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Abstract—Slow feature analysis (SFA) is a dimensionality
reduction technique which has been linked to how visual brai
cells work. In recent years, SFA was adopted for computer visn
tasks. In this paper, we propose an exact kernel SFA (KSFA)
framework for positive definite and indefinite kernels in Krein
space. We then formulate an online KSFA which employs a
reduced set expansion. Finally, by utilizing a special kindof
kernel family, we formulate exact online KSFA for which no
reduced set is required. We apply the proposed system to ddop
a SFA-based change detection algorithm for stream data. Thi
framework is employed for temporal video segmentation and
tracking. We test our setup on synthetic and real data strears.
When combined with an online learning tracking system, the
proposed change detection approach improves upon tracking
setups that do not utilize change detection.

Index Terms—Slow feature analysis, online kernel learning,
change detection, temporal segmentation, tracking

|. INTRODUCTION
SLOW FEATURE ANALYSIS (SFA) originates from theo-

ries in neural networks [1], and extensive studies in neu
science found similarities between SFA and the properties
brain cells in the visual cortex [1], [2]. More recently, SFA
found its way into computer vision [3], [4], [5], [6]. Here,

SFA is employed as an unsupervised learning technique
dimensionality reduction of temporally arranged data sash
video. In particular, it extracts an orthogonal subspacmfthe

A. Related Research

1) SFA in Computer Visioninspired by the slowness
principle of neural networks [7], [5] employs SFA for in-
variant localization and recognition. This work extrachvsl
features hierarchically. Multiple areas of the input imagee
analyzed for slow features individually. These featuresthen
combined and reused as input signal for the higher levels of
the hierarchy. In total, 4 SFA layers are introduced. Thel fina
layer’s features are then used for regression or classificat

In [3], SFA's properties are exploited to segment video data
temporally. The aim of this study is to extract unknown dif-
ferent actions in an image sequence. The individual segment
are thought to be the activities in the examined video. After
performing SFA on the complete video, the authors determine
whether a split of the sequence is required. The decision is
based on the median of change in the slow features. For the
separation, the frame with the largest change is utilizespés
Ipt])sition. SFA is once more performed on the resulting videos
%nd the process is repeated until no further split is necgssa

Another example of SFA applied to temporal segmentation
Is [6]. After formulating SFA as probabilistic model and
%:{Jving for expectation maximization, the authors are able
extract the temporal phases of facial expressions thro&gh S
Their offline algorithm successfully extracts onset (begig),
apex (duration) and offset (ending) of facial action units.

input data, similarly to principal component analysis (ACA ) i )
In contrast to PCA however, SFA considers the temporal _2) Online Learning:The literature above reveals SFAs
information to find the most descriptive components thayva@Pility for temporal video segmentation in image sequences
slowest over time [1]. The intuition behind SFA is linked ket although only in offline setups. With an ever increasing im-
assumption that the information contained in a signal ceangPortance of realizing online applications, incrementatiting

not suddenly, but slowly. Note, a signal generally contaifg®thods have become a popular research topic [8], [9], [10],
high variation (caused by noise), nonetheless, it is théogel [11]- In particular, real-time object tracking has beenvshdo
varying features that mark the separation between infoaveatPenefit from online models [9], [11], [12]. Commonly in orgin
changes. SFA extracts these features, as it selects thetanpo 1€2Ming, however, the appearance model used to descebe th

attributes which change least over time.
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tracked object (target) is susceptible to drift [11]. Withaage
detection and SFA in particular a tracking system can detect
when drift is likely (during changes). In this work, we waat t
combine online tracking systems with an incremental apgroa
to SFA to improve drift suppressants.

An online learning system to find slow features is required
for the detection of changes in video streams. All methods
presented thus far require the complete videgariori. To the
best of our knowledge, the only incremental version of SFA
(IncSFA) is proposed in [4]. As SFA can be solved in two
stagewia PCA and minor component analysis (MCA), IncSFA
utilizes a combination of the candid covariance-free inmee-
tal PCA (CCIPCA) in [13], and the sequential extraction of
minor components in [14]. CCIPCA is based on statistical
efficiency and incrementally estimates the data distrdvuti
by means of scale and mean. Consequently, INnCSFA learns
a rough estimation of the true slow features. Furthermore,
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IncSFA is designed to learn from multiple complete videos of Notice, all methods above aspproximationsn one form
similar motions, rather than the data points of a single ideor another, which inadvertently reduces the accuracy awver.t
Therefore, INcSFA is very suitable for learning features dfor example, while a reduced set expansion with pre-images
sequences that reoccur in its entirefyg. complete activities. allows for arbitrary kernels, the computation of pre-imapas
However, online learning for change detection, where aecedrawbacks: (1) the reduced set representation providgsaon|
is seen only once, is not supported by this approach. approximation to the exact solution and (2) the optimizatio

3) Non-linear Features:SFA is originally designed for problem for finding the expansion inevitably increases the
data signals with quadratic expansions. In this case, $f¢e complexity of the algorithm. In contrast, a specific kernel
is a statistical component analysis, it is quite likely tdfesu family can be applied which allows us to formulate a special
from the curse of dimensionality. Hierarchical SFA, as i [Scase ofexact online KSFA without pre-image computation
somewhat improves this situation, but important propsrti®er kernel approximations. One robust, domain-specific &ern
could be missed. More recently, [15] introduces kernel SEAnction of such class is given by [12].
(KSFA) for standard positive definite kernels. Similarly d@o 5) Unsupervised Video SegmentatioBome related
guadratic expansion, kernel methods allow for a mapping wbrks in the broader area of unsupervised video segmentatio
features into a high-dimensional feature space. Howelr, tare [25], [26], [27]. In [25] a method for clustering evenss i
feature space is never required to be computed explicigly, proposed. Their work is only suitable for offline processing
it is realized by the kernel which represents the dot-produsnd requires the number of clusterspriori. This is also the
of two samples in such space. The computation of kernelscase for the clustering algorithm in [26]. A method for joint
often more efficient than non-linear expansions — at least segmentation and classification of human actions in video is
the amount of computer memory used. Furthermore, kerqebposed in [27]. Their method is superviseg,. a model
functions allow for more flexible feature spaces. Typicadly for human actions is learned from a set of labeled training
in [15], the selection of standard kernels such as Gausssamples. Then, given a testing video with a continuoussirea
RBFs (GRBFs) is encountered. These kernels seldom utili@ehuman activities, the algorithm in [27] finds the globally
the domain-dependent property of the data. In recent wasktimal temporal segmentationg the change points between
we present a kernel specifically designed for image grasliemictions) and class labels. Our methodology takes a differen
[12]. Inspired by its success in tracking and recognitioe, wdirection. In particular, we detect the temporal changes in
now wish to apply this kernel to SFA. An important aspeactideo streams online. We do not require the number of clsster
of our kernel is that it is not positive definite and, thus, theor train to a predefine set of examples. Thus, the methods in
appropriate space in which our kernel can represent a d[@é], [27], [28] constitute excellent post-processinglsotor
product is a Krein space. Therefore, an extension of KSFAustering or classifying the events.
into Krein space is required.

4) Onllne Kemel Learn|ng.Typ|caIIy, the cIaSS|f|cat|on B. Contributions
or regression functions of online kernel methods are writte
as a weighted sum of kernel combinations, taken from a setFirst, we introduce a general kernel framework for SFA
of stored instanceS, usua”y referred to as Support or mﬂu(\!\”th pOSitiVe definite and indefinite kernels. Furtherm(yﬂe,
set. At each step a new instance is fed to the algorithigrmulate an online learning algorithm for the proposed KSF
and depending on the update criterion the algorithm adds #gich computes the slow components at each given time-
instance to the support set. One of the major challengesstgP incrementally. We emphasize, in contrast to INcCSFA [4]
online learning is that the support set may grow arbitrariWhiCh learns from multiple videos, our incremental version
large over time [10], [16], [17]. of SFA is designed to learn from individual data points of a

