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In this paper, we propose an On-line Appearance-Based Tracker (OABT) for simultaneous tracking of 3D head
pose, lips, eyebrows, eyelids and irises in monocular video sequences. In contrast to previously proposed
tracking approaches, which deal with face and gaze tracking separately, our OABT can also be used for eyelid
and iris tracking, as well as 3D head pose, lips and eyebrows facial actions tracking. Furthermore, our ap-
proach applies an on-line learning of changes in the appearance of the tracked target. Hence, the prior train-
ing of appearance models, which usually requires a large amount of labeled facial images, is avoided.
Moreover, the proposed method is built upon a hierarchical combination of three OABTs, which are opti-
mized using a Levenberg–Marquardt Algorithm (LMA) enhanced with line-search procedures. This, in turn,
makes the proposed method robust to changes in lighting conditions, occlusions and translucent textures,
as evidenced by our experiments. Finally, the proposed method achieves head and facial actions tracking in
real-time.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

For the last two decades vision-based investigations of non-verbal
communication, in particular head and facial actions have caused a
surge of interest by CVPR community [1]. Tracking human faces in
video sequences is useful for a number of applications such as securi-
ty and human–machine interaction. Faces have a key role in human–
computer interaction systems, because they represent a rich source of
information; they are the main gateway to express our feelings and
emotional states. The interpretation of user's intentions may be possi-
ble if we are able to describe 3D face pose and facial feature location
in real-time.

An approach to tackling this problem is to develop a vision-based
tracking system since such a solution would be non-invasive. However,
building robust and real-time marker-less trackers for head and facial
features is a difficult task due to the high variability of the face and
the facial features in videos. One of the most challenging tasks is the si-
multaneous tracking of head and facial features, which is a combination
of rigid and non-rigid movements. This requires accurate estimation of
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subtle facial movements, robustness to occlusions and illumination
changes.

The tracking of head and facial features has been accurately solved
by adopting Feature-Based Trackers (FBT) [2,3]. In [2] a two-stage ap-
proach was developed for 3D tracking of head pose and facial deforma-
tions in monocular image sequences. A stable facial tracking is obtained
by learning possible deformations of 3D faces from stereo data and
using optical flow representation associated with the tracked features.
This FBT is accurate for simultaneous head and facial feature tracking
but inherits the drawbacks of stereo vision and optical flow computa-
tion; namely, this system is restricted to controlled illumination, it re-
quires pre-calibration and it is sensitive to large variations in head
pose and facial feature position. Instead, [3] proposes a statistical meth-
od based on a set of linear predictorsmodeling intensity information for
accurate and real-time tracking of facial features.

Active ShapeModels (ASM) [4] are an alternative to FBT. ASMs use a
point distribution model to capture the shape variations while local ap-
pearances are modeled for a set of landmarks by using pixel intensity
gradient distributions. The shape parameters are iteratively updated
by locally finding the best nearby match for each landmark point.
ASMsmay be improved byusing state-of-the-art texture-based features
on expense of additional computational loads. Also, ASMs are sensitive
to occlusions and illumination changes due to their reduced texture in-
formation. However, in contrast to the proposed OABT, themain limita-
tion of ASMs is that they require a large amount of annotated training
data in order to learn the shape models.
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Appearance changes have been tackled by adopting statistical fa-
cial texture-based models. Active Appearance Models (AAM) have
been proposed as a powerful contribution to the state-of-the-art for ana-
lyzing facial images [5]. Deterministic and stochastic Appearance-Based
Tracking (ABT) methods have been proposed [6–8]. These methods can
successfully address the image variability and drifting problems by
using deterministic or statistical models for the global appearance of a
rigid object class: the face. Few approaches attempt to track both the
head and the facial features in real-time, e.g., [6,8]. These works have
addressed the combined head and facial feature tracking using the AAM
principles. However, [6,8] require exhaustive learning stages of orthogo-
nal Eigen-spaces assumed to span all forthcoming images otherwise
retraining is required.

To overcome the problems of ill-trained AAMs and drifting problems
due to challenging upcoming faces, some authors have proposed adap-
tive and on-line trained AAMs [9–11]. Empirical evidences showed that
person specific AAMs have better performance modeling facial
movements than generic AAMs, see [12]. In [9], authors achieved sig-
nificant reduction on the convergence residuals by applying incre-
mental PCA to build On-line Appearance Models (OAM). A similar
method is to update the AAM template to avoid drifting problems
while correcting for illumination variations [13]. In [11], authors pro-
posed an automatic construction of AAMs by using an off-line trained
shape model. In [10], a linear combination of texture models learned
on-line and off-line is applied. The on-line model fits a logistic re-
gression function to be later combined with the typical off-line
trained AAMs. The problem of this approach also relates to time-
consuming training of AAMs.

Many applications such as drowsiness detection and interfaces for
handicapped individuals require tracking of the eyelids and the irises.
For applications such as driver awareness systems, one needs to do
more than tracking the locations of the person's eyes in order to ob-
tain their detailed description needed to reason about staring pat-
terns and micro sleeps. Head, face and gaze tracking with AAM has
been already treated in [14]. The authors use the AAM method
presented in [12] to track head and face. And the gaze position is in-
ferred from fitting a generic AAM. Accurate eyelid and iris trackings
are challenging issues in the AAM framework that have not been
addressed properly so far. We aim to address this issue in this work.

Detecting and tracking the eye and its features (eye corners, irises,
and eyelids) have been addressed by many researchers [15–20]. How-
ever, most of the proposed approaches rely on intensity edges and are
time consuming. In [19], detecting the state of the eye is based on the
iris detection in the sense that the iris detection results will directly de-
cide the state of the eye. This work constructed detailed texture tem-
plates and the head pose is estimated by using a cylindrical face
model combined with image stabilization to compensate for appear-
ance changes. This gaze estimation system has been recently improved
in [20]; a saliency framework is used to adjust the resulting gaze estima-
tions based on information about the scene. In [16], the eyelid state is
inferred from the relative distance between the eyelid apex and the
iris center. The authors reported that when the eyes were fully or par-
tially open, the eyelids were successfully located and tracked 90% of
the time. On the other hand, feature-based approaches [18,17] have
been applied to iris and eyelids detection too. These methods depend
heavily on the accuracy of the extracted intensity edges. Moreover,
they require high-resolution images depicting an essentially frontal
face. However, real environments offer challenging conditions and
large variations in head pose and facial expressions are often observed.
In our study, we do not use any edges and there is no assumption made
regarding the head pose. In our work, the eyelid and iris motion are in-
ferred at the same time with the 3D head pose and other facial actions,
that is, the gaze tracking does not rely on the detection results obtained
for other features such as the eye corners and irises.

We have previously proposed anOn-line Appearance-Based Tracker
(OABT) for 3D head pose and facial action tracking [21]. This OABT uses
the AAM representation as baseline. Namely, a deformable shapemodel
was used to drive an image warping process that produces the appear-
ance texture. In contrast to FBTs and ASMs, the OABT and AAMs benefit
from the modeling of the entire face texture while including global and
local texture variations. However, unlike the AAMs, the OABT does not
require prior learning of either facial texture or shape models. The
OABT incrementally learns the texture model on-line from the previ-
ously tracked frames. The OABT estimates the shapemodel deformation
parameters using a State Transition Process and the minimization by
the LMA.

In [21], we adopted a single non-occluded shape-free appearance
texture excluding the inner eye region. Excluding the eye region
proved to be beneficial for estimation of a more stable 3D head
pose. New tracks were estimated by applying a Vanilla Gradient De-
scent Method [22].

In contrast to feature-based gaze trackers, in [23], we proposed an
improved gaze tracker method capable of inferring the position of eye-
lids and irises in real-time based on on-line learned appearancemodels.
The method implemented two non-occluded OABTs using two inde-
pendent deformable models. Accurate estimates were obtained by
combining a generic Gauss–Newton Iterative (GNI) algorithm with
backtracking procedures.

Simultaneous tracking of 3D head pose and facial actions is not a
straightforward task. The challenges are as follows: First, 3D head
pose variations highly affect facial feature positions and the facial
appearance: Second, the upper eyelid is a highly deformable facial
feature since it has a great freedom of motion: Third, the eyelid can
completely occlude the iris and sclera, that is, a facial texture model
will have two different appearances at the same locations: Finally,
eyelid and iris movements are very fast, especially eyelid blinks and
iris saccades, which are involuntary movements. A holistic tracking
of 3D head pose and facial actions must provide estimates of facial ac-
tions, shape and textures varying at different rates.

