vectors of hyperparameters, α
(as originally used in RVM) and ζ (for our output features),

each controlling the distribution of each of the weights.

B. Inference

The goal is to infer the unknown parameters of our

problem given the training data. The posterior is decomposed

as:

P (w,u,α, ζ, σ2|t) = P (t|w,u,α, ζ, σ2)P (w,u,α, ζ, σ2)

p(t)
(6)

Ideally, given a new test data x∗, we would like to predict

target t∗:
p(t∗|t) =∫

P (t∗|w,u,α, ζ, σ2)P (w,u,α, ζ, σ2|t)dwdudαdζdσ2

(7)

Unfortunately, the above equation is intractable, thus an

approximation is needed. Therefore, similarly to the original

RVM formulation [17], we decompose the posterior as

follows:

P (w,u,α, ζ, σ2|t) = P (w,u|t,α, ζ, σ2)P (α, ζ, σ2|t)
(8)

Using the Bayes theorem we obtain:

P (w,u|t,α, ζ, σ2) =
P (t|w,u, σ2)P (w,u|α, ζ)

P (t|α, ζ, σ2)
(9)

This calculation is tractable, since all components are Gaus-

sian distributions and it is well known that products and

divisions of Gaussian distributions result also in Gaussian

distributions. We will firstly examine the joint probability.

By assuming independence, we obtain P (w,u|α, ζ), a zero-

mean Gaussian distribution with a covariance matrix AZ =

diag(α1 . . . αMw , ζ1 . . . ζMu ).

P (t|α, ζ, σ2) =

∫
P (t|w,u, σ2)P (w,u|α, ζ)dwdu

(10)

is a convolution of Gaussian and after replacing with the

defined variables wu, Az and Φwu, it is shown [17] to be

a zero-mean Gaussian distribution with covariance matrix

σ2I+ΦwuA
−1
Z ΦT

wu.

Finally, Eq. 9 is considered to be a Gaussian distribution

with a mean μ = σ2ΣΦT
wut and a covariance matrix Σ =

(AZ + σ2ΦT
wuΦwu)

−1.

Returning to the second component P (α, ζ, σ2|t) of the

posterior in Eq. 8, by following the Bayes rule, we find it to

be proportional to:

P (α, ζ, σ2|t) ∝ P (t|α, ζ, σ2)P (α)P (ζ)P (σ2) (11)

By assuming uniform uninformative hyperpriors [17], we

need to maximise P (t|α, ζ, σ2) with respect to the hyper-

parameters. Again, we have a convolution of Gaussians (Eq.

10) which in turn generates another zero mean Gaussian

distribution with covariance matrix σ2I + ΦwuK
−1ΦT

wu.

The maximisation of this probability can be performed by

expectation maximisation as described in [17] or the faster

marginal maximisation algorithm proposed in [18]. The most

probable values (MP ) are selected by the chosen optimisa-

tion procedure ( [17], [18]), while we adopt an approximation

of P (α, ζ, σ2|t) in Eq. 8 by replacing it with a delta function

at its mode.

C. Prediction

Given a new (multi-dimensional) input data x∗,yv
∗ , we

want to calculate t∗ given the training data. By considering

αz = [a1 . . . aMw
, ζ1 . . . ζMu

] and using Eq. 7 and Eq. 9 we

obtain:

P (t∗|t,αzMP , σ
2
MP ) =∫

P (t∗|wu, σ
2
MP )P (wu|t,αzMP, σ

2
MP )dwu (12)

Again, this is a convolution of Gaussians and it can be shown

that

P (t∗|t,αzMP , σ
2
MP ) ∼ N(t∗|σ2

∗) (13)

where

t∗ = μT
wu[φw(x∗)|φu(y

v
∗ )] (14)

σ2
∗ = σ2

MP + [φw(x∗)|φu(y
v
∗ )]

TΣ[φw(x∗)|φu(y
v
∗ )] (15)

with the variance σ2
∗ (which relates to the confidence in our

prediction). The parameter vector μwu contains the weights
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Fig. 1. Graphical model comparison of RVM and OA-RVM. Shaded nodes
are observed variables.

for the input and output relevance vectors, i.e. μwu =
[μw|μu]. The basis matrix for a new set of test points should

now contain both the distances from the new test input

features x∗ to all the input feature relevance vectors, as well

as the test output feature yv
∗ distances to the output feature

relevance vectors. The graphical models of both OA-RVM

and RVM are illustrated in Fig. 1.