Many techniques that try to bound this set have be&Hgle data stream. Then, we extend our learning framewveork t
presented in the literature [18], [19], [20], [21]. For exalm formulate an exact incremental kernel KSFA, which uses the
[22] propose online kernel algorithms for classificaticegnes- kernel family of [12]. Finally, we develop the first SFA-base
sion and novelty detection using a stochastic gradientesescreal-time change detection algorithm which we employ for
algorithm in the Hilbert space defined by the kernel. In otder temporal video segmentation and visual tracking. In surgmar
avoid the arbitrary growth of the support set, the authoopad Our contributions are as follows:
simple truncation and shrinking strategies. In [23] anmmli 1) We propose exact KSFA with arbitrary derivative ap-

regression algorithm which uses an alternative model tigatuc proximations for any kernel in Hilbert or Krein space.
criterion is proposed. Instead of using a sparsificatiorcgro  2) We formulate an accurate framework for general online
dure, the increase in the number of variables is controlied b KSFA for which we apply a reduced set expansion
coherence parameter, a fundamental quantity that chairsese in Krein space. In contrast to [4], our online learning
the behavior of dictionaries in sparse approximation potd. system computes the slow features at each time-step,

In contrast to reducing the support set needed, in [24] the from individual data points of a single video sequence.
kernel function is approximate by a finite number of function 3) We propose incremental KSFA that does not require a
which can be explicitly calculated. Finally, [10], obtain a reduced set expansion, exploiting the properties of our
reduced set expansion to bound the samples in the support domain-specific kernel in [12].
set. Such samples are referred to as pre-images, and they a#) We introduce SFA-based online change detection which
optimized to fulfill the kernel method. we apply to temporal video segmentation and tracking.
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In [29], we introduce KSFA in Krein space and develop31]. For example, the linear distance between two samples i
an incremental KSFA algorithm for our special, domainthe non-linear Hilbert space is givefia the kernel as
speC|_f|c kernel in [12]. _We implement S_FAs change de_tectlon (¢ (x), i (y))
algorithm, and apply it to temporal video segmentation. In
this paper we extend our work, and introduce an incremental —kulyx) +knlyy).  (2)
KSFA for arbitrary kernels in Krein or Hilbert space. Notice The following properties are important for the inner produc
the setup in [29] depends on a version of the scatter mattka Hilbert space\(x,y,z € H, Va,b € C):
which is not available in general kernel methods. With our

= ku(xx) = kn(xy)

new algorithm, we propose a true scatter-matrix-independe oy = yxmu (3)
version of SFA, as we use the kernel matrix throughout. We (ax +by,z)n = a(x,2)n +b(y,2z)n 4)
also introduce a tracking framework with change detection. l(x,z) < I(x,y)+ Uy, z) (5)

where (.) denotes the complex conjugate. Therefore, if a
C. Notation positive definite kernel is selected, the space is Hilbert.

. . . Similar to Hilbert spaces, kernels in Krein space define an
We summaries some mathematical notation for the readers

. . . implicit mapping ¢« : C¥ — K from feature space ontk,
convenience in table |. See text for details. and provide the inner produét )x : K x K — C such that

TABLE | _
SUMMARY OF MATHEMATICAL NOTATION . <¢K (y)7 (b’C (X)> o kK (X7 y) (6)
for x,y € CP. They also satisfy the analogous properties for
R space of real numbers 3 d 4) H h he di is similarl
C  space of complex numbers eq. (3) and eq. (4). However, when the distance is similarly
#  infinite dimensional Hilbert space to eq. (2), the triangular inequality may not hold [32], [33]
‘E‘ gggég?eigzeHﬂﬁg?t'tgng”  Space A Krein space is composed out of two Hilbert spadés,
J  fundamental symmetry of. andkC,, such thatC = K © I, where® denotes the direct
K kernel matrix sum {.e. X_ andC, are orthogonal in terms df, .)«). Thus,
k() kerr}el_ fllinctioln ' two orthogonal projections can be extracted friinF', onto
<¢()> :nmnpe'rcgmfﬂg mapping K+ andF_ onto X', known as fundamental projections. By
X derivative ofX use of the fundamental symmetfy= F, —F_, an associated
X centralized matrix ofX Hilbert spacg K| is found. We write the relationship between
C  helper matrix to compute mean , K and|K| in terms of a “conjugate”, as
M helper matrix to compute centralized matrix
© vector of mean values X"y 2 (y,x) = XHJy = (Jy, X>|lq @)
()T matrix transpose . ) ) )
() complex conjugate wherex,y € K. That |§,IC can bg _turnedlln.to its associated
()" complex conjugate transpose Hilbert space/K| by using its positive definite inner product
() cgnjugate transpose with fundamental symmetry <.7 .>“C|, as (x, y>“<| — (x, JY>IC- In finite dimensional Krein
@ durect sum of spaces spacesi(e. dim(K, ) 4+ dim(K_) < oo, wheredim(.) finds
©  element-wise multiplication pace - AMA4 ! - ' .
the dimensionality), the fundamental symmetry is given by
Iy 0
Il. SFA WITH INDEFINITE KERNELS J=| Tdimy) (8)
0 —Tdim(x_)

We propose a general kernel SFA. Contrasting [15] inde{yherer, is then x n identity, ando implies zero padding.
nite kernels are handled. Section II-A introduces the h1@r  kernels in Hilbert or Krein spaces are important, as they
positive definite and indefinite kernels. SFA and its kea®li ,\ige feature representations for dissimilarities imtiaear
optimization is presented in section I1-B. Finally, seati¢-C  gpaces. Plenty successful applications exist in the fitezdor
introduces our algorithm for SFA in Hilbert and Krein spaceyjipert kernels [15], [30], [31]. The use of Krein kernels is

more seldom [33]. In [12], we introduced an indefinite Krein

A. Kernel Functions in Hilbert and Krein Space kernel for tracking and recognition. It is important to note
. here, that methods which employ Krein spaces are also valid

q ':.‘ H(;Ibbert space?—[ |sda (;om![olete velctor space \.N;l'Ch Sor Hilbert spaces, a¥. D H. Thus, in the following we
efined by an innér product onto complex Spé@e}"‘ ~ X consider indefinite kernels in Krein spaces only.
‘H — C, which induces a norm and, thus, a metric. Generally,

‘H is an implicitly defined infinite dimensional hyperspace. , Lo
kernel functionky, : C* x C¥ — C defines the unknown%' S.FAS Opt|m|zat|qn Problem .
mappingéy, : C” — H which transforms the original data CGiven N sequential observation vectors as columns of

into Hilbert space, and the inner product is realized by ~ X = [x1 -+ x| € C"*, SFA finds a descriptive output,
. for eachx, such that the output sign® = [o; --- on] €
(0n(y), on(x))m = dn(x)"0n(y) = ku(x,y) (1) ©FxN changesslowestover time [1]! The output of each

wherex andy are members of the original spa€& and(.)"
Y 9 P ( ) 1The original SFA is defined only in the real valued space, hewean

?ndicates the Hermiti_an transpose. For many applicati®fis, extension into complex space is trivially archived by rejslg the transpose
is employed andpy, is never explicitly required [15], [30], operation with the Hermitian transpose.
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individual sample is formed as the concatenationFofmnap- and centralized matrix can be respectively computed as

pings sy : CF —% C f = 1T,,F such thato, = =1 X1ye = XM (16)
[$1(xn) -+ sp(x,)] . Where (.)' computes the transpose. - L
SFA minimizes theslownesdor these values, defined as X =X(Iy - §1lyxy) =XC 17)
| N whereM = +1y,1 and C = Iy — +1nxn [10], [33].
A(sy) = N Z |éf(xn)|2. (9) Furthermore, we define the total scatter matrix
n=1 A N *
Hence, SFA minimizes the time derivativge of s for the S _ )Z(:)n(:*liég%)w W)(@(zn) = 1) (18)
whole video sequence. Althoughky is often represented as i ,
the difference between consecutive time stés,i;(x,) = [Of some fundamental symmetry matel Note, this matrix
s¢(xn) — 57(xn_1) [3], [15], any derivative may be utilized. desprlpes the scatter in the gssouate;d Hllbgrt spdge
Additionally, [1] introduces constrains to avoid triviasls- ~ Similarly to [3], [15], the signal derivative is expressesl a

tions and prevent information redundancy. The output $&ggna 0 -1
of each mappings;, i.e. sy = [sf(x1) -+~ sp(xn)]T, are ) 0 1 -1
required to have zero mean, eq. (10), and unit variance, X=X1. .. | =XD (19)
eq. (11). Moreover, alk; are constrained to be uncorrelated, 0 ' 1'

eg. (12). Finally, an ordering of the components according t
their slowness is employed, eq. (13). We summarize: whereD € RY*N describes the backwardeifferen%a.he
derivatives’ meany:, and centralized matrixX, are respec-