In this paper, we combine and extend our previousworks, presented
in [21] and [23], in order to address the above-mentioned challenges
and obtain robust, accurate, simultaneous 3D head pose, face, and facial
action tracking. Specifically, an accurate OABT excluding the eye region
is used to estimate 3D head pose, lips and eyebrows movements. Two
non-occludedOABTs for eyelids and irises robustly estimate gazemove-
ments. Thus, we extend our previous works in two directions. First, we
perform a holistic and simultaneous tracking of 3D head pose, lips, eye-
brows, eyelids and irises in monocular video sequences. A hierarchy of
three non-occluded OABTs allows both tracking of the movements
that vary at different rates and tracking of gaze movements in
non-frontal faces. Second, we optimize the appearance estimation by
applying a Levenberg–Marquardt Algorithm (LMA) enhanced with
line-search procedures [24,25]. The previously used GNI algorithm re-
quires more iterations to converge. Thereby, GNI is not very suitable
for simultaneous head and facial action tracking in real-time. LMA pro-
vides faster convergence, accuracy and robustness while reducing the
number of iterations per frame.

Our OABT requires manual initialization at the first frame to en-
sure the best tracking performance. This is attained by manually
fitting the 3D face Candide model [26] to the first frame in the test
sequence. Namely, animation and deformation parameters of the
Candide model are manually chosen. However, if automatic initializa-
tion is required, an approach to semi-automatic initialization can be
adopted. Given a set of images, forty facial landmarks can be obtained
for each image by applying a face alignment algorithm from [27].
Next, the Candide model can be manually fitted to each image to ob-
tain the tracking initialization parameters. Then, two regressors could
be trained with the initialized facial landmarks, the animation, and
deformation parameters calculated for each image. These regressors
can be used subsequently to estimate the animation and deformation
tracking parameters of a test image given the estimated positions of
the facial landmarks. The work proposed in [27] cannot be applied
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as is since it is inaccurate in case of non-neutral and non-frontal faces.
The same is the case for almost all state-of-the-art facial point detec-
tors (e.g. [28–30]); they are accurate for frontal faces and less accu-
rate for non-frontal and expressive faces. Consequently, manual
tuning is required after applying face alignment.

The paper is organized as follows. Section 2 describes the 3D de-
formable models and their composition to build appearance-based
trackers. A facial model excluding the eye-region is used to compose
a generic tracker for 3D head pose, eyebrows and lips facial actions.
Two non-occluded deformable models are defined to track eyelids
and iris separately. Section 3 presents a generic OABT for real-time
3D head pose and facial action tracking. An observation process de-
fines the on-line learning of appearance textures while a transition
process estimates the facial actions based on an optimized LMA.
Section 4 explains how to assemble three OABTs to solve the prob-
lem of simultaneous tracking of 3D head pose, eyebrows, lips, eyelids
and irises. We introduce backtracking procedures to explore the en-
tire domain of facial actions seeking for global convergence while
avoiding local minima. Section 5 compares the accuracy of this meth-
od with partial estimates of using our previous approaches [21,23].
In addition, we present a variety of results showing the stability, ac-
curacy and robustness of the hierarchical OABT for simultaneous
tracking of 3D head pose, lips, eyebrows, eyelids and irises. The
method is tested with several challenges such as illumination
changes, occlusions, translucent surfaces and real-time performance.
Finally, in Section 6, we present conclusions and discuss future re-
search related to optimization methods, face tracking, and facial
image understanding.

2. Face modeling

2.1. Face representation

A human face can be represented as a 3D elastic surface with
non-linear deformations caused by head rotations and facial move-
ments, whichmake facemodeling a significant challenge. In the context
of face and facial tracking, two issues are crucial: image registration and
motion extraction. We address them by the means of a 3D deformable
model. To this end, we use the 3D face Candide Model [26], which is a
wire-frame specifically developed for model-based face coding. We
use it as a template for image registration and as a model for facial ac-
tions tracking. In what follows, the shape model is denoted by S, and it
is composed of 113 vertices and 183 triangles, as shown in Fig. 1.

The above-mentioned facial deformations are directly related to
face biometry and facial expressions. Therefore, a shape model is de-
fined as a linear combination of deformations due to the biometry and
facial expressions as follows:

S ¼ S0 þ D β
→ þA γ

→
; ð1Þ

where S0 contains the position of the vertices of the initial shape. The
matrix D denotes the biometric parameters and the vector β

→
controls

the biometric facial deformation.1The matrix A encodes the non-rigid
facial actionsrelated to facial expressions that are controlled by the
parameters stored in the vector γ

→
. Both the biometric deformations,

β
→
, and the facial actions, γ

→
, are encoded according to the Facial Ani-

mation Parameters (FAPs) for MPEG-4, which are continuous vari-
ables in the range [−1.0,1.0].2
1 The vector β
→

contains 21 FAPs that encode biometric deformations, while the ma-
trix D encodes the possible deformations of the shape model, stored in a matrix of di-
mension 113×3×21.

2 The vector γ
→

encodes 9 FAPs related to AUs. The matrix A encodes the possible de-
formations of the shape model due to the facial expressions. Thus, A is arranged as a
matrix of dimension 113×3×9.
To capture 3D head motions of the face, we adopt a weak perspec-
tive projection given the small depth of the face [31]. Furthermore,
the 3D mesh is projected onto the image plane by applying an affine
transform to obtain the appearance shape template in 2D. Specifically,

let R ¼ r
→

1; r
→

2; r
→

3

h i
and T=[tx,ty,tz] represent the rotation and trans-

lation between the coordinate systems of the 3D face model and the
camera. Consequently, the 3D shape (described by Eq. (1)) is
projected onto the image plane to obtain the corresponding 2D
shape:

S′ u; vð Þ ¼ ½ s r
→ T

1
tx þ uc

s r
→T

2 ty þ vc
� S x; y; zð Þ

1;

� � ð2Þ

where S′ is the projected 2D shape, s is a scaling factor, and r
→

1 and r
→

2
are the first two rows of the rotation matrix R. Finally, (uc,vc) is the
center of the camera coordinate system.

Fitting the shape model to a face requires computing first the po-
sition of the vertices that combine the initial shape model, the bio-
metric deformations and facial actions (see Eq. (1)). Next, the 2D
shape is obtained by applying the affine transformation in Eq. (2).

Note that the biometric deformations, β
→

in Eq. (1), are person de-
pendent. Therefore, β

→
remains constant during the tracking process.

On the other hand, the facial actions, γ
→
, are generic animation factors

related to facial muscular contractions, and are person independent.
Hence, the goal of the tracking process is to estimate the deformation
of the 3D wire-frame due to the changes in head pose and facial ac-
tions, encoded by the vector g

→¼ ρ
→

;γ
→

h i
that contains the head pose

and facial actions parameters, respectively. The vector ρ
→¼

θx; θy; θz; tx; ty; s
� �

contains the global parameters describing the
head rotation, translation and scale. The vector γ

→¼ γ0;…;γ8½ � con-
tains the parameters describing the facial actions for eyebrows,
lips, eyelids and irises.

2.2. Appearance texture

AAMs are statisticalmodels combining information from facial texture
and shape [5]. The shapemodel plays the role of template to register facial

images and construct the appearance texture,Ψ I ; g
→

� �
, which is obtained

by applying a piecewise-affine warping function to an input image,
Fig. 2.(a). This function maps the pixels of each triangle of the 3D shape,
Fig. 2.(a), onto the corresponding triangle of the 2D mask template,
Fig. 2.(b), as follows:

△S x; y; zð Þ ⇒
Ψ I;g

→
� 	

△S′ u; vð Þ

Ψ I; g
→

� �
¼ χ

→
; ð3Þ

where△S(x,y,z) corresponds to the triangles of the 3Dmesh and△S(u,v)
corresponds to the triangles of the 2D reference appearance shape. Fur-

thermore, the function Ψ I ; g
→

� �
is a linear combination of barycenters

used to map the corresponding pixels between two poses of the shape
model [32] (see Fig. 2). Moreover, the reference shape-free texture (see
Fig. 2,(c)) is pose- and expression-normalized since the reference shape
model is always neutral and with the frontal pose.

Given the resolution of the shape and appearance texture tem-
plates, the complete image warping is implemented as follows:
(i) Adapt the shape model S to the image I, see Fig. 2,(a). (ii) Con-
struct the appearance texture χ

→
using the warping function,

Ψ I ; g
→

� �
, Eq. (3). (iii) Perform the normalization, χ

→ ∼N 0;1ð Þ, of
the obtained appearance texture to partially compensate for the
contrast variations caused by photometric transformations. For
the sake of clarity, from now on, all the texture appearances are



3 In [34], Matthews and Baker showed that an appearance regularization lessens the
presence of outliers. They applied an L2-Euclidean regularization.

4 There are two ways to initialize the tracker: Manual and Semi-Automatic. In the
latter case, the manually labeled training data have to be provided. Note, however, that
the tracker is still person independent.