D. Complexity

The parameter determination algorithm of RVM generally

involves the optimisation of a non-convex function. The

basis matrix for RVM is considered to be NxM , with M

basis functions. An inversion of this matrix is required,

which induces O(M3) computational complexity. In OA-

RVM, without loss of generality, we assume that we have

a Nx2M basis matrix: A dimensionality of M for the input

features and an additional M for the output features. Thus,

the complexity is O((2M)3) = O(M3). Furthermore, to

obtain the output features for OA-RVM we apply the original

RVM algorithm. If for a d-dimensional output problem,

the complexity of the original RVM algorithm is O(dC),
then for OA-RVM the complexity would be 2O(dC) which

is still O(dC). Therefore, OA-RVM induces no further

computational complexity to the RVM algorithm.

IV. DATA SET AND FEATURE EXTRACTION

As a proof of concept for this work, we use the Sensitive

Artificial Listener (SAL) Database [19]. It contains audio-

visual, naturalistic affective conversational data taking place

between a participant and an avatar (operated by a human).

Each avatar is considered to have a different personality:

Poppy is happy, Obadiah is gloomy, Spike is angry and

Prudence is pragmatic.

The recordings were made in a controlled laboratory

setting with one camera, microphones, uniform background

and constant lighting conditions. As our aim is to achieve

continuous emotion prediction, we could only take advantage

of the amount of data which was annotated in the valence-
arousal dimensional affect space. This corresponds to a

portion of the database that contains data from 4 subjects

(subjects 1 and 2 are female, and subjects 3 and 4 are male)

and their respective annotations (provided by 3-4 coders).

Fig. 2. Examples of the data at hand from the SAL database along with
the extracted 20 points, used as features for the facial expression cues.

Frames from this portion of the SAL database, together with

the trackings of facial points, are shown in Fig. 2. Based on

the annotations provided, we used a set of automatic seg-

mentation and ground truth generation algorithms [20] that

generated segments of positive/negative emotional displays.

More specifically, we generated segments capturing transi-

tions to an emotional state and back (e.g., going from non-

positive to positive and back to non-positive). Henceforth,

we refer to these classes as positive for the transition to a

positive emotional state, and negative for the transition to a

negative emotional state. In total, we used 61 positive and 73
negative segments, and approximately 30,000 video frames.

For feature extraction, we employ the Patras - Pantic

particle filtering tracking scheme [21] for tracking the facial

feature movements displayed during the naturalistic interac-

tions. We track the corners of the eyebrows (4 points), the

eyes (8 points), nose (3 points), mouth (4 points) and chin

(1 point). For each video segment containing n frames, the

tracker results in a feature set with dimensions n ∗ 20 ∗ 2.

Fig. 2 shows examples from the data set employed together

with the tracking of the facial feature points.

V. EXPERIMENTAL SETTING

We conducted comprehensive experiments in order to

validate the proposed OA-RVM regression framework, and

investigate its feasibility and usefulness for dimensional and

continuous prediction of emotions.

We use the traditional RVM as the baseline for our

comparisons with OA-RVM. We also use SVR as it is

one of the most widely adopted regression techniques in

the field. The kernel used for the construction of the basis

matrices is a Gaussian, K(x, xi) = exp
{
(−(x− xi)

2)/r2
}

where r stands for the width of the function. The window

parameter v in the output-associative functional we employ

(Eq. 1) is generally varied in the range [0,18] and can be

determined by cross-validation. It should be noted that for

the probabilistic regression methods (RVM, OA-RVM), the

hyperparameters are determined by optimising the likelihood

function (by using fast marginal likelihood maximisation

algorithm proposed in [18]). We use RVM to obtain the initial

output estimation (i.e., the output features) for OA-RVM. For

SVR we apply cross-validation employing an ε-insensitive

loss function.

19



In our current setting, we assume that the segments

contained in our data set (Section IV) have been coarsely

classified into either positive or negative, prior to the pre-

diction (regression) procedure. The classification stage is

beyond the scope of this paper, and can be achieved by

applying an accurate (coarse) classifier, e.g. [13], on top of

the current scheme. This assumption is motivated by the fact

that we would like to focus on the prediction results in more

detail, and study them in isolation for each class (e.g., which

dimension is easier to predict for which class). Based on

the aforementioned assumptions, we conduct two types of

experiments.

Subject-dependent experiments. For each subject we divide

the data into equal training and testing sets. We predict the

emotional dimensions for each subject separately over 2-fold

cross-validation. We present the average of these results.

Subject-independent experiments. Subject-independent ex-

periments are generally considered difficult when data from

only a few subjects are available [15]. We conduct subject-

independent experiments in a more challenging scenario

where we use the data from one subject only for training, and

subsequently use the data from the remaining three subjects

for testing.