H _
vf SﬁlN“ =0 (10) tively found analogously to eq. (16) and eq. (17), and we defin
Vi ospsp=1 (11)  the scatter matrix of the derivatives as
Hoe _ . T aX
Vi#e  sise=0 (12) §£XX =[XDC][CTDTX"]J. (20)
Vi<e  Alsy) < Alse) (13)

. 0 Based on KSFA in Hilbert space [15] and KPCA in Krein
wherel,x, is ana x b matrix with all elements equal tb.  space [12], we formulate the projection as linear combdmati

Often, the input featureX € C"*" are either assumedv = XV, and define KSFA's optimization in Krein space as
to be linear and directly taken from the input valués= . -1 5
21 zn] € CP 7N, ie.x, — 7,, P— P', or aresult of a V= argmintr <<VHK2V) VHKDCDTKHV) (21)

nonlinear expansior,.g.a quadratic expansion wheze= RY’ v _ s
2, (1) where K = X*X is the kernel matrix, andK = X*X =
" CTKC its centralized version. The optimum of eq. (21) is
: P a1 foundvia a two step approach. First, we ensure that
— / _ p/ / e
xp=| z,()z,(P") |, P=P +P 5 (24) VHR2Y — I (22)
and then we find the optimum for

Zn(PI)Zn(Pl)

wherea(b) denotes thé™ element of vectoa. Generally, we
may utilize any mapping : C"” — K, such thak, = ¢(z,). _ We achieve eq. (22) by whitening the squared kernel matrix,

SFA can be solved by means of the generalized eigenvalié. For this, let us compute the eigenvalue decomposition,
problem [2]. Let the scatter of the data Be= 32 (x,, — K2 = QA2QH, and definé/ = W@ such thatW = Q|A |
) (x, — )", whereyp is the sample mean. The scatter of thend ®"® = I holds (eigenvalues with zero magnitude and
data’s derivative iS = Zﬁle(kn — [1) (%, — 1), wherex,, the corresponding eigenvectors are removed). We can now
is the derivative of,,, andf is the derivatives’ mean. Then,reformulate eq. (23) as
SFA finds a projectiorV = [v; --- v¢] € CP*¥ such that © = argmin tr (O"WHKDCDTKHW®)

(C]

V = argmin tr ((VH S\v/')_1 vH S\?) (15) subject to®H® =1
\%

V = arg min tr (VHKDCDTKHV) . (23)
A%

(24)

wheretr(.) computes the trace of a matrix. After ordering,thtﬁ,"hbCh IS STc’lvﬁd via the flggnvalue decomposition - of

functionss; are then provided by (x,) = v¥(x, — pn— fz). WIKDCD K"W = ©X.0". Finally, the sought projection
is provided byV = XV = XW®.? The ordering of the
slow feature projections is given by the eigenvalue&inin

C. Solving Kernel SFA in Krein Space particular, the columns iV, or equivalently the columns in
V, that correspond to the smallest non-zero eigenvalugs in

Let ¢ : C¥ — K be an unknown mapping into Krein
space whose inner product is equivalent to a know Kernelt a more general derivative is desire® may be represented as the
k: CP" x CP" — C. Although we notatep to describe our product of any two matriceX = [¢(41) - - ¢(5 )] and D € RN' XN

method, we never require its evaluation,kas employed. 3If X # X, W seldom introduces a null-space to the projectionSof

. . . . Here, an alternative optimization problem with total seathatrix of samples

We deflne_X = [¢(Z_1 ) - ¢(z,)] as the implicitly given and derived samples facilitates slow feature analysis. g¥ew as this is rare
sample matrix of the original featureszh The samples’ mean and exceeds the scope of this work, we refer to [34], [35].
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Algorithm 1 BATCH KSFA IN KREIN SPACE the same notation as before, and indicate time steps and new
Input: The training dateZ € C”' >V, the derivative matrix data by subscriptse(g. X, is the implicitly mapped sample
D e RM*N| the number of components kept aftematrix at timet, and N;s is the number of new samples).

. . . . P/ P/
Wh|.ten|ngR, and the k.ern’el fl.mCtIOh E x5 G 1) Indefinite KPCA Update for Online Whiteninghe
Output: The data projectiorV with sorted components ac- . L .
update of the whitening projections can be performed with

cording to slowness. online KPCA. We extend the incremental KPCA in [10] to

L Compute the kernel matri = X*X, utilizing k. allow for indefinite kernels in Krein spaces
2: Find CHKC = QAQH. paces.

3: Form the reduced se®p € CN*F and Ap € REXE Let X be the mapping of the new samples 3, such
which is related to the? eigenvalues with largest magni-thatX; = [ X;—1 X, | provides the updated data set. We
tude in|A|. want to incrementally update the eigenvectfs ; and the

4: SetWpg = Qg|Ag|~t. eigenvalue magnituded;_;| of the previous time step— 1,

5: ComputeWHCTKDCDTKCWj = @61, to find the new whitening projectioWV, = ©;|A;|~! which

6: Reorganize the components@in relation to the ascend- incorporates the additional information of the new samples
ing eigenvalues irk.

A Similarly to eq. (16) and eq. (17), we notate the new data’s
7. SetV = Wi0O.

mean ags; = X;M; and its centered sample matrix Xs =
_ X;Cs, whereMy = N%SlNﬁxl andC(;:INa—NislNﬁst.
Algorithm 2 TESTING SFAIN KREIN SPACE For the sake of simplification, let us first assume the data
Input: The to-be-tested samplec C*’, the data projection mean unchangedi.€. p,_, = p;). We define the kernel
V with sorted components, the numienf slow features matrix of the new datd; = X;X; and find the eigenvalue
to be used, the training dafa € C*'*V, the derivative decompositiorK? = Q;A2QH. Then, in respect to eq. (22),
matrix D € RV*N  and the kernel functior : C”" x  we seek to find the eigenvalue decomposition of
CcP > C.

_ . H ] v 2 .
Output: The output signab & CF. _ Kf = [QHXLJ;{_”Q Qt*lxxlxéﬂé 9':
1: Computeo’ = X*x — X*p — X*f1, wherex = ¢(z), 5 hat—1%0—1 [As]
using the kernek. ) = [QtAfQﬂ Q' = 2,A7 0] (25)
2: Findo = V}jo’ whereVy € CV*¥ consists of the first
F rows of V. where ), = 96*1 £ is an orthogonal matrix, com-
5

represent the smallest changing features of the sample dafsed of the eigenvectors ®,_, and ;. Notice, eq. (25)
Often, high dimensional data contains dimensions whid®n be solved utilizing the decomposition of the inner matri
virtually never vary. Unfortunately, such data points dkely $2:A7€2'. The size of this matrix is independent of the sample

to provide the slowest features in SFA. Therefore, a dimeRumber. The projected eigenvectors provide the solution
sionality reduction on the scatter matrix of the originatada Q.4 O
is often advantageous. The eigenvalue decompositioKof 2 = [ 0 Qs

is ideal for this task, as we can extract the eigenvect o .
NxR . us, the new projection is given BW; = €Q.|A;|~! (zero

Qr € C related to the largest absolute eigenvalues o Lo
elgenvalues and their eigenvectors are removed impljcifly

|ARr| € RE*E The projection of the reduction is then given by . . . : . :
Wy — Qpu|Ax|~1. All other parts of the calculation remamd|menslonallty reduction may be applied as outlined in sec-
R ., : tion 1I-C. It is important to note tha€®, may grow arbitrarily

unchanged. In the following, the reduced set is implied Wh?zgrge over time. We refer to section IlI-A4, where we overeom

we write A and €2 for ease of notation. . . . .
. . . .this problem by introducing a reduced set representatiah th
For convenience and clarity, we summarize the learnin N
unds the grows by means of approximation.

procedure of batch SFA in algorithm 1, and show how the

}mzmm. (26)

slow feature functions are applied in algorithm 2. Thus far, only the case with unchanged data mean is
considered. A simple modification &; allows for changing
I11. A FRAMEWORK FORONLINE KSFA means [9], [10]. In particular, we include an additionaladat