Fig. 1. 3D face model. The geometric vector g
→¼ ρ

→
;γ
→

h i
∈R6þ9 contains the face model parameters. Three Euler angles, translation and scale encode the head pose parameters,

ρ
→¼ θx; θy; θz; tx; ty; s

� �
, while the facial actions, γi=[−1.0, 1.0], are encoded according MPEG-4 FAP parameters. A face tracker aims to estimate both ρ

→
and γ

→
vectors.
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assumed to be normalized images with fixed resolution (see
Fig. 2(b)). Note, however, that the tracking accuracy increases
with the image resolution.

2.2.1. Head, eyebrows and lips texture
We showed in our previous work in [23] that the estimations of

the 3D head pose, eyebrows and lips are more accurate when the
eye region is excluded from the corresponding appearance texture.
Here, we adopt a similar approach, i.e.,we use the OAM without the
eye regions, which is further used as the basis for the proposed hier-
archical tracking system. Fig. 3 illustrates two appearance textures for
a given input image Fig. 3(a). By adopting the appearance texture as
shown in Fig. 3(c), we can obtain more stable estimates of the 3D
head pose, eyebrows and lips.

2.2.2. Eyelids' texture
To independently track eyelid and iris movements from the rest of

the face, we adopt a particular shape model for the eyelids, which ex-
cludes the iris and sclera region. Thus, only pixels from the eyelid area
on the face are warped onto the corresponding appearance texture
(see Fig. 4(a)). The advantage of such an OAM is that the pixels
from the iris area are considered as outliers. Consequently, when
the eyes are open in the input image, the eyelid appearance texture
must not contain iris region pixels.

2.2.3. Irises' texture
The original Candide model [33] contains both eyelid and iris regions,

which are self-occluded. Due to the difference in speed of the iris move-
ments and the rest of the face, the former require different learning coef-
ficients, gradient computations and backtracking procedures. Therefore,
the irises must be modeled with an independent OAM. Fig. 4(b) depicts
the corresponding shapemodel and appearance texture of the iris region.
ThisOAMconsiders eyelid pixels as outliers, so the iris appearance texture
must not contain eyelid region pixels.

3. On-line Appearance-Based Tracking (OABT)

In this section, we describe the problem of simultaneous tracking of
the head and the facial actions by using the proposed On-line
Appearance-Based Trackers (OABT). Formally, given a sequence of facial
images, our goal is to estimate the 3D head pose, face location and the
facial movements of lips, eyebrows, eyelids and irises. To this end, we
employ a particle-filter-like approach consisting of an observation and
a transition process. First, all images are projected onto an appearance
texture spacewhere they are modeled usingMultivariate Gaussian Dis-
tribution (MGD). The observation process builds a likelihood function
based on the MGD, which is updated on-line using a recursive filtering
technique. At the same time, the state transition process estimates the
geometric parameters of the shape model, used to warp incoming im-
ages as appearance textures.

3.1. Observation process

Given an image sequence, where each image I has n pixels, a se-
quence of appearance textures, Xl,t, is obtained by applying the
piecewise-affine warping function Ψ I ; g

→
� �

: Rn→Rl. The columns of X
are l-pixels appearance vectors representing faces at each time frame t:

Xl;t ¼
χ0;0 ⋯ χ0;t
⋮ ⋱ ⋮

χl;0 ⋯ χl;t

2
4

3
5 ¼ χ

→T
0;…;χ

→T
t

h i
ð4Þ

Next, let us assume that a set of pixels at the same position (χi,0,
…,χi,t) (rows in X) are random variables (r.v.) following a Gaussian
Distribution over time, χi∼N(μi,σi). Similarly, each appearance vector
χ
→

follows a Gaussian Distribution independent of the time.3Further-
more, we normalize appearances to partially compensate for contrast
variations while obtaining χt∼N(0,1). The resulting appearances are
jointly modeled using the MGD, where χ

→ ∼Nl μ
→
;Σ

� �
is an r.v. with

μ
→

being an l-dimensional vector containing the means of each r.v. χi

and Σ is the corresponding covariance matrix.
Because the pixel variations are independent, the covariance ma-

trix is diagonal, i.e., σij=σji=0 iff i≠ j, and Σ=σ2∗ I, where σ2 is
an l-dimensional vector containing the individual variances of each
r.v. χi. Then, an appearanceχ

→
is an r.v. following MGD,χ

→ ∼Nl μ
→
;σ2

� �
:

μ
→ ¼ μ0;…; μ l½ �T

σ
→ ¼ σ0;…;σ l½ �T :

ð5Þ

This results in the observation likelihood given by:

p χ
→

t jg
→

t

� �
¼ ∏

l

i¼0

e− χi−μ ið Þ2=2σ2
i

σ i

ffiffiffiffiffiffi
2π

p : ð6Þ

Assuming an initialized frame,4the observation model starts
collecting appearance vectors until the appearance sequence X is long



(b)(a) (c)

Fig. 2. (c) A shape-free appearance texture is obtained by applying theΨ I ; g
→

� �
piecewise-affine warping function. (a) The input image I is mapped onto the template texture pixels

(b) based on the correspondence of both shape models in (a) and (b).
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enough (approx. 50 to 100 frames) to be approximated by the MGD.
Hence, the likelihood function can be used to obtain expected values
of the model parameters. Rather than using the Bayesian approach to
obtain the a posteriori Gaussian parameters, a time-efficient linear re-
cursive approach is adopted, where μ

→
t summarizes past observations

under an exponential envelope with a degradation factor α. Conse-
quently, given the previous appearance estimation,χ̂

→

t , the expected ap-
pearance is computed and used as the observation model [35] to obtain
an appearance estimate for the next frame as follows:

μ
→

tþ1 ¼ αμ
→

t þ 1−αð Þ ^χ→ t

σ→
tþ12 ¼ ασ

→2
t þ 1−αð Þ ^

χ
→

t−μ
→

t

� �2
;

ð7Þ

where μ
→

and σ
→

(μi and σi for each pixel in the Eq. (5)) are initialized
with the first appearance χ

→
0 and a const. value for σ

→
. We empirically

found that the aforementioned approximation works well as soon as
50 frames are collected. Similarly, to lessen the presence of outliers
and error propagation, the degradation rate α is set to 1/t until the
50th frame and a fixed value for the forthcoming frames.

3.2. State transition process

To estimate appearance variations between consecutive frames,
i.e., t and t+1, we adopt an adaptive velocitymodel, which is defined
as follows:

g
→

tþ1 ¼ g
→

t þ Δĝ
→

t ; ð8Þ
(a)

Fig. 3. (a) An input image with correct adaptation. (b) The corresponding appearance textur
regions. Both appearance textures are shown at the top-left of input image.
where Δĝ
→

t is an estimated increment vector based on the previous
frame. The quality of the transition estimation depends on the incre-
ment vector, which is used to minimize the distance between the
expected μ

→
and the estimated χ̂

→
appearances.

Let us now consider the minimization problem of the error
function ξ g

→
� �

: Rl→R, which is convex and twice continuously
differentiable:

ξ g
→

� �
¼ 1

2

Xl

j¼0

χ̂ j−μ j

� �2

σ2
j

¼ 1
2
jj r→ g

→
� �

jj2; ð9Þ

where r
→

g
→

� �
¼ r0;…; rl½ �T is the residual vector between the

expected μ
→
and estimated appearances, χ̂

→
. The vector r

→
g
→

� �
depends

on the shape parameters, g
→
, as u

→
and χ̂

→
are obtained from Eqs. (7)

and (3), respectively. Notice that this is the Mahalanobis normaliza-
tion rather than the common L2-Euclidean normalization proposed
in [8].

The condition for a vector g
→�

to be an optimal solution for Eq. (9)
is ∇ξ g

→�� �
¼ 0. This problem is usually solved by an iterative algo-

rithm that generates a sequence of solutions g
→

0;…; g
→

k

� �
∈dom ξ,

for which ξ g
→

k

� �
→ξ� as k→∞. There are many proposed solutions

to this minimization problem based on the iterative first-order
linear approximation, which is equivalent to the Gauss–Newton
method [24,36,25,22]. Notice that minimizing the above criteri-
on is equivalent to maximizing the likelihood function in
Eq. (6).

The Vanilla gradient descent method is the simplest technique
to find the optimal solution of the problems given by Eqs. (8) and
(b) (c)

e using a full shape model. (c) The appearance texture using a shape model without eye

image of Fig.�2
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(9) [36], but it suffers from the convergence problems around local
minima. Moreover, finding the optimal λ according to the slope is
time-consuming. A commonly used approximation is the Newton's
Method (NM) [22], which provides significantly faster convergence
to an optimal solution by combining curvature and gradient infor-
mation. Yet, it is sensitive to the parameter initialization. To ad-
dress this, Levenberg [24] provided an algorithm based on the

Newton's quadratic assumption, where H g
→

� �
≈J g

→
� �T

J g
→

� �
with H

and J being the Hessian and Jacobian matrices, respectively, to im-
prove the NM. The Levenberg Algorithm (LA) is more robust than
NM, and it converges faster even when the current appearance

and the corresponding vector g
→

are far from the next estimation.
However, LA does not use the Hessian if the steepest descend
value, λ, is large.