We evaluate our models in terms of both prediction ac-

curacy and sparsity. For prediction accuracy, we employ the

root mean squared error (RMSE) estimation that incorporates

the bias and variance of the prediction. To evaluate sparsity,

we refer to the number of relevance vectors (RVs) retained

by the model after training (for RVM and OA-RVM). While

evaluating the sparsity of OA-RVM, we consider the output

features (the initial output estimation provided via RVM)

as part of the initialisation, and thus evaluate the sparsity

of the final model. Since these RVs correspond to basis

vectors centered on a training example, we can infer which

and how many training examples are considered significant

and retained for the specific task at hand. A smaller set of

RV implies a less complex model, with a reduced risk of

overfitting.

VI. WHY OUTPUT-ASSOCIATION FOR

CONTINUOUS EMOTION PREDICTION?

In this section, we would like to demonstrate how the

proposed OA-RVM regression framework is efficiently ap-

plicable to the problem of automatic emotion prediction in

a continuous dimensional space. We focus our analysis and

discussion on Fig. 3. The figure illustrates how employing

the original RVM and the proposed OA-RVM provides

continuous prediction of valence and arousal dimensions for

one training sequence (consisting of 315 frames) extracted

as explained in Section IV.

The predictions generated by RVM are shown in Fig.

3(a,b) while the OA-RVM generated predictions with a

window of v = 0 and v = 4 are shown in Fig. 3(c,d) and Fig.

3(e,f), respectively. The ground truth for both the valence and

the arousal dimensions is shown in all figures as gTruth, for

comparison. The generated predictions for valence appear on

the left column of Fig. 3, while the generated predictions for

arousal appear on the right. The window of v = 0 is meant to

represent the most sparse results, while a window of v = 4 is

deemed sufficient for a sequence of 315 frames as it embeds

9 temporal steps (frames) in terms of past (4 frames), present

(current frame) and future (4 frames) context.

In this particular sequence, the subject appears to be

displaying negatively valenced emotions (e.g., sadness, dis-

appointment), with a decreasing arousal over time (towards a

more passive emotional state). In the figure we observe how

the RVM framework generates predictions (depicted with

RVM line) by using 32 relevance vectors (RVs) for valence

(Fig. 3a) and 39 RVs for arousal (Fig. 3b). Fig. 3(c,d) then

illustrates how the proposed OA-RVM framework generates

predictions for the sequence at hand, for valence and arousal,

with a temporal window of v = 0. Note how OA-RVM is

able to learn a smoother and more accurate model by using

just 7 RVs for valence and 6 RVs for arousal, respectively.

As specified in Eq. 2, OA-RVM depends on both the input

features (x, depicted as IF in the figure) and the output

features (yv, depicted as OF in the figure). To illustrate the

behaviour of the framework, we decompose the relevance

vectors (RVs) selected by OA-RVM into the RVs centred

around the input features (RV-IF) and the RVs centred around

the output features (RV-OF).

For the valence dimension, the 7 RVs used for the OA-

RVM model can be decomposed into 4 RVs corresponding

to input features (the relevant frames shown in Fig. 3c)

and 3 RVs corresponding to output features (shown in Fig.

3(a,b) as Val OA-RV). A similar analysis is performed for

the arousal dimension. For the sequence at hand, in Fig. 3d

we can see that 6 RVs in total are required for learning the

arousal dimension. Note how for this prediction only one

input feature RV is used. This implies that, only the actual

input features (the facial expression features x, in this case)

from one frame (shown in Fig. 3d) are retained by the model.

The remaining 5 RVs centred around the output features

are depicted in Fig. 3(a,b) as Ar OA-RV. An interesting

observation is that, both for valence and arousal prediction,

there are two common RVs centred around the output-

features, in frame 1 and frame 15. In these frames, the arousal

begins to decrease, and is accompanied by a change of sign

in the valence dimension.

To conclude this section, in Fig. 3(e,f), we show the results

of applying OA-RVM with a temporal window of v = 4 (Eq.

2). Note how the learned OA-RVM model provides a nearly

perfect fit by using no more RVs than the original RVM

model. Although the complexity of the model is observed

to increase with an increase in the window size (Fig. 4

and Section VII-A), overall, the OA-RVM model appears to

generalise to new data very well while avoiding overfitting.