We now formulate online KSFA which updates the sloWoint to the new sampl_es, whose sole purpose is the comectio
features from novel data. In section IlI-A, online SFA witif the mean substraction

arbitrary Krein space kernels is introduced. A reduced zet e Xg = [ Xs o) Di=alNs (u ) ) }
. . . . N¢_1+N;s t—1 0
pansion is required to employ general kernels. In sectieB, || M
we present a special kernel-type, which allows a representa = X, { [ 0 ] ]\J[thlﬁ\]’\? [ t—1 } } (27)
which does not required a reduced set expansion. Cs e | —Ms
Now, we compute eq. (25) witi in place ofX;. Finally,
A. General Online Kernel SFA we update the mean of the overall data
. . . N, N
As seen in section Il, SFA can be solved in two stages, the _ Sl X, M, 5 XM,

data whitening in eq. (22) and the decomposition in eq. (23). "* Ni—1 + N Ni—1+ Ns
In figure 1, we illustrate our incremental setup. We employ = X;M; (28)
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Streamed Input Signal
Xo X o
input derivative input derivative
Xo X
input sample - _ , input sample
s = XMy Ue = XesQulAeq| 2
implicit mean implicit subspace projection
i o
Kernel PCA Wer=Xew,
Reduced Set implicit mean approximation
Expansion
- - - W
. implicit subpsace approximation ,
XoWy = UglAj| 2 XW,=U|JA[?
implicit whitening projection implicit whitening projection
P P HY
L | Derivative Projection W, MR
projected derivative mean
HY & %
Wi."X1.1"Sp. X1 Wes

projected derivative scatter matrix
WX 8 X W,

projected derivative scatter matrix

WX ;8 X W,

projected derivative scatter matrix

¥

Minor Components Extraction

Vi= U1|A1|'%0:

implicit slow feature projection

Fig. 1. lllustration of incremental SFA at initializatiotire 0) and time-step. We utilize incremental kernel PCA and our incremental\@gfie projection
to find the slow features at each time-step. Details are geavin the text.

whereM, = L~ Ne—1Mi—y ) components which are introduced by the new sampleX4n
1t NsM; re unlikely to be of significance t&X;_;. Hence we omit

It is important _to note, the_xt_ our complete Incrementay, o, contribution?t and rewrite the first term of eq. (29) as
update never requires the explicit calculation of the umkmo

mapping s, as we employ the kernel trick using the kernel Wi X;S; 1XW, ~ P'W}' X} SX; /W, ,P; (31)
k. Furthermore, ignoring the growth of the kernel suppofjhereP, ¢ C#:-1*%: js a correction matrix given by
set, our framework for updating general KPCAs in Krein . .
space computes in constant time and memory. Section IlI-A4 Py = [ |Ai—1] O } Q[ Ay (32)
introduces a reduced set representation for constant txecuwhere(2, corresponds to the non-zero eigenvalued\jn
of the whole algorithm. First, however, we complete themali | et us represent the old data mean in its projected form,
KSFA framework with the second part (I’elated to eq. (23))'WP—1XI—1I:L15—1- Using Pt, its update is approximated by
2) Slow Feature UpdateAfter finding the whitening ma- . - .

trix, the slow features iW,_; = W,_;©,_; require update. WXy = PIWL X foy (33)
More precisely, the eigendecomposition of the projected-scSimilarly to eq. (27), the step to correct the mean substract
ter matrix, WH  X* 'S, X, W, ; = ©, %, ;0" |, is performed by adding a correction sample to the new data,
needs to be renewed with regards to the new derivatives ardequivalently, by adding the following to eq. (29)
the projection, which we denof€s and W, respectively. N,_1N; W, - o S

Let us first assume unchanged medres fi, ; = j1,). The N, + N, "Vt (Frp—y = f15)(fr—1 = fr5)" X W (34)
new projection of the new scatter matrix is then provided 83,4 the new mean is provided by

WHX:S, X, W T T
Lt Ht~ *t. b Hone < WHX 4 — Ni WX,y 4+ NsWEX fig (35)
= Wt Xt St,lxtwt -+ Wt Xt S(;XtWt t t My = Nt,1 + N5 .
~ . ~ . H
_ W Xi X 1Cra | | Xf 1 X 1Cra W, Finally, after computing the new scatter matrix
FlOXEX-1Ci XX 1Ciq WHX*S,X;W;, we obtain the slow features through
+ WHX X O XX, W, (29) eigenvalue _decompqsition as described in section II-C.
. o Note, the size of this matrix is bound by the number of
whereS; is the scatter of the new derivatives. components ifW,. Hence, the computation time and memory
The second term of eq. (29) can be directly computed. Moggquirements remain constant.
complicated, however, is the calculation of the first termewh 3) Forgetting Factor: In many online systems it is

constant running time is required for online learning. Neti peneficial to attach a higher weight to recent data. A common
that X; W can be expressed through the samples_ beSpa‘é‘ﬁ%roaCh to moderate the balance between old and new data is
for X; a”dxa,_g've“ byU; 1 = X; 1Q1[A1|72 and 4 forgetting factor[8], [9]. This value acts as a weight on the
Us = X5Q5|As| ™2 respectively. We write known data, and reduces their impact by a faetoe [0, 1]
X, W, = [ U,_1|A_1]2 UslAgl2 ] Q A7t (80) (usually0 < w < 1). In the following, we describe how is

. . , applied to both steps of the incremental update.
It is reasonable to assume tht, ; is well represented

by the subspac#J;_, alone, as the projection’s components «tpe forgetting factor, introduced in section Ill-A3, redscthe effect of
were selected to reproduce baky_; and X;_;. The new errors even further.
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Essentially, we want to reduce the effect of the values in
X,;_1 by w. The forgetting factor can be directly applied to
the eigenvalues of the old data, as we find

(IITTTTTITITTIT]:

- - 2 5
(UJX?AXt—lw) = (0’A) QL (36) ] m
Hence, we reflect this in the computation of the inner matrix 2 = ] =
of eq. (25), as we compute the decomposition of - o -
~ ~ 2 . M
w?[Ag—1] QX; 1X596} A A2AH [
- = -t =0 AQ . (37 ]
{ng‘x;xtlnu |As| Al (3D . m
The forgetting factor also effects the old data’s mean,, I n
which is changed by multiplyingv. Analogously to [9], we @ (b) ©
update the mean using Fig. 2. The mean and each componentUn is approximated byQ pre-
1 images, denote.,., and a weight vectow, as detalil in the text and shown
M= — wN;—1 My (38) in (a). Improved optimization can be archived through pgagimg the pre-
wNt_1 + N; NsM;s images to other components, as shown in (b) and (c), andeitkiai [10].
Finally, the correction term for the mean substractiorXifi component ofQ2; related to thert® eigenvalue, denoted,.,
(in eq. (27)) is also modified to refleat: at timet. The basic idea behind the reduced set expansion is

0 VaIN, Ny (N 7N | My depicted in figure 2 [10]. For each component we want to
X { [CJ TN 1+ N5 [ —M; ] } - (39) find a set of at most) pre- imagesZ,. = [Zp1 - - Zrq] Whose

Similar modifications are employed for the second stage 0 I'T]Jp|ICIt mappings, denote, = [¢(21) - 6(2:q)], best

the update. With analogous derivations to above, we find approximatau, ~ X, w;.. Herew, is an optimized multiplier
which controls the weighting of the samples.

WX, X, W, A two stage greedy search finds the components [10].
_ Vw2N;—1 N (N1 +N5)WHX*(' ) _Intuitivel_y, we find Fhe next pre_—image which carrigs most
wN;_1 + N t e i1 = Hs information to describe the remainderwf. For convenience,
VWEN; 1 Ns (N1 + Ny) let us denote the mapped set of the figstsamples as

(Fry_q — fo5) X W,

X,q = [¢(2,:1) - - - (2,4)] and the weighting of the elements

whNi—1 + N asw,, € R%. The (¢ + 1)*® element is found as

+ 'w2Wi—|X: Stfljv(.tWt + W?X:Sgitwt (40) 2
i i i : wt —wh X* ) o(z)
which can be computed as described in section [1I-A2. The 5 e max T Tq
mean update is now given by r(g+1) T ATE A
wN,_ W X+ Sy + NyWH X*M 41) and the optimal weighting as [10], [36]
wN;_1 + N5 ("* < )_1"*
W, = (X X, X7 u,. (43)
Finally, the number of elements at timé N; = wN;_1+Ns. r(g+1) r(q+1)“>r(g+1) r(q+1)
4) Introducing Constant Running Time:ike most Analogously, an additional set of at mog& pre-images,
learning systems which employ the kernel trick, our onlindenotedZ,, with mappingsX,, and weightsw,, approximates
SFA with arbitrary Krein kernel depends on a support set 1€ meanu, ~ X,,w,,. One approach to solve the optimization

the previously encountered data. One of the major chalend® gradient decent, but other algorithms exist [37].
is that this set may grow to become arbitrarily large oveetim Once all pre-images are computed, we could set

(42)

W?X:Ht -

[10], [16], [17]. For example, whenever we wish to apply 7 2 {Z g7 } (44)
the slow featured/ to a samplex the kernel matrixX;x is b ! RS
computed, which requires all data pointsAp This, however, X, 2 {X1 . Xn X,t} (45)
violates the online learning requirements of bound running
speed, a¥; grows at every update. w1 0gxa

Although alternatives exist [20], [21], [23], [24], we adop ST < : : (46)
the reduced set expansion of [10] to ensure constant running to ¢ Oox1 -+ Wg
time. While we describe the main steps in the following, we Oox1 -+ Ogx1
refer to [10] for details.