As an extension of LA, Marquardt [25] proposed to scale each
component of the gradient according to the curvature. The
resulting Levenberg Marquardt Algorithm (LMA) makes larger
movements along directions where the gradient is smaller, such as the
classical error valley. Consequently, the Eq. (8) is modified according to
the LMA as follows:

g
→

tþ1 ¼ g
→

t− H g
→

t

� �
þ λdiagH g

→
t

� �h i−1∇ξ g
→

t

� �
; ð10Þ

where H g
→

t

� �
¼ J g

→
t

� �T
J g

→
t

� �
and ∇ξ g

→
t

� �
¼ J g

→
t

� �T
r
→

g
→

� �
. For facial

actions such as eyelids and irises, linearity has low probability.
Nevertheless, we avoid local minima using backtracking proce-
dures [totally out of context. make a connection with the previous
paragraph].

The Jacobian matrix, J g
→

t

� �
, is computed using the approximate

differences as follows:

J ¼
∂Ψ It ; g

→
t

� �

∂g→t

¼ ∂χ→t

∂g→t

: ð11Þ

The jth column of J, for j ¼ 1;…; jj g→
n 


jg, is estimated using the

differences:

Jj≈
Ψ It ; g

→
t

� �
−Ψ It ; g

→
t þ δg

→
j

� �
δ

; ð12Þ

where δ is the step size, which depends on the domain scale for each
component of the vector g

→
and the vector g

→
j is a vector with all el-

ements zero except the jth element, which is one. The jth column of
J is estimated using several steps around the current value gj, and
then by averaging over all these steps. Finally, Jj is obtained by
Eq. (13) as:

Jj ¼
1
k

Xk=2
−k=2;k≠0

Ψ It ; g
→

t

� �
−Ψ It ; g

→
t þ kδj g

→
t

� �
kδj

; ð13Þ

where δ is the smallest perturbation associated with the gj and k is
the number of the steps.

3.3. Stability to outliers

In uncontrolled environments (e.g. CCTV systems), a tracking
process can be affected by the illumination changes, occlusions,
perturbing objects and fast movements. Drifting problems arise
when outlier pixels are projected as bias error into the MGD and
the LMA, Eqs. (6) and (10), respectively. To deal with outlier pixels,
we constrain both the observation and transition processes with a
Huber's function [37,38]. By this means, the appearance variations
can be learnt on-line in unconstrained environments by combining
both processes with the outlier filtering function:

η χið Þ ¼
χ2

i

2
if χij j≤c

c χij j− c2

2
if χij j > c;

8>><
>>:

ð14Þ

where χi is the normalized pixel value in the appearance χ
→

and c is a
constant outlier threshold, which is set to 3 σ

→
. Thus, the pixel χi is con-

sidered an outlier when |χi|>c. The function η χ
→

� �
constrains both the

texture learning and the gradient descent computation, while improv-
ing the appearance expectations and estimations, μ

→
and χ̂

→
, respectively.

The observation process is made more robust to the influence of outlier
pixels by combining Eqs. (6) and (14) as follows:

P χ
→

t jg
→

t

� �
¼ ∏

l

i¼0

e−η χið Þ χi−μ ið Þ2=2σ2
i

σ i

ffiffiffiffiffiffi
2π

p ð15Þ

Likewise, the state transition process is improved to down-weight
the influence of outlier pixels by restricting the LMA to use the diag-
onal matrix Θ χ

→
� �

, whose terms are:

Θ χið Þ ¼ 1
χi

∂η χið Þ
∂χi

¼
1 if χij j≤c
c
χij j if χij j > c

8<
: ð16Þ

Consequently, we combine Eqs. (10) and (16) to rewrite the LMA
as:

g
→

tþ1 ¼ g
→

t− H g
→

t

� �
þ λdiagH g

→
t

� �h i−1
Θ χ

→
t

� �
∇ξ g

→
t

� �
ð17Þ

4. Hierarchical tracking

In this section, we perform tracking of 3D head movements and
facial actions simultaneously. As in our previous work [21], the pa-
rameters associated with the 3D head pose, and facial actions related
to the eyebrow and lip movements are estimated together by means
of the OAM introduced in Section 2.2.1. Facial actions are local move-
ments of non-rigid surfaces caused by muscular contractions such as
eyebrows and lips, which involve more muscles than eyelid and irises
[39]. On the other hand, eyelid and iris movements involve lighter
muscle activations, resulting in more spontaneous and faster move-
ments. We showed in [23] that eyelids and irises can be tracked si-
multaneously by adopting sequential tracking approach to avoid
self-occluded facial actions.

The tracking of the 3D head pose, eyebrows, lips, eyelids and irises
is performed by simultaneously using three different OABTs. The first
OABT tracks the 3D head pose, eyebrows and lips, while ignoring eye
region motion. The second OABT tracks the eyelids, with iris region
considered to be an outlier. Finally, the third OABT tracks irises by es-
timating yaw and pitch iris motion. These three OABTS are hierarchi-
cally combined, ensuring a global minimum error for all estimations.

Algorithm 1. Head, eyebrows and lips OABT.

1. Construct the appearance Ψ It ; q
→

t

� �
¼ χ̂

→

t , Eqs. (1)–(3).

2. Normalize the appearance, χ̂
→

t∼N 0;1ð Þ.
3. Obtain Gaussian parameters μ

→
tþ1 and σ

→

tþ1
2, Eq. (7).

4. Compute the Jacobian J
→

q
→

t

� �
¼ ∂ r→

∂q→t

5. Compute the Hessian H
→

q
→

t

� �
¼ ∂2 r→

∂q→
2

t
¼ J q

→
t

� �T
J q

→
t

� �

6. Compute the diagonal matrix Θ χ
→

t

� �
, Eq. (16).
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For (n-Iterations)

7. Compute the steepest descent factor,∇ξ q
→

t

� �
¼ J q

→
t

� �T
r
→

q
→

t

� �

8. Compute the search direction, δtþ1 ¼ H q
→

t

� �
þ λdiagH q

→
t

� �h i
−1Θ χ

→
t

� �
∇ξ q

→
t

� �
9. Update the geometrical vector, q

→
tþ1 ¼ q

→
t− H q

→
t

� �
þ

h
λdiagH q

→
t

� �
�−1Θ χ

→
t

� �
∇ξ q

→
t

� �
, Eq. (17).

10. Update the estimated appearance χ̂
→

tþ1 ¼ Ψ Itþ1; q̂
→

tþ1

� �
,

Eqs. (1)–(3) and (8).
5. Compute the residual image, ξ q̂

→

tþ1

� �
¼ 1

2∑
χ̂ j−μ jð Þ2

σ2
j

, Eq. (9).
Fig. 4. (
These O
EndFor
8.
4.1. Head, eyebrows and lips tracker

The OABT for the 3D head pose, eyebrows and lips uses the OAM
without the eye region, as described in Section 2.2.1. Formally, let

us consider the geometric vector q
→¼ ρ

→
;γ0;…;γ5

h i
that models the

OAM of this tracker. This vector includes six head pose parameters,

ρ
→
and the FAPs controlling the eyebrows and the lips. This vector con-

trols the deformation of the shapemodel corresponding to the tracker

T
→

q→.
The tracking process starts by setting q

→¼ q
→

t . Then, the error vector
Ψ Itþ1; q

→
t

� �
−μ

→
t and the corresponding Mahalanobis distance, ξ q

→
� �

,
is computed. The solution is obtained by the LMA Eq. (10), using
the same number of differentials to compute the Jacobian and Hessian
matrices for head, eyebrows and lips. Thus, we find the shift Δ q̂

→
to

update the estimated geometric vector q̂
→

tþ1 using Eq. (8). This pro-
cess is repeated iteratively until convergence, and it is summarized
in Algorithm 1.

4.2. Eyelid tracker

Both eyelids and irises have smooth and spontaneous movements
that are difficult to track using standard statistical deformable models
for two reasons [21]. Firstly, the images depicting the eye region usually
have low resolution if recorded using monocular cameras, which is
often the case. This results in poor appearance models that are unable
to recover subtle facial motions. Secondly, the eyelid and iris facial
movements are non-linearly coupled since the iris motion deforms
the eyelid surface, and vice versa. As a consequence, the OABTs will re-
quire additional computations to accurately estimate the eyelid posi-
tion. By the same token, the eyelid blinking occludes the iris region
and the iris normally moves during the blinking. Since the iris move-
ments may be large or short and involuntary, this increases the chal-
lenge to recover the correct iris position after occlusions.

