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ABSTRACT

We present a robust real-time face tracking system based on
the Constrained Local Models framework by adopting the
novel regression-based Discriminative Response Map Fitting
(DRMF) method. By exploiting the algorithm’s potential
parallelism, we present a hybrid CPU-GPU implementation
capable of achieving real-time performance at 30 to 45 FPS,
on ordinary consumer-grade computers. We have made the
software publicly available for research purposes1

Categories and Subject Descriptors

I.5.4 [Image Processing and Computer Vision]: Appli-
cations—Computer Vision

General Terms

Performance,Experimentation.
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1. INTRODUCTION
The problem of facial landmark point detection and track-

ing has been studied rigorously for decades, and several
model-based methods have been proposed [3, 5, 9]. Active
Shape Model (ASM), proposed by Cootes et al [3], was one
of the earliest part-based model for detecting the facial land-
mark points which utilized the global shape constraints and
local appearance model (in form of image patches cropped
around each landmark point). This methodology was ex-
tended in Active Appearance Model (AAM), proposed by
Edwards et al [5], which modeled both the shape and ap-
pearance in a holistic manner. AAM used the global shape
constraints but modeled the appearance based on a global
texture model that was computed by warping the actual fa-
cial texture in a piece-wise affine manner to the mean facial
shape of the 2D shape model.
In recent years, the Constrained Local Model (CLM) frame-

work [1, 9], which originated from the ASM framework,
has shown state-of-the-art results under uncontrolled natu-
ral settings. This method models the variations around each
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landmark point by training a local detector (known as patch
experts) for each landmark point. Among the fitting opti-
mization strategies for CLM, the Discriminative Response
Map Fitting (DRMF) method [1] is the current state-of-the-
art method in terms of fitting accuracy but the Regularized
Landmark Mean-Shift (RLMS) [9] has been shown capable
of real-time performance.

In this paper, we present a real-time CPU-GPU hybrid
implementation of the DRMF framework [1], powered by
Graphical Processing Unit (GPU), and explain the architec-
ture of the system in detail. We conduct generic facial land-
mark localization experiments on the Multi-PIE [6], LFPW
[2] and Helen [7] databases, and show that our DRMF im-
plementation outperforms the RLMS framework in fitting
accuracy by a margin. Furthermore, we evaluate the perfor-
mance of our implementation on multiple computers with