Our algorithm uses the support &£ in combination with M, £ { OrQ)x1 } . (47)
the eigenvectors?; in the form of X,;€;. Therefore, in Wi

the following, as we exploit properties of orthogonalitye w However, we apply the method shown in figure 2 and detailed
estimate the reduced set expansion based on the subspack0], which extracts a better approximation, by using
U, = XtQt|At| 3 of X,. Each principal component inall elements inZ’; for each component if’, and M4,

U; = [u; ---ug] depends on the complete set of previousl§ffectively making these less sparse. See [10] for details.
encountered data iZ;. In particular, each component is Finally, we enforce orthogonality in the new fourdd’,
realized by computingi, = thr|>\r|*%, wherew,. is the subspace. Notel’; is only an approximation of the orig-
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inal U; subspace, and thus the unit norm is no long&iven the sample matrices of mappingsand b, denoted
guaranteed. We extend [10] to work with complex kernelX(®) = [ a(z1) --- a(zy) | and X*), we replace the
in Krein space. In particular, using the decomposition dfnplicit linear combinationX with two explicit matrices
(U’,*U";)? = IIT2IY, we whiten the estimated projectionA = X(@Q = X(@CQ andB = X® Q. Then, the projec-

to find orthogonal componentse. tion of a new sample is exactly computed by utilizing either
S 50 s (DARED s ) (ag) ©f its mapping, such tha®X*¢(z) = AHb(z) = BHa(z). We
) ] ) reformulate the online learning process using this setup.
The new eigenvalues’ magnitudes are given by We exploit the explicit mappings to find the decomposition
|A] = diag U’} Uy |A,)) (49) of the inner matrix in eq. (25)ia
2
where diag.) discards the values, not located on the diagonal. Aia]  ALBs |7 4 a2a
. . . . . H - QtAt Qt (52)
After substituting the new representation with the origina B5A: |As|

set, we continue the update through the usual process. N\%eereA(; andB;
however, the variable for the number of previous data pOir]Iéspectively. The
N; remains unchanged. In total, the reduced set contains R
Q(R + 1) preimages,i.e. Q for each component and an Ay = [A As [y (53)
additional set ofQ) data values to represent the meap B, = [ B, ; Bs }Qt, (54)
Therefore, we compute a reduced set whenever the num
of samples inX; exceeds) (R + 1). For clarity, the code is
provided in the supplementary material.

is related to the new data D?iga) and Xf;b)
update @, andB, is analogous to eq. (26):

r... . . -
R%dltlonally, we substitute the data meanwith the explicit
versions,u(® = X(@M and p(*), making the correction in
eg. (27) and the mean update in eq. (28) trivial.

All that is left to do, is the formulation of the slow feature
B. Direct Online SFA with Special Kernels extraction in section IlI-A2 using the explicit mappingseW

We now present a special kernel family allows for a direé?wr'tefh.e |<~Jr01ect|on in eq. (29) as follows
computation of online KSFA, coined direct online KSFA. WHX*S, X, W,
Direct online KSFA does not require a reduced set expansion, PtIAtqI_lA?,nglflthxi@lHthIAt71|_1Pt
making the update computationally faster and more accurate A Ho (D) e < (@)H .

1) Motivation: Eq. (6) defines a regular Krein space’s || ATXG Cs X5 By | A (55)
kernel representation as the dot-product between theditipli \whereX(®) and X(®) are the explicit versions of the derived
defined mappings(x), (y) € K, wherex,y € C” are samples inX. Notice thatX W is expressed through|A|
samples in the original feature space. In traditional sgste and B|A|~'. Analogously, incorporating explicit mean rep-
the implicity of the mapping, however, makes the reduced selsentations:(” = X(@C and ¥, we apply the mean
expansion necessary. In our previous work [12], we intredugorrection factor in eq. (34) and update the projected mean
a special kernel which does not require such set. In paaticulin eq. (35) usingA|A|~' and B|A| .
the kernel can be expressed exactly by two explicit mappings After eigenvalue decomposition of the whitened scatter

R, 0e'®x 010 matrix of the derived sample?HX:S$, X, W, = ©,%,6!
el , Mo t the slow featurds, by the explicit matrices
S /E R2(p)P' |, b(x) = R, 50) We represen atric
alx) =l ’ ) 9 /PZ/ R2 (p) P’ (50) Ay|A| 71O and By |A;|"1®;, and we apply our projections
e p=1 on either mapping or b of novel incoming data points. A full

where x corresponds to an image with vectorized gradieplementation can be found in the supplementary material.
magnitudesR, € R*" and gradient angle, € [, )"’
Here, the operatop is shorthand for a componentwise mulC. Running Time Analysis
tiplication, ande®= £ [ ¢®x(1) ... (P ]T. As this  We analyze the complexity of our setups thus far. For this,
kernel has been shown to achieve state-of-the-art perftzenawe assume the dimensionality Bfto e larger than the number
when utilized for tracking and recognition [12], We now desi of samplesN. Table Il summarizes our findings.
to employ this kernel for online KSFA.

For generality, we consider a special kernel family. In
particular, we assume that our kernels are expressed by two

TABLE Il
COMPLEXITY OF EACH FRAME IN SEQUENTIAL DATA.

explicit functionsa : C”" — C” andb : C*" — CF such that Batch SFA O(N®+FN?)
H H Online SFA O(Ng + NsQ + R(R + N3)? + FR? + Q3)
k(x,y) = a(x)"b(y) = a(y)"b(x). (51)  Direct Online SFA  O(N3 + R(R + N;)? + FR?)

It is important to note here that not our mapping is not only First, let us consider the complexity of the batch algorithm
finite dimensional like [24], but it is also exactly equivaléo for SFA. We compute the eigenvalue decomposition of the
the computation of the kernel function. kernel matrix to solve the PCA stage of SFA. A linear kernel

2) Direct Online Learning: Let us develop a direct function requiresO(N?) to compute the kernel matrix for
online KSFA algorithm for any kernel that satisfies eq. (51)V samples. The eigenvalue decomposition can be evaluation
The main benefits of the two mappings is the capability af O(N?3). The final stage, which finds th& slow feature
computing an equivalence of the implicit projection exjpljc ~ functions, is an eigenvalue decompositionF N?).
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The online method with reduced set expansion requirébe eigenvalues are much related to the sum of previous
an incremental update at each time-step. In particular, wkanges, and we can compute eq. (57) as follows
compute the eigenvalue decomposition of the kernel madrix f Nico(Xn,,s)
the novel data samples i@(N2). We then combine the new re(XNy,) = R OREN ARG (58)
data with the support set of siz@ using the kernel, costing . ) BT He Ve Vably
O(N;5Q), to produce a matrix of siz€R + Njs) x (R + N;) Wheref,; ViVij, handle the mean substraction py.
(eq. (25)), which eigenvalue decomposition we compute in With the change ratia-; it is now possible to identify
O(R(R+Nj)?). Here,R represents the number of component’ggn'f'ca”t chz_ang_e_s in data stre_tar_ns. At each time-step, ste fir
in the PCA. The final eigenvalue decomposition to find th@halyze the significance of variation, and then update tife SF
slow features cost®(FR?). However, not only does the com-With the new data point. A threshold is applied to flnq the
plexity of the update need to be accounted for, we also requffames with large amount of change. These frames provide the
the optimization problem for the reduced set expansions THiPlit position in the temporal segments of the video stream.

is commonly done irO(Q?) for linear kernel functions. An optional median filter may be applied to smoothen the

In the direct online SFA we benefit from the known map(_:hange detection. However, if immediate output is required

ping functions. Hence, the computation of the PCA stage f&iS Process may be skipped.