In this paper, we perform tracking of the eyelids and irises using

two independent trackers. Firstly, the appearance model χ
→

w
→

� �
for
(a)

a) The eyelid texture is obtained based on shape model excluding inner eye region. (
AMs consider each other's pixels as outliers.
eyelid tracking is built by excluding the iris FAPs from the shape

model (see Fig. 4,(a)), which is controlled by the vector w
→¼ q

→
;γ6

h i
.

Thus, iris pixels are excluded from the warping process of the OAM.

Secondly, the appearance model χ
→

g
→

� �
for iris tracking includes eye-

lid and iris pixels, g
→¼ cw;γ7;γ8½ � (see Fig. 4(b)). However, the fitting

process of this tracker mainly consists of the iris FAP estimation, since
the eyelid facial action has been previous estimated. Therefore, once
the eyelid tracker has converged, the iris tracker continues estimating
the iris movements while refining the previous eyelid position.

There are twomain steps in the estimation of the eyelidsmovements:
firstly, the eyelid parameter is differentiated along the whole domain of
FAPs to include possible blinking. Secondly, a damping factor, δ, is com-
puted by using backtracking procedures. This reduces the optimization
time. The result is an efficient eyelid tracker, T

→
w→ (see Algorithm 2).

Algorithm 2. Eyelid tracker.

7. This and the above steps up to 1 are the same as in Algorithm 1.
b) The ir
For (k-Iterations)
Compute the search direction, δk λð Þ ¼ − H w

→
t

� �
þ

h
λdiagH w

→
t

� �
�−1Θ χ

→
tð

�
w
→

tÞÞ∇ξ w
→

t

� �
, Eq. (17).

Choose the damping factor λ via backtracking line-search
procedure:
i. Consider the search direction and the starting vector
w
→

k ¼ w
→

t∈dom ξ.
Set λk ¼ ∑k

0
−1ð Þk
k

ii. While ξ w
→

k þ δk λkð Þ
� �

> ξ w
→

k

� �
þ δk λkð Þ.

Armijo Condition [22].
iii. Set λ=λk.

9. Update variables, w
→

kþ1 ¼ w
→

k þ δk λð Þ, Eq. (8)
10. Test convergence for stopping iterations, otherwise, consider

k=k+1.
11. This and further steps as in Algorithm 1.
EndFor
The OAM of the eyelid tracker T
→

w→ is learnt using Eq. (7), such that

μ
→

tþ1 ¼ μ
→

tþ1 w
→

� �
and σ

→
tþ1 ¼ σ

→
tþ1 w

→
� �

correspond to the parameters

of the MGD of T
→

w→. To be able to estimate the eyelids correctly,
steps (4) and (5) from Algorithm 2. consider the whole FAP range
in the gradients computation. Steps (8)–(10) calculate the damping
factor, λ, by using backtracking line-search procedures. Therefore,
the eyelid tracker provides a space of solutions including both opened
and closed eyelids for faster convergence.

4.3. Iris tracker

Although iris movements are not as fast as eyelid blink, their tracking
is challenging due to themovements during eyelid occlusions. Specifical-
ly, the eyelid blinks can be as short as 0.2 s [40],while similar involuntary
(b)

is texture is obtained with a shape model including both eyelid and iris regions.
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iris movements, saccade or saccadic movements, change the gaze direc-
tion in 210 degrees per second [41]. Therefore, assuming that a video se-
quence is recorded at 20 frames per second (fps), the eyelid appears
closed from neutral position in 2 frames whereas the iris saccade move-
ment can change the gaze direction in 21 degrees in the same 2 frames.
Saccade movements are particular involuntary movements that change
the direction of the eyeball spontaneously aiming to correct the image
perception against blurring by relocating it after eye closure.

Tracking eyelids and irises with a single OABT requires registering
both eyelid and iris onto the same template appearance texture and
consequently estimating their state transition with a single MGD. The
transition process combined with an error function for outliers make
the registration of eyelid and iris textures mutually exclusive due to
self-occlusions. Consequently, the eyelid appearance changes will not
be learnt.

Instead, it is possible to learn the appearance variation of both
eyelids and irises by modeling the motion of these facial features
with two different OABTs. Thus, eyelid and iris texture remain mutu-
ally exclusive but registered and learnt separately.

Algorithm 3. Iris tracker.

7. This and the above steps up to 1 are the same as in Algorithm 1.
8.

Fig. 5. (
into full
For (m-Iterations)
Compute the search direction, δm λð Þ ¼ − H g

→
t

� �
þ

h
λdiagH g

→
t

� �
�−1Θ χ

→
t g

→
t

� �� �
∇ξ g

→
t

� �
, Eq. (17).

Choose the damping factor λ via backtracking line-search
procedure:

i. Consider the search direction and the starting vector

g
→

m ¼ g
→

t∈dom ξ.
Set λm ¼ λm−1

υ , for υ>1
ii. While ξ g

→
m þ δm λmð Þ

� �
> ξ g

→
m

� �
þ δm λmð Þ

Armijo Condition [22].
iii. Set λ=λm.

9. Update variables, g
→

mþ1 ¼ g
→

m þ δm λð Þ, Eq. (8)
10. Test convergence for stopping iterations, otherwise, consider

m=m+1.
11. This and further steps as in Algorithm 1.
EndFor
The iris movements cover a smaller region than those of the eye-
lids. Therefore, the Step (8.i.) from Algorithm 3 models the damping
factor, λm, by a monotonically decreasing function in a small range.

The iris tracker, T g→, considers the inner eye region in the AAM by
using the geometric vector g

→¼ w
→
;γ7;γ8

h i
to deform the shape model

and perform image warping, Ψ I ; g
→

� �
¼χ

→
g
→

� �
(see Fig. 4(b)). Subtle

iris movements are modeled by smaller differentials on the iris FAP,
±0.5. Thus, the iris gradients can be estimated by differentiating the
error function with respect to γ7 and γ8 within the range [γi−0.5,
γi+0.5]. Algorithm 3 gives the details about the iris tracking. Note
that the backtracking procedure can handle smooth transitions of the
iris facial actions by decreasing the damping factor λ.
(a)

a) Three shape models are combined to simultaneously estimate 3D head pose, eyeb
face AAMs for eyelid and iris tracking, respectively.
4.4. Head, eyebrows, lips, eyelids and iris tracking

In the previous sections, the three trackers have been described:
Section 4.1 described the OABT, T

→
q→, that estimates the head pose

and facial actions corresponding to the eyebrows and lips (see
Algorithm 1). Section 4.2 described the OABT, T

→
w→, for tracking of

the eyelid movements and blinks by applying a backtracking proce-
dure (see Algorithm 2). Finally, Section 4.3 described the OABT, T

→
g→,

used to track the iris movements and spontaneous saccades (see
Algorithm 3).

In order to achieve robust and accurate simultaneous tracking of
the head and facial actions, the three trackers mentioned above are
combined in a hierarchical fashion. Namely, the tracker for 3D head

pose, eyebrows and lips, T
→

q→, is used as the basis, as shown in

Fig. 5,(a). The goal of this tracker T
→

q→ is to estimate the shape vector

q
→

that provides the best 3D head pose, eyebrows and lips adaptations

upon convergenceminarg jjξ vecqð Þjj ¼ q
→�

. Next, both head and smooth

facial actions are assembled with eyelids by the tracker T
→

w→ to pro-

vide the best shape according to the vectorw
→¼ q

→
;γ6

h i
. Once the eye-

lid tracker has converged, minarg jjξ w
→

� �
jj ¼ w

→�
, all three trackers are

combined, T
→

q→, T
→

w→ and T
→

g→, to estimate the vector g
→¼ w

→
;γ7;γ8

h i
,

which includes the iris FAPs (see Fig. 5(b)).
Thus, the trackers are combined hierarchically in such a way that

the estimations from one tracker are propagated to another. Specifi-

cally, the eyelid tracker uses the vector q
→

as the initial guess for
both gradient computation and LMA iterative process towards the op-

timal solution, w
→
. Likewise, the eyelid tracker T

→
w→, is used as starting

point for the iris tracker, which estimates the iris position from near
correct estimations of the eyelids, eyebrows, lips and head pose.
Both eyelid and iris trackers are conditioned to improve precedent
trackers, which is quantified by the average residual error at the con-

vergence, i.e. ξ q�ð Þjj≥



 





 


ξ w�ð Þjj≥jjξ g�ð Þjj.