VII. EXPERIMENTS AND RESULTS

In this section, we conduct both subject-dependent and

subject-independent experiments to evaluate the proposed

OA-RVM framework in terms of sparsity and prediction

accuracy with respect to RVM and SVR.
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Fig. 3. Illustration of how employing the original RVM and the proposed OA-RVM provide continuous prediction of valence and arousal
dimensions for one training sequence (315 frames). (a,b) RVM prediction with RVs used for OA-RVM, (c,d) OA-RVM prediction with a
window of v = 0 and IF-RV frames, and (e,f) OA-RVM with prediction with a window of v = 4.

A. Sparsity

This section provides a comparison between RVM and

OA-RVM in terms of model sparsity. For this comparison,

we use a small temporal window v, as a larger window

complicates the model and increases the number of relevance

vectors (RVs) needed. The comparison is performed by

selecting the window with the highest sparsity while keeping

the RMSE accuracy of both the RVM and the OA-RVM

models approximately equal (RMSE = 0.23). The results

are presented in Table I and Table II, and are discussed in

Section VII-B.

Subject-dependent results are presented in Table I showing

the number of relevance vectors selected by the traditional

RVM and OA-RVM models. The most sparse results are

achieved by using a window of v = 0. It can be clearly

seen that both for valence and arousal, when employing the

OA-RVM scheme, the number of RVs retained is decreased

significantly.

The subject-independent results are presented in Table

II. In this case, the results with highest sparsity were not

always obtained by using a window of v = 0, but rather

by using a window of v = 1 for subject 1, and v = 2 for

subject 3 (positive class). An interesting observation is that

more RVs are required for the negative class, leading to a

more complex prediction model. Nevertheless, compared to

the traditional RVM, the sparsity increase is still very high.

Although we decomposed the RVs captured by the OA-RVM

model into the ones that correspond to the input-features

and to those corresponding to the output-features, we found

no consistent patterns to report. Overall, we conclude that
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subject-dependent variations in emotional expressions lead

to variations in experimental results.

TABLE I

SUBJECT-DEPENDENT SPARSITY COMPARISON

ValenceRV ArousalRV

RVM OA-RVM RMSE RVM OA-RVM RMSE
Positive 267 10 0.23 270 12 0.22

Negative 245 10 0.23 244 13 0.36

TABLE II

SUBJECT-INDEPENDENT SPARSITY COMPARISON

ValenceRV ArousalRV

RVM OA-RVM RMSE RVM OA-RVM RMSE
Positive 485 10 0.2 495 11 0.15

Negative 394 21 0.19 417 29 0.36

B. Prediction

We begin our discussion on prediction accuracy of the pro-

posed OA-RVM (with respect to RVM / SVR) by referring

to the subject-dependent results presented in Table III.

For both valence and arousal dimensions, we observe

that OA-RVM improves the prediction results in all cases.

Arousal appears to be more challenging to model and predict

for the negative class, in accordance with psychological

evidence suggesting that visual cues are more indicative of

valence rather than arousal [1]. Nevertheless, for the positive

class, except for subject 4, arousal appears to be easier to

model and predict.

The best prediction results are typically captured with

an output-associative window size of v > 8, showing

the significance of past and future context for continuous

emotion prediction. To illustrate the increase of the RVs

retained with the increase of window size, in Fig. 4 we

present the number of RVs retained for subject 1 (positive

class), from a window of v = 0 up to the optimal window

of v = 10, which provided us with the best results. The

increase in the number of RVs with the increasing window

size applies to all subjects.

Overall, the optimal window size appears to be subject-

and data-dependent. This in turn implies that naturalistic

emotional displays are rather subject-specific in nature. For

instance, predicting the valence and arousal level of subject 3,

who displays the most subtle emotional expressions, appears

to be easier compared to the rest of the subjects.

Table IV presents the subject-independent prediction re-

sults in terms of RMSE and window size (v). Each row on

the table presents the results obtained by training the model

using data from one subject (indicated in the first column)

and using testing data from the rest.

OA-RVM provides better prediction results than RVM

and SVR, in each and every tested case, similarly to the

subject-dependent results. When comparing the RVM results

to the results provided by SVR, it is possible to state that

TABLE III

SUBJECT-DEPENDENT PREDICTION RESULTS (RMSE).

Valence Arousal

POS RVM RVM-OA v RVM RVM-OA v
subj1 0.16 0.15 10 0.13 0.11 10
subj2 0.17 0.13 18 0.14 0.13 5
subj3 0.11 0.09 12 0.10 0.09 18
subj4 0.17 0.15 8 0.23 0.19 18

NEG RVM RVM-OA v RVM RVM-OA v
subj1 0.14 0.10 12 0.30 0.29 14
subj2 0.11 0.09 18 0.37 0.33 9
subj3 0.08 0.07 18 0.22 0.21 18
subj4 0.11 0.10 18 0.48 0.40 12
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Fig. 4. Increase of Relevance Vectors in the OA model with the increase
of window size in output features (Subject 1, Positive). The RVM RV are
643 and 626 for valence and arousal respectively.

on average, RVM performs better. However, there is no clear

prediction advantage of one model over the other.