composed of two eigenvalue decomposition&ifiVsQ*) and

O(R(R+N;)?) respectively. The final state is again computeg Multi Appearance Model Tracking

in O(FR?). Notice, no optimization step is required as pre-

images are not needed. Building on change detection, we now propose a tracking
framework that detects likely areas of drift. Although many
tracking applications benefit from online learning [9], J11

IV. APPLICATIONS OFONLINE SFA [12], susceptibility to drift is a challenging problem [11Dne

We introduce the first SFA-based change detection whi@h the reasons drift can occur is the prolonged exposure to

we apply to temporal video segmentation and tracking wiffPr'upted datag.g.caused by occlusions, appearance changes
multiple appearance models. or pose variations. Typically these instances harm theimgc

system over time, as learned appearances are forgottem abou
in the online appearance model. One technique to suppress
A. Temporal Video Segmentation drift in tacking is the combination of multiple trackers n a

One application of incremental SFA is temporal videHnifying framework [38], [39]. In [40] an event-driven tidog

segmentation through change detection. In particularergivSyStem is introduced. These methods are, however, outside t

a video with multiple activities, the segmentation of thesg-OP€ of this paper. In our work, we want to understand the

activities is closely related to finding consecutive framigch benefit of incremental SFA and its change detection algurith

have large differences in their slow features [3]. to improve upon e:jsmplﬁ "g‘_c"'”g frameworIT. K
SFA natively minimizes the slowness of a signal, see eq. ( _|f}1<_|[_12] r\]/yehwt])tr?duce t el' |re;'cc|2c|remgnta KP%A tract. er
In video, the slowness uses the squared magnitude of é ) which builds on online earning as observation

derivative signal, extracted from a sample frame. Analaijou mode. In. particular, DIKT's PCA subspace of the targe_t IS
we define thechangeof a signalx, € K, at timet, as the updated incrementally after eve)" frame. The update is
magnitude of its projected derivaﬁv’ee ' ' composed of the tracked particles. We refer to [12] for dietali

We now incorporate change detection to DIKT. Figure 3
ci(xn) = X, Vi Vik, = D)X, V,ViX,D,,  (56) summarizes our setup. We start with one initial online model
where X,,D,, is a product of matrices, which describes théhat is used for the tracking mechanism. Once a change is
derivative ofx,,, using the notation from section 1I-C. detected, the current version of the knowledge base is dopie
When a new activity starts, the change is expected to Btécreatg an active online model, and a dormant offline quel.
“unusually” large. We measure the importance of a chang&€ online model now performs the tracking and receives
as achange ratiobetween the new data poisty,,, and the updates, while the offline mc_;del is unchgnged. After further
average change of previous data, given by changes, we create an offline and online model for each
version of the appearance description and tracking is d@ne
< . (57) acombination of all online methods. The most similar models
Yo ct(Xn) are merged, to satisfy the online requirements.
Notice however, a trivial update of the mean is not possible, The following summarizes DIKT’s tracking procedure and
as ¢; changes at each time interval. If we stored the whotbe proposed tracking with multiple appearance models. Our
signal in memory to compute the average at each time-stepange detection and merging algorithm are then presented.
the requirements of an online system would be violated. A 1) Existing Tracking ProcedureWe explain DIKT’s
sliding window could alleviate this problem, but it does noéxisting tracking procedure [12] as a probabilistic frame-
take the dynamics of the whole video into account. work. First, let us consider the framework under linear fea-
Let us now present an alternative approach. Consideringes that do not require a kernel representation. Aet=
eq. (22) and the related update in eq. (39), we already knew th4;, ..., A/} be the set of affine transformations extracted
eigenvalue decompositiovi X, D, C,X] X:V, = ©,3,0!". by a particle filter at time, andZ, = {7},...,1F} be the

Nict(Xn,,,)
rt(XNt+1) = —F—
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Online Model
change //////’EEE; copy

figure 4 and in [42], we may still base our cost function on the
internal and external distance of the PCA. Hence, the iatern

I

Offline Model Online Model distance is given, as before, by
change 1
= ——— (x — ) UJA| FU* (x — p) (63)
fli I i ffli I i . L
Offine Mode Offine Mode and the external distance is given by the kernel (eq. (2))) as
change
? ' \ (x — UU*x)*(x — UU*x). (64)
- -

The most probable sample is chosen and used as update.
Offline Model | | Online Model Offline Model | | Online Model 2) Tracking with Multiple Models:As multiple active

tracking models are produced, their knowledge is to be com-
Fig. 3. Tracking with multiple appearance models, usingngeadetection. bined.
The models are copied into an offline and online model eack tinthange .
is detected. The online models are used to generate thénmamsults, while Let us assume a model with' PCAs. We take the prob-

the offline models remain dormant until further changes ateaed. Most ability of a sample as the average of multiple Gaussians.
similar models are merged if necessary to maintain a budget. Therefore, the probability for linear data is written as

orthogonal space external distance === - 1 N Ry 1
internal distance p(x) _ O_R-,L —d H )\_ 1 (65)
- d g n nr
]\7(27T) 2 n r=1

S (e )\ T(I-U,UT ) (x—
B 207 (X)) (I-Un U, ) (x—py,) (66)

eé(xun)TUnAnéUZ(xun)) (67)

=2

Fig. 4. Visualization of the distance between a data poiut #tve mean of
the subspace. The external distance is the length betweesethple and the whereU,,, A,,, p,, and R,, correspond to the™ PCA, \,,,

E‘ﬁgiﬁﬁgﬁ'ﬂ'?htgenﬁf&”a' distance is the displacemeimislen the sample’s g tna th gigenvalue of thesth PCA, and the determinant is
expressed as the product of the matrix’s eigenvalues (&(). (6
corresponding observations. We find the probability 4ff  For the kernel version, we employ eq. (63) and eq. (64) as
givenZ, as before. Again, the most probable sample is used for the epdat
p(AP|T,) = p(AP|TP) oc p(ZF| AD)p(AD). (59) of all active PCA models. _Offlme model_s are unc_hanged.
3) Change Detection for TrackingWe utilize the
gﬁ!inge ratia; from eq. (58) to detect likely areas of sudden
variations, which we believe are indications of appearance

Hence, the system is composed out of an observation mo
p(Z¥|AV) and a transformation model A} |AY_,).

The transformation model is a mixture of Gaussian changes.
L A Y= In particular, a single instance of online SFA is run along
Zp(At—1|It—1)N(At—1"=)|A? (60)  side the tracking system. Its input data consists of the best
p'=1 tracked warped image particles as provided by the observati

where the likelihood of previous time-StensﬁAf/_ﬂIle), model (the same features as for tracking are employed). DIKT
acts as weight, an& is an independent covariance matrixcomputes its PCA update after eachframe. We update SFA
which represents the variance in horizontal and vertical diét the same time. The delay not only enables more stable-learn
placement, rotation, scale, ratio and shew [9], [12]. Nottbe NG, it also allows us to impose a median filter to improve the
transformation model remains unchanged in this paper. ~ change detection. Finally, we enforce nonconsecutivectiete

Let us consider the observation model. Probabilistic PCH changes to prevent multiple detections at a single change
[41] allows us to formulate the likelihood of a sample as [ofVer several video frames.

1 4) Merging Appearance ModelsAt each change detec-
p(x) = ((27r)d||U(A% — oI UT + aQIH) ’ tion, we copy all previously generated PCA models to create
() T I UUT ) () one offline and one online version each. Corruptions onbr alt
e 277 (61) nhalf of the appearance models, allowing the other half tg sta
o= 3w TUA" 2 U (x—pr) (62) uncorrupted. In such framework, however, the number of PCA

models doubles at each change. Thus appearance models neec
to be merged for such setup to satisfy a memory budget. We
detail this procedure in the following.

where x corresponds to the features i, U is the PCAs
1 . .
subspaceAz contains the PCAs eigenvalueg, represents

the mean of the training datd, is the dimensionality of, Let there be two data-se®, — [6(z11) - - é(z1n,)] and

||l.|| computes the determinant of a matrix, amél controls X, — [b(221) - - b(zan, )] that make up two different PCASs.

the spread. Hence, the probability of a sample being fro P e . )
single PCA is explained by the reconstruction error (eq))(me” eigendecomposition of the kemel matrices are given b

2
and the inner subspace distance (eq. (62)). The PCA for the K2 — LX*X — Q A2QH 68
appearance model is update after evelyfame [12]. ! N, R (68)
With kernelized data, the model is commonly not a well _, 1 5.5 2 5 H
defined probability distribution. Nonetheless, as illagd in K; = (EX2X2) = QA50;. (69)