Consequently, the three trackers are efficiently connected by ap-
plying three times the LMA iterative minimization. Note that we
take into account the whole face in both eyelid and iris trackers to
make estimations according to the 3D head pose. The eyelid tracker
is independent from iris estimation but forced to improve the face
tracker. The iris tracker is led to the correct eyelid position and re-
quired to improve the eyelid convergence error.

The hierarchical tracking combines the strengths of the three OABTs.
Specific shape models contribute to avoid the uncertainty in the eye re-
gion to track the 3D head pose, eyebrows and lips as proven in [21]. The
high contrast between eyelids, sclera and irises is avoided by using two
different OAMs. The space of solutions of eyelid and iris trackers is ex-
panded to the sparse Jacobian and Hessian matrices. Furthermore, the
eyelid and iris trackers estimate gradient damping factors based on spe-
cific backtracking procedures. Consequently, all AAM fitting processes
(b)

rows, lips, eyelids and irises. (b) The corresponding appearance textures are combined



Fig. 6. Comparison of our previous GNI algorithm [21] and the current minimization via LMA Eq. (17). GNI algorithm (dash red line) is prone to divergence during gaze motion and
large head poses. LMA (solid blue line) increases the accuracy of the head and facial feature tracking by reducing the fitting error and converging to a global minimum.
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have been improvedwith amodified LMAandbacktrackingprocedures.
Therefore, the convergence to an optimal solution is ensured by simul-
taneous estimation of thegradient direction, curvature and particular
damping factors.

5. Experimental results

In this section, we compare the results of simultaneous head and fa-
cial tracking using different testing video sequences. To measure the
tracking performance, we compute the average error per pixel, which
is computed using Mahalanobis distance between the expected ( μ

→
)

and the estimated (χ̂
→
) appearance models (see Eq. (9)). This error mea-

sure is used to quantify the precision of the tracking system. We also
compute Root-Mean-Square-Error (RMSE) between the estimated posi-
tion of shape model vertices and the ground truth (i.e., manually anno-
tated locations of the vertices). This error measure is used to quantify
the accuracy of the shape model, being a part of the tracking system.

5.1. Efficiency of LMA

We test here if there is any gain in using the LMA-based optimization
in the proposed hierarchical OABT (as explained in Algorithm 1), over
the GNI-based optimization, as we previously proposed in [21]. In [21],
the differential of the geometric vector g

→
was computed as follows:

Δ g
→¼ − GT

t Gt

� �−1
GT
t Ψ χ

→
t ; ĝ

→

t−1

� �
−μ

→
t

� �
: ð18Þ

Eq. (17) to obtain the differential of the vector g
→
(see the details of

the generic implementation of the LMA in Algorithm 1).
A comparison between LMA and GNI is performed using a se-

quence from the FGnet database [42]. This database contains five se-
quences of 1000 frames of a talking person. Each image is of size
720×576 and manually annotated with 68 facial landmarks. Fig. 6
shows the error per pixel of the head and eyelid tracking when
using GNI- and LMA-based optimization. We notice that the OABT
based on GNI is sensitive to gaze motion and large head rotations,
which is a consequence of its susceptibility to the local minima diver-
gence. Conversely, an OABT based on LMA converges easily to global
minima. As can be seen from Fig. 6, the OABT with LMA-based optimi-
zation outperforms our previous tracker [21] based on the GNI opti-
mization, by increasing the precision and robustness while reducing
the computational load.

This is attributed to the fact that, in contrast to the GNI-based op-
timization, the LMA-based optimization considers information about
the curvature of the gradient which helps to avoid singularities of
the pseudo-inverse of the gradient matrix. Also, the backtracking pro-
cedures of the LMA-based method help to avoid local minima. Finally,
the improved tracking results are also due to the complete estimation
of head and facial actions including eyelids and irises.

From Fig. 6, it can be seen that around frame numbers 122 and
842, the error per pixel increases from 1.0 to 3.5. The provided
Ground Truth [42] contains some inaccurate annotations (outliers)
for eyelids and irises.For example, during blinking, the upper and
lower eyelids are not annotated at the same vertical position. After
blinking, the iris position is annotated at the center of the eye. This
causes a higher estimation error attained by the OABT, and it will be
detailed in the following section.

5.2. Ground truth comparison

We tested the accuracy of the hierarchical OABTs against the ground
truth of the FGnet database for face tracking [42]. The 68 annotated fa-
cial landmarks include the features tracked by the OABTs; eyebrows,
lips, upper and lower eyelids, and iris center. The eyelid tracking accura-
cy is measured based on the vertical positions of upper and lower eye-
lids. It is worthmentioning that these positions may vary depending on
the horizontal position of both the ground truth and the tracking result.
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Iris tracking accuracy is assessed using the errors of four vertices of the
3D shape model and the corresponding points from the ground truth.
Eyebrows and lip vertices are also measured against similar points on
the ground truth.

The head-pose is more difficult to compare since the annotations
are following the edges of the face without considering the 3D per-
spective. However, the average error for eyelids is 3.2 pixels per
frame (see Fig. 7(b)). Similar results were obtained for the iris
(b)

(a)

Fig. 7. The ground truth of FGnet talking face is compared to the OABT estimations. (a) The
average 2.5 error/pixel. Our hierarchical OABT achieves an average 1.5 error/pixel. (b) Using
2.2 for irises, respectively. All tracking errors remain within constant bounds (no-drifting p
tracking where the average error is 2.2 pixels per frame and even bet-
ter for the complete hierarchical tracking, i.e., 1.5 pixels per frame.
Fig. 7(a) shows that higher errors coincide with those frames where
eye blinkingor fast iris movements are occurring. Nonetheless, the
error decreases as soon as the trackers improve their convergence
in the following frames. Altogether, the accuracy and precision of
the tracking estimations are comparable. This can also be verified
with the correct adaptations, see Fig. 8. These results are also
OABT using the previous GNI [21], estimates head, lips, eyebrows and eyelids with an
OABTs with the LMA for eyelids and irises, the average estimation error/pixel is 3.2 and
roblems), but the OABT using LMA outperforms the one based on GNI algorithm.

image of Fig.�7


(b)(a) (c)

Fig. 8. Comparing tracking results and ground truth before, during and after the 122th frame, (a), (b) and (c), respectively. The ground truth corresponds to the magenta filled circles
and the tracking estimations are the contour lines blue, green and red. The ground truth has some wrong eyelid and iris annotations, (b) and (c), respectively. This reflects on a
higher error/pixel specially during blinking.
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compared with those attained by the previously proposed tracker
based on the GNI optimization [21]. The distances between estimated
facial landmarks and the FGnet ground truth are measured. Fig. 7(b)
shows the GNI precision error w.r.t. the ground truth (dashed line),
which is on average 2.5 when only head, lips, eyebrows and eyelids
are estimated.

Caveat, the ground truth contains wrong annotations that can be
easily verified using the eyelid tracker, T

→
w→. Fig. 8 shows three frames

of the FGnet talking face before, during and after the 122th frame. The
magenta filled circles correspond to the 68 manually annotated land-
marks. Tracking estimations are displayed by continuous solid lines in
blue, green and red colors. Only about 40 points coincide with the
vertices of the Candide shape model. Fig. 8(a) depicts a correct
Fig. 9. The ground truth with the mislabeled eye blinks, but the eyelid tracker detects blinks
gaze tracker (dash line) presented in [23] can also estimate eyelid blinks with a lower accura
at the top of the graph, which display the tracking fitting by white contour lines.
alignment of image and shape model. However, in Fig. 8(b), it is pos-
sible to see a correct detection of the blinking since the green solid
line fits to the eyelid contour. On the other hand, the ground truth
wrongly marks upper and lower eyelids at a different vertical posi-
tion. Likewise, Fig. 8(c) shows the iris position marked with a point
at the center of the eye whereas the red solid rectangle shows a cor-
rect fitting by the iris OABT.

The iris tracker estimates the vectorw
→¼ q

→
;γ6

h i
, where γ6=[−1.0,

1.0]; −1.0 when eyes are closed and 1.0 when eyes are open. The
hierarchical tracking estimates blinks at frames 124, 243 and 603,
γ6=−1.0, where the distance between upper and lower eyelids
should be zero pixels. However, the distance between annotations of
the ground truth are never zero, see Fig. 9. Similar results were
as continuous FAP values within the range [−1.0, 1.0] with a two decimal accuracy. The
cy than using an OABT with LMA. In addition, cropped images of the eyes are displayed
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obtained when applying the gaze tracking presented in [23], which
used a GNI algorithm for near frontal faces.

5.3. Eyelids tracking

Psychological studies addressed the importance of analyzing eye-
lid movements for emotion analysis, image encoding and Human
Computer Interaction (HCI). These movements are characterized by
the Facial Actions Coding System (FACS) [39].