Overall, valence appears to be easier to predict than

arousal for the negatively valenced emotions, while arousal

appears to be easier to predict for the positively valenced

emotions, similarly to subject-dependent prediction results.

The maximum output-associative window size of v = 18
appears to provide the best prediction results in many cases,

while on average, a window of size v > 9 appears to be

optimal. Exceptions can be observed in some experiments

referring to subjects 3 and 4. Subject 4 who has the most

intense expressions, is modelled with a smaller window

for predicting positively valenced emotions and predicting

arousal for negatively valenced emotions, while subject 3,

who is observed to have the most subtle expressions is

modelled with a smaller window for predicting negatively

valenced emotions. Although these results are consistent, we

do not consider them sufficient to draw general conclusions

regarding the optimal window size with respect to the expres-

sivity of each subject. We rather attribute them to subject and

data-specific characteristics of the experiments.

Overall, naturalistic emotional expressions are highly

subject-dependent [1]. However, from our experiments we

conclude that automatic, subject-independent, dimensional

and continuous prediction of emotions becomes feasible by

utilising input and output associations as well as temporal

context.

Psychological research findings suggest that there ex-

ist gender-related differences in expressing emotions (e.g.,
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women appear to be more facially expressive than men

[22]). However, in our experiments we found no consistent

differentiations between male and female subjects.

To conclude this section, we comment on the noise aspect

of the prediction (in terms of average standard deviation). For

the subject-dependent experiments the average noise standard

deviation for OA-RVM is 0.001, while for RVM is 0.007.

For the subject-independent experiments the average noise

standard deviation for OA-RVM is 0.003, while for RVM is

0.01. Thus, we are able to state that OA-RVM induces more

confidence in the generated predictions than RVM.

.

TABLE IV

SUBJECT-INDEPENDENT PREDICTION RESULTS (RMSE)

Valence Arousal

POS SVR RVM RVM-OA v SVR RVM RVM-OA v
subj1 0.21 0.16 0.15 18 0.16 0.16 0.15 18
subj2 0.22 0.26 0.17 18 0.18 0.18 0.14 9
subj3 0.22 0.22 0.22 12 0.17 0.17 0.16 12
subj4 0.19 0.16 0.15 6 0.19 0.14 0.13 18

NEG SVR RVM RVM-OA v SVR RVM RVM-OA v
subj1 0.11 0.10 0.09 12 0.36 0.39 0.35 18
subj2 0.14 0.11 0.09 14 0.37 0.33 0.32 10
subj3 0.10 0.10 0.10 5 0.37 0.40 0.37 18
subj4 0.13 0.11 0.09 18 0.14 0.13 0.13 2

VIII. CONCLUSIONS AND DISCUSSION

In this paper, we proposed a novel Output-Associative

Relevance Vector Machine (OA-RVM) regression frame-

work that augments traditional RVM by being able to learn

non-linear input-output dependencies. Instead of depending

solely on input patterns, OA-RVM models output structure

and covariances within a predefined temporal window, thus

capturing past and future context. We successfully applied

the proposed framework for dimensional and continuous

prediction of emotions from facial expressions, and demon-

strated its advantages and efficiency over a comprehensive

set of experiments, both for the commonly employed subject-

dependent (training and testing the model for each subject

separately) and the highly challenging subject-independent

(training the model by using data from one subject only and

testing on the rest) case. Our experimental results show that:

• OA-RVM outperforms both RVM and SVR in terms

of prediction accuracy. Employing a temporal (output)

window, which induces the learning of past and future

context, contributes significantly to the prediction ac-

curacy. The size of the optimal temporal window may

vary depending on the task and the data at hand.

• OA-RVM appears to provide a more sparse model than

RVM, at no additional cost to the overall accuracy.

• Although there is an inherent, subject-dependent charac-

teristic attributed to naturalistic emotional expressions;

automatic, subject-independent, dimensional and con-

tinuous prediction of emotions is possible by utilising

input and output associations, and temporal context.

As future work, the proposed model remains to be evalu-

ated on databases with a larger number of subjects (e.g.,

SEMAINE) in order to (i) obtain deeper insights into the

accuracy improvement provided by the OA-RVM model, and

(ii) evaluate thoroughly the impact of the sparse OA-RVM

model in terms of its generalisation capability over different

data set(s) and subjects.
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