LIWICKI et al. ONLINE KERNEL SLOW FEATURE ANALYSIS FOR TEMPORAL VIDEO SERMENTATION AND TRACKING 11

IS
o
3
2

IKSFA 45.1s

Change Ratio
“
Slow Features
s s
g g
8 o

o
°
b
s
&
IS

R-IKSFA 4.8s

Change Ratio

- -

Slow Features

& s o

2 g g

8 o 8 8
o
N a
Kt g
) E
& §

o

o
©
s
K
°
IS

IS
o
3
2

D-IKSFA 3.9s

o
I
s
g
2

Change Ratio
“
Slow Featt
s s
g g
8 o &
o
#
E
§

°
b
s
&
IS

IS
2

KSFA 12.0s

o
Lol
R
s
2

Change Ratio
Slow Featt
& s
2 g
8 o 8

H %

g

B

&

o
©
s
K
°
IS

Fig. 5. Change ratio (column 2), final slow features (columnadd learning time (column 4) are shown for online SFA (IRRFSFA with a reduced set
of 60 elements@ = 10) (R-IKSFA), direct online SFA (D-IKSFA), and batch KSFA.

The PCAs to be merged are the most similar PCAs, as giveme. R-IKSFA employs a reduced set expansion for learning

by the smallest angle difference [43] with constant memory. D-IKSFA exploits the direct equivsle
Ri R mappings of the quadratic kernele| a(x,) = b(x,) =
* T
e(Uy,Us) =max(Ri, Ry) — Y > [uj wp, | (70) [ xa(1) xu(2) Xu(1)xa(2) xa(1)* xa(2)* ]).
ri=1ry=1 Finally, we consider KSFA as ground truth, as in this setup,
where U, _ [uh ca, } and U, = the complete sequence is knowarpriori.
[ w2, -+ ua,, ] are the tested PCAs’ subspaces. All methods converge towards the same slow featdrres.

The combination of both PCAs is quite similar to thdlowever, they differ in their execution. IKSFA is most stabl
update of the whitening projection for the PCA part of gspfor change ratio estimation. With a reduced set, noisy tesul

in eq. (25). Thus, we find the new, combined eigenspectri#f encountered at the beginning of the sequence, wheretkarn
using the decomposition of by R-IKSFA. D-IKSFA performs similarly to IKSFA. In terms

L Ho s of running time, IKSFA performs worst as the complete set of

K2=90 HZ|A}| 2 {CIX?Q? Q (71) samples is required for the kernel trick at each time-step. R

QX5 X0 7| Az IKSFA's reduced support set improves execution by a factor

Notice, we introduce weighted eigenvalues to give both PCA$ 9, while D-IKSFA squeezes the learning time 3®s —

similar importance, especially in conjunction with funthemore thanl1 times faster than IKSFA, and 3 times faster than

future updates. The number of samples in the combined P@#e batch version of KSFA. Notice, as preimages are easily

is N = w and the mean is updated accordingly. computed for the quadratic kernel, R-IKSFA is also fast.
After combining two PCAs, a single PCA model is produced

which contains the knowledge base of both instances. An ) .

online and an offline version is stored to continue the tragki B- Change Detection with Real Data

in conjunction with all other active models. We evaluate the quality of online SFA and change detection
with real data. Our data set consists of the expressionsein th
V. EVALUATION MMI Facial Expression Database (MMI) [44]. We concatenate

As a proof of concept, we apply the proposed increment%” videos and e_mploy our trggker in [12] to gxtract aligned
SFA to temporal video segmentation and tracking. images {0 x 40 pixel) of 60 activities. The resulting sequence
consists of 4182 frames, cropped to the subject’s face.

. . . We analyze the proposed framework with different ker-
A. Change Detection with Synthetic Data nels. The yoriginal pimgge data input are lexicographical
We test the general properties of incremental SFA fgjixel intensities in[0,1]. We utilize the direct input fea-

the case of change detection with synthetic data. In partigres (Linear), the quadratic kernel (Quadratic), the dath

ular, we compare batch KSFA, which incorporates all datsaussian kernel (Gaussian) and our Krein space kernel in

points at once, with incremental KSFA which learns at eagh2] (Kreir]v_ The deviation of the Gaussian is fixed to

time-step. As in [1], we assume an input signal = mznzl N 11%n — xu/|[2, where N is the number

[ sin(yn) +cos(1lyn)? cos(1ly,) | wherey, is taken of samples [45], and the parameters of Krein follow [12].

from 2000 equally distributed values in the rarfgedr]. The 1) Incremental Learning BehaviorTo quantitatively

corresponding slow features are to be found. WithTa quadratheasure the learning behavior of online SFA, we compare it

kernel, the solution i®,, = [ sin(y,) cos(1ly,) | [1]. to its offline equivalent. In particular, we compute the ang|
Three versions of incremental KSFA are tested (figure 5).

IKSFA uses the full data set as support — it grows larger overAs in standard PCA, the sign of the components is irrelevant.
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Fig. 7. Angle error between the batch learned and increrigr&arned subspaces for reduced set representation ofp&8fages (prefix R) and direct
mappings (prefix D). Results are shown for different segeesizes and a PCA of 25 components.

0.5

difference between the offline and online subspaces [43]

F F
()= F = 30 3 Vi, va, |

f1=1 fa=1
where I is the number of slow features evaluated, azqg1 )
and vy, are the individual slow feature projections of the oAb
compared SFAs. N
Figure 6 shows the angle error with different numbers oo
of components In the PCA am_j varyl_ng number of SIO\?—’i% 8. False positive over false negative rate of diffefemel setups. The
features. Here, the kernel versions with complete SUPP@Etch version of Krein learns from the whole sequeagiori, while Window

set are employed, and the forgetting factor is sefl tno Krein performs the leming as batch in a window.

forgetting) to facilitate comparison. The Linear, Quatirand

= D-Linear

— — D-Quadratic
----- R-Gaussian
= ===+ D-Krein
Batch Krein
0.3 N LTttt Window Krein

0.4

(72)

0.2

False Negative Rate

0.2 0.3 0.4
False Positive Rate

0.5

. . respectively. We utilize these labels as ground truth ag the
Krein kernel perform equally well. The Gaussian kernel hasrﬁark the frames in which the activity in the video changes.

slightly increased error rate. In general, all periorm wiiiv The equal error rate of false negatives over false positivers
errors and they are independent of the number of componel%ts

in the PCA stage of SFA. Veal the performance of individual setups.

Next, we evaluate the incremental SFA with reduced setsLinear, Quadratic, Gaussian and Krein are compared. We
(prefix R) or direct mapping (prefix D). We fix the number obptimize with respect to the number of PCA componefis
components in the PCA t& = 25 and request a budget ofthe forgetting factorw and the number of slow featurds.

260 preimages in the reduced se&. @ = 10. In figure 7 we A median filter of 8 frames is applied to the output and
show the angle error when learning is performed on differedirect mappings are used where possible. The Gaussianl kerne
sequence lengths. The algorithms work well for short videdsnction receives a fixed budget @@ = 10. All methods
(about 500 frames). Nonetheless, approximation errorien tperform best withw = 0.996 (=~ 250 frames), andF = 3.
reduced set representation seem unavoidable and introddogvever, the ideal number of PCA components varies for each
lower performance in longer sequences. Here the algorithmgthod & = 15 for Linear, R = 30 for Quadratic,R = 50
with direct mapping are more suitable, as low errors afer Gaussian,R = 10 for Krein). We also include the batch
achieved for any sequence length. version of Krein (Batch Krein), for which we compute the
2) Change DetectionWe now apply the change detecchange ratio withall samples known a priofi i.e. we learn
tion algorithm of section IV-A to our dataset. MMI consistghe slow features from the complete sequence. Finally, éhbat
of facial expressions, labeled by onset, apex and offsed. Talgorithm from a sliding window of 250 frames (equivalent to
onset and offset indicate the start and end of an expresstba forgetting factor) is compared against (Window Krein).