The eyelids tracker, T
→

w→, estimates the vector w
→¼ q

→
;γ6

h i
, but

the main task of this tracker is to estimate the eyelid facial action
γ6∈[−1.0, 1.0], as a continuous variable. The lower bound of the FAP
range corresponds to closed eyes whereas the upper bound corresponds
to completely open eyes. The LMA minimization process in Algorithm 2
generates an appearance sub-space of k possible solutions. The
backtracking procedure estimates thedamping factor and the direction
of the gradient based on a harmonic series. Consequently, the OABT
can handle both the normal eye closure and the spontaneous blinks,
which take on average two frames.

The eyelids tracker has been tested on an image sequence
consisting of 700 frames, and recorded in the laboratory with a mon-
ocular camera and standard illumination. Each frame depicts a head
and shoulders, and performance of extreme eyelid facial actions,
which deform the eyelid surface in 3D. Fig. 10 shows the eyelid track-
ing estimations where the FAP values, γ6, are continuous values in the
Fig. 10. The eyelid tracker, T
→

w→, estimates eyelid positions as continuous variables rather tha
estimations within the FAP range [−1.0, 1.0] with a two decimal accuracy. Similar results are
can also be verified by observing the eye cropped images displayed at the top of the plots.
range [−1.0,1.0]. Key frames have been highlighted by displaying
cropped eye-regions at the top of the plot.

Note that even without using the edge detectors, the eyelid
tracker is capable of tracking smooth eyelid movements like slit,
closed and squint eyes. On the other hand, posed and spontaneous
movements like raised eyelid, tightening, winks and blinks, are han-
dled with high accuracy. Recall that eyelid position estimations are
independent of the iris position because inner eye pixels are not
warped onto the appearance texture of the eyelid tracker.

Fig. 10 shows the eyelid estimations by using the approaches pro-
posed in [43,16], which provide estimates as discrete states. By contrast,
the eyelid OABT provides estimates with two decimals of accuracy.
Wide valleys or peaks correspond to normal raising-closing motion
while sharp valleys and peaks are detected blinks. The similar results
can be obtained when using the gaze tracker presented in [23] for
near-frontal faces.
5.4. Iris tracking

The iris tracker, T
→

g→, estimates the vector g
→¼ w

→
;γ7;γ8

h i
, i.e., it re-

fines previous estimations of the head pose, eyebrows, lips and eye-
lids while estimating the iris pitch and yaw movements. Therefore,

this tracker includes the whole vector g
→¼ ρ

→
;γ
→

h i
estimations. The
n discrete states as shown by the dashed dark lines. Solid lines correspond to the OABT
obtained using the gaze tracker in [23] for near-frontal gaze movements. These results

The drawn white lines correspond to the eyelid tracking fitting at each frame.
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iris yaw and pitch parameters are evaluated as continuous variables
in the same FAP range [−1.0,1.0], encoding movements from left to
right and down to up, respectively.

The performance of this tracker has been tested on an image se-
quence of 500 frames of size 640×480 pixels. This video was
recorded in a laboratory with a commercial photographic camera in
VGA mode and standard illumination. The actor performs iris move-
ments in all directions and looking askance, Fig. 11. The iris tracker
encodes information related to four different FACS [39]; eyes turned
up, down, left, right and extreme movements like askance where
the iris appears partially occluded or distorted by the 3D perspective.
However, involuntary movements such as iris saccades are commonly
detected especially after eyelid occlusions.

Fig. 11 shows the iris tracker estimates for yaw and pitch move-
ments. The dashed and light curves represent gaze-tracking results
attained by using the discrete scale of the related approach [16]. Iris
position estimations are displayed by drawing the fitted white box
around the iris. The better the fitting the more accurate the iris track-
ing. The key frames are highlighted such as frames 101 and 151
where the iris pitch, γ8, is estimated as about −0.5 when the subject
is looking down. Likewise, at the frame 300 the iris yaw is estimated
as γ7=−1.0 because the subject is looking askance to the left,
whereas the frame 400 shows a γ7=1.0 to indicate that the person
Fig. 11. The iris tracker, T
→

q→, estimates pitch (orange solid line) and yaw (blue solid line) iris
and down (−1.0) while iris yaw refers to right (+1.0) and left (−1.0) directions. Square
tracker [23] can be applied to obtain similar iris estimations but with lower accuracy. The e
is looking askance to the right. Fig. 11 shows the results for both
eyes, including frames where the eyelids are occluding the irises.
The gaze tracker presented in [23] can also be applied to obtain the
continuous FAP estimations with similar accuracy. However, the
gaze tracker loses its accuracy in non-frontal head poses.

5.5. Hierarchical tracking

We showed in our previous works (e.g., see [21]) that appearance
based trackers should model shape and texture including only facial
actions that are accurately fitted. Otherwise, the estimation error
per pixel is propagated to the texture template. To this end, the eye-
lids and iris movements are estimated using two independent and
non-occluded models, similarly as in [23]. The pitch and yaw iris
movements are differentiated within shorter range and steepest de-
scent than eyelid facial actions. Moreover, the backtracking procedure
is also different for both trackers.

To test the ability of the iris tracker to accurately estimate the eye-
lids position, the FGnet sequence is first tracked with the iris tracker
alone and then with the eyelid and iris trackers, applied hierarchically
(see Fig. 12). The experiment is performed using the FGnet dataset
[42]. The Gaze Tracker produces an average error per pixel of 3.5,
whereas the iris and hierarchical tracker produce an average error
movements as continuous variables. Iris pitch corresponds to gaze directions up (+1.0)
dash lines correspond to discrete state estimations as previous related works. A gaze
ye region images (top) show the iris tracking estimations by drawing a white box.

image of Fig.�11


Fig. 12. The iris tracker is tested with and without previous use of the eyelid tracker. The top gallery shows cropped eye-region images with the tracking estimations drawn by red
lines at the contours of eyelids and irises. The bottom plot shows the tracking performance in terms of error/pixel. The red line shows the error/pixel when using only the iris tracker
whereas the blue line shows the error/pixel of the hierarchical tracker, T

→
g→, after applying T

→
q→ and vecT w→. The dashed line corresponds to the gaze tracker accuracy [23]. The Gaze

Tracker produces an average error/pixel of 3.5, whereas the iris and hierarchical tracker report average error/pixel of 2.2 and 2.3, respectively.
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per pixel of 2.2 and 2.3, respectively. The error per pixel increases
for the iris tracker when eyes blinks occur whereas the hierarchical
tracker reduces this error due to the correct eyelid estimations. The
iris reference texture considers the occluding eyelid pixels as out-
liers and consequently these pixels are not warped onto the refer-
ence appearance texture. In conclusion, we confirm the results
from [21] where it was shown that the iris tracker is not capable
of estimating the eyelid movements. Thereby, all other movements
such as head and facial actions are not accurately tracked by the
iris tracker alone. The gaze tracker in [23] uses a sequential eyelid
and iris OABT based on GNI, and it achieves similar accuracy to
that shown in Fig. 12. Yet, it is highly sensitive to head pose
variation.

The hierarchical tracking obtains first the estimates of the 3D head
pose, eyebrows and lips, T

→
q→. Subsequently, it obtains the eyelid po-

sition from the eyelid tracker T
→

w→. Finally, the iris tracker T
→

g→ esti-
mates the iris movements while improving estimations of the
previous trackers (see Fig. 13). The eyelid estimation is more accurate
because of the second iterative process that attains the best eyelid ad-
aptation. Consequently, the estimation error decreases for both global
head motion and local facial actions. These results are better than the
gaze tracking results in [23], since the latter method is sensitive to
non-frontal faces. Its average gaze tracking error per pixel for the
eyelids is 3.5, while the eyelid and hierarchical trackers with LMA ob-
tain an average error per pixel of 3.1 and 2.8, respectively.

5.6. Lighting conditions

Most appearance trackers suffer from drifting problems due to
their sensitivity to illumination changes. To alleviate this, an exhaus-
tive training of textures and shapes of AAMs is required. To demon-
strate the ability of the proposed hierarchical tracker to successfully
handle illumination changes, an image sequence of 800 frames is test-
ed. Images of 352×288 pixels size were recorded with a web camera
in an indoor scenario while a fluorescent lamp was intermittently il-
luminating the face in several positions (see Fig. 14). The camera is
at the bottom of the image plane, which is an additional challenge
for pre-calibrated vision systems.

Fig. 14 shows well fitted 3D shape models of the hierarchical
tracking under changing illumination. The tracker has a controlled
learning ability based on the model likelihood enhanced by Huber's
function. Furthermore, each hierarchical tracker has a different learn-
ing rate (see Eq. (7)), so that they can cope with three sorts of kine-
matics: head–eyebrows–lips, eyelids and irises. For example, at
frame 525, the light is turned off and the estimation error increases
in 3.0 pixels, as shown in Fig. 15. The FAP plot shows how both eyelid

image of Fig.�12


Fig. 13. The gaze tracker [23] accurately estimates eyelid and iris positions, but it is sensitive to non-frontal faces. Instead, the hierarchical tracker T
→

g→ improves the eyelid tracking
estimations during the iris tracking with accurate head pose estimations. Eye-region images are also used to show the tracking fitting by drawing green and red polygons for eyelid
and iris tracking, respectively. The Gaze Tracker produces an average error/pixel of 3.5, whereas the eyelid and hierarchical trackers obtained average error/pixel of 3.1 and 2.8,
respectively.
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and iris trackers need extra time to accommodate for the new envi-
ronment illumination. See also Fig. 16 for details on gaze tracking
estimations.

So far, the hierarchical tracking has shown higher accuracy and
stability to illuminations changes than a gaze tracker based on a GNI
and two eye region shape models [23] (see Figs. 15, 16). Assuming
non-flashing lights, the number of iterations for the LMA can be the
same in all trackers. As long as the new illumination conditions re-
main stable, the hierarchical tracking improves the estimations.
Therefore, expected appearances have less information from previous
(b)(a)

Fig. 14. Illumination changes pose a significant challenge for pre-trained AAMs. The hierarc
function and backtracking procedures. Thus, outlier pixels are rejected, and the AAM is only
before changing the illumination. (b) and (c) show the tracking results after the 541th fram
illumination and the LMA algorithm becomes stable, as shown in
Fig. 15, after the frame 541.
5.7. Occlusions and real-time

As expected, estimation error increases with occlusions and illu-
mination changes. However, a right combination of learning rates al-
lows the hierarchy of trackers to recover without propagating the
error onto the observation models.
(c)

hical OABT can handle flashing lights due to the on-line appearance learning, a Huber's
updated with the highly likely pixel variations. (a) Facial actions are correctly tracked
e. The error per pixel increases at these frames due to the illumination variation.
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Fig. 15. Under different lighting conditions, the tracking error increases until the observation model is updated accordingly to the Huber's function. Once the error decreases the
OABT gets stable, robust and accurate. The hierarchical tracker is more stable than using a gaze tracker as in [23].
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To further test the robustness of the proposed hierarchical OABT,
an image sequence of 600 frames with severe occlusions is used.
This sequence was recorded indoors with a monocular camera. The
actor performs head movements and exaggerated facial actions
Fig. 16. The tracking recovers stability if illumination changes are not extreme, otherwise, th
lems arise. Here, the hierarchical OABT also outperforms OABT with GNIin [21].
while the illumination is subtly changed. At one frame, the actor
starts wearing eyeglasses, thereby, producing occlusions and intensi-
ty variations. Other local occlusions are also captured in this se-
quence, such as eyelid blinks, which occlude the iris region for three
e noise ends up filtering both observation and transition processes, hence drifting prob-

image of Fig.�16
image of Fig.�15


Fig. 17. This sequence exhibits both blinks and saccades. For example, we can see eyelid blinks at frames 17, 164, and 232 of the iris curve. We can also see iris saccadic movements
at frames 96, 330 and 483 of the eyelid curve. The OABT with GNI [21] performs with higher error/pixels as it cannot track iris movements.
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or more frames. Consequently, saccadic movements are expected
since the iris has to recover. This re-adaptation can take one or two
more frames while increasing the estimation error, for example, at
frames 17, 164, and 232 in Fig. 17. This shows the influence of the
iris movements on the estimation error of the eyelid tracker at frames
96, 330, and 483, which is evident according to the peaks of the eyelid
curve. Notice how the error per pixel is higher when using the previ-
ous tracker based on GNI [21].

Next, we test the real-time performance of the proposed tracker.
To this end, we implemented an ABT with small appearance refer-
ence texture, 1426 pixels (i.e. 40×42 pixels). This resulted in the
tracker running real-time. Accuracy, effectiveness and robustness
are tested by comparing the convergence error, output images and
the spent time to find the correct adaptation. This is shown in
Fig. 18.

The hierarchical tracking with a small appearance resolution pro-
duces results of an average 85% of correct adaptations and the perfor-
mance of 32 frames per second (fps). On the other hand, when using
the big appearance resolution, the tracker produces an average of 96%
correct adaptations and performance of 1.1 fps. It is worth mentioning
Fig. 18. Using an appearance template χ
→

1426 the tracking achieves 32 fps while using a d
correctly adapted running at real-time frame rate while 96% of the correct adaptations are
that iris has less pixels in the small resolution, 2×3 pixels, than
5×6 pixels for the big resolution.
5.8. Large head movements

Out-of-plane movements have a strong impact on the 3D head pose
estimation and more than the 50% of pixels are considered outliers,
which results in noisy appearances. However, the Huber's function pro-
vides stability to both observation and state transition processes.

An image sequence of 650 frames is used, where the subject per-
forms large head movements and facial actions, to assess the effect
of 3D head pose inaccuracies on the facial action tracking (see
Fig. 19). The number of iterations was increased, thus extending the
ratio of the line search stage without losing the real-time perfor-
mance. Fig. 19(a) depicts extreme head rotations where the facial ac-
tions remain almost unaffected by the introduced noise. The 2D
projection of out-of-plane rotated faces produces very small errors
in the image plane, comparable to that of the alignment error be-
tween the shape and the regions of eyebrows, lips, eyelids and irises.
ouble template resolution the frame rate drops to 1.1 fps. About 85% of the frames are
obtained using big appearance template.

image of Fig.�18
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Fig. 19. The hierarchical OABT handles out-of-plane movements as outliers, retrieving the position over 50% of outlier pixels. Once the head returns nearby to previous locations the
tracking recovers, otherwise re-initialization is required. This sequence was recorded with a monocular camera.
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However, the tracking still accurately handles their independent
movements.

6. Conclusions

We proposed an efficientmethod for simultaneous tracking of head,
eyebrows, lips, eyelids and irises that can run real-time. We have ex-
tended our previous work on on-line appearance-based trackers to
deal with eyelid and iris motions. By adopting three OAMs we
decoupled rigid and non-rigidmovements to avoid self-occluding facial
actions. Three OABTs are built and coupled through Levenberg–
Marquardt Algorithm optimized with backtracking procedures. This
resulted in substantial improvement in accuracy of the gaze tracking
and robustness of the simultaneous tracking of the head and facial
actions.

The proposed hierarchical OABT holistically estimates the 3D head
pose and facial actions related to lips, eyebrows, eyelids and irises.
Compared with other gaze tracking techniques, the proposed ap-
proach avoids completely intensity edge segmentation.Tracking esti-
mations are encoded as FAP parameters according to the MPEG-4
format, such that all the estimations are continuous variables of single
precision in floating point.

The proposed tracking approach is based upon a robust transition
process that estimates an optimal 3D shape model by the means of a
modified LMA, which avoids local minima by differentiating each fa-
cial action within specific FAP ranges and differentialsteps. Due to
the additional challenge of gaze tracking with deformable models,
the LMA is combined with backtracking and line-search procedures
to estimate the steepest descent factor for each facial action. Conse-
quently, eyelids and iris OABTs result in efficient trackers capable of
handling eye blinks and iris saccadic movements.

Experiments on the FGnet database, video sequences from the in-
ternet and our laboratory, showed the accuracy and robustness of our
proposed method. The FGnet database for face tracking was tested in
three experiments showing the accuracy with respect to a manually
annotated ground truth. The experiments also show the tracking sta-
bility in presence of illumination changes, translucent surfaces on the
eye region, occlusions and out-of-plane movements.

The proposed method is suitable for studies on human behavior
analysis, facial expressions and facial emotions where the latest
state-of-the-art addressed solutions are based on spatio-temporal in-
terpretations of facial deformations. On the other hand,the real-time
performance of this tracker allows it to be used in Human Computer
Interaction applications, since it can work with standard monocular
video cameras and image resolutions.

The proposed tracking approach can be extended in several direc-
tions. Firstly, automatic initialization of the first frame is still an open
issue. Although we outlined a semi-automatic initialization of the
tracker, a more sophisticated approach that can deal with various
poses and facial expressions is needed. Secondly, a further investiga-
tion on appearance texture registration is required to improve the
on-line learning of profile faces beyond pan rotation angles of ±45°.
Thirdly, the self-occluded deformable models affect mainly the state
transition process and, thereby, bring the necessity for using three
different OABTs. Additional research on deformable models or differ-
ent fitting methods is required to reduce the number of trackers to a
single tracker with improved accuracy and robustness. Lastly, the ap-
plication of other optimization methods [44], line-search direction
and backtracking [45], aiming at extension of this tracking system
to multiple faces in the same image.
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