LIWICKI et al. ONLINE KERNEL SLOW FEATURE ANALYSIS FOR TEMPORAL VIDEO SERMENTATION AND TRACKING 13

15 T
D-Krein
—————————— Threshold
10 True Changel{

change ratio

214

o

400 450 500 550 600 650 700 750 800 850

------ PCA-Linear|
05 T oA e
Batch s — SFA-Linear
Linear g0t —raiel
?}03
z
% 0.2
Linear orf T TSN
(w = 1) 00" 0.1 0.2 0.3 0.4 0.5 0.6
False Positive Rate
Fig. 11. False positive over false negative rate comparfsoroptical flow
(Flow), intensity values (Linear) and our kernel (Krein) RSA and SFA.
Linear
(w = 0.996) expressions. Notice, the smile around frame 530 and visible
for (i) and (ii) is no longer in the subspace.
In contrast to Window Krein, our proposed D-Krein uses
PCA a forgetting factor and incremental learning. Hence, our ap
Eigenvalues proach is much faster, as it uses the previously learned mode

from the frames before. On the other hand, Window Krein
resets the complete optimization at each time-step. Notice
Fig. 10. The 3 slowest features aftef0 frames using the linear kerel. also, the forgetting factor only reduces the weight of prasi
Batch'learning is compared to qnline Iea_rning_ with and withforgetting.  frames — it does not remove them — a||owmg for significant
The eigenvalues after PCA learning are visualized in théobotow. .

components to be retained.

The false negative over false positive rates are shown inWe conclude this part of the evaluation with a selection of
figure 8. The quadratic expansion has a slightly better equa@deos from different scenarios. Figure 12 shows the tealpor
error rate than linear features, while the Gaussian kesnible segmentation of 2 yoga sequences, taken from YouTube (http:
most performant positive definite setup. The best results dwww.youtube.com/watch?v=ziVctQnyvwE) and 2 examples
achieved by the direct version of incremental SFA with Kreifrom the ballet dataset in [46]. Note, our algorithm finds the
kernel (D-Krein). The advantage of our Krein kernel stemisually distinct partitions.
not only from its domain-specific design, its direct maping 3) Comparison to Optical Flow and PCAIn the final
are fast to compute (in linear complexity) and less PCpart of the experiments for change detection, we analyze our
components are required to outperform other systems. Framework in comparison to alternative methods. A typical
example, as comparison, the direct mapping of the quadradisproach to finding drift in many tracking frameworks is the
expansion is polynomial, and 30 PCA components are eglistance between the current frame and the learned eigemspa
ployed. Figure 9 shows an excerpt from the results for KreiGimilarly, this can be applied to change detectida the

The batch version of Krein (Batch Krein) performs withreconstruction error given by
reduced results to its online or windowed equivalent. The B H. 12
online version is advantaged as the forgetting factor altve e(R) =[x — UrUgx| (73)
system to adapt to different parts of the video. Similarlithw where Uy is the reduced eigenspace of previous samples,
a sliding window, only recent frames are used. To visuali#hd x denotes the tested input. The eigenvectors can be
the difference, we show the top 3 projections after frax@ incrementally learned by the methods in [9], [12].
for the Linear kernel (i) as batch setup, (ii) with =1 (no Additionally, let us consider another feature input, known
forgetting), and (iii) withw = 0.996 (the best forgetting value) as optical flow. Optical flow has proven advantageous for
in figure 10. Here Linear is chosen to aid visualization, a&s tllescribing the dynamics of a video sequence [47]. While the
projections remain in the original space. We compare (i) twmputation of such features is expensive (sub-realtintk wi
(i)). The resulting projections are virtually equivalemthich the source code of [47]), we will compare it to our SFA with
validates our update procedure. With forgetting, the ¢fiéey ~ Krein space kernel in this section.
becomes apparent, as the projections are most relevareto la We use the following setups in our experiment: PCA learn-
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Fig. 12. Frames of the segmentation for yoga and ballet sce3fA's change detection finds the visually distinct pafthe videos. Our Krein kernel with
direct mapping is used with the same parameters as before.

ing with intensity values (PCA-Linear), optical flow (PCA-the subject are more prominently modeled with PCA.
Flow) and our kernel (PCA-Krein), which are compared to
SFA with intensity values (SFA-Linear), optical flow (SFA-C. Tracking with Change Detection
Flow) and our kernel (SFA-Kernel). Figure 11 illustrate® th | our final experiment, we evaluate our tracking frame-
results. Notice, Change detection Solely based on PCA Mth%ork with Change detection (CD_D|KT), as proposed in
the added temporal informationg. PCA-Linear and PCA- gection IV-B. Here, we focus on the analysis of the gain,
Krem) is inferior to other methods. Less efficient PCA'FIOWhat Change detection using SFA brings to adaptive tracking
on the other hand is competitive in terms of equal errgience, we use DIKT [12] as base line comparison.
rate. SFA inherently incorporates temporal informatiornttees  The performance is tested on theideos also used in [12].
derivative scatter matrix is considered in its OptimiZBtiO These videos contain drastic Changes of the targets appeara
Indicative of this is the gOOd performance of SFA-Linear anmduding pose Variation’ occ|usionS, and nonuniforrmiloa-
SFA-Krein. SFA-Flow is less performant, as optical flow igion. All videos haves-7 fiducial points which allow for quan-
less valuable to SFA. titative performance evaluation. We use the root mean squar
Figure 10 visualizes the learned subspaces of SFA and PQRMS) errors between the true and the estimated locations of
Notice, while SFA finds the important features, which changbese points as performance indication. Our choice of param
slowest over time. In contrast, PCA computes the featuras tleters follows [12]. For all videos, we fix the translation rebd
best describe the samples, without the temporal informatiof the particle filter tracking framework to the values pitedl
For instances, the eyebrows and contours around the nosdpDIKT's source code at http://www.doc.ic.ac.ukl609/dikt.
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Model

386 406 426 446 466
Frame

486 506 526

Fig. 13. Tracking results and models of appearances. Wedenaffline and active models with a sequence of Os and As tdigightheir active learning
periods €.g.A-O-A learned with data before and after the occlusion, mttduring). The model that provides the highest score isligigted.

The parameters of the change detection in CD-DIKT are setWe apply our online SFA and develop the first SFA-based

for each video specifically, as the thresholds of the changeange detection algorithm for stream data. This framework
ratio vary video-dependently. All other parts of DIKT and €Dis employed for temporal video segmentation and tracking.

DIKT are identical. See videos in supplement. When applied to synthetic and real data streams, our method
successfully segments the input using change detectiam- Co

TABLE Il

MEAN RMS ERRORS FORDIKT AND DIKT wiTh cHanGe peTecTion.  Rined with an online learning tracking system, change detec

tion improves upon systems without such detection, in our
evaluation.

Vidl Vid2 Vid3 Vid4 Vid5 Vidé Vid7 Vid8 Vid9
DIKT 444 2.77 2.58 (ost) (losh) 3.79 2.19 2.75 (lost)
CD-DIKT 4.15 260 234 595 (lost) 3.68 2.18 268 6.70

Table 1l lists the mean RMS errors for each video. Conqy
sistently, CD-DIKT improves upon DIKT. While the RMS
error is only marginally better, CD-DIKT is more robust. In
particular, CD-DIKT is capable of tracking Vid4 and Vid9
successfully as it utilizes previously seen appearandeallfF
we note that CD-DIKT is highly parallelizable due to its (3]
independent set of appearance modules and the additional
online SFA. Hence, a similar execution time to DKT can bd4]
achieved, utilizing multiple threads.

Figure 13 shows an example of Vid4. Not visible in the
figure, the first change splits the initial model into an ativ [5]
model (A), and a dormant offline model (O). In frame 415 a
change is detected, which reactivates the dormant model (@;
A) and the already active model is split into offline and oelin
versions, A-O and A-A respectively. The tracker consulthbo [7]
active modelsi.e. O-A and A-A, during the occlusion. Notice
however, the more naive O-A is favored during the occlusiof]
as it knows less about the face. Around frame 435 the face
is fully visible again, and model A-A kicks in for a short [g]
period of time. Finally, after the second change detection i
frame 505, initially model A-O-A provides most confidence!®!
This model consists of data before the occlusion, and was idl
during the input of corrupted data. Finally O-O-A is favoredii]
thereafter, as this model is significantly trained from dxfter
the corruptions in frame 415 to 505. [12]

(2]

VI. CONCLUSION
[13]

In is paper, we proposed an exact kernel slow feature anal-
ysis (KSFA) framework for arbitrary Krein space kernels. Wﬁ4
formulated general online KSFA which employs a reduced set
expansion to fulfill budget requirements. Finally, by uiitig
a special kind of kernel family, we formulated an exact oalin
KSFA for which no reduced set is required.

[15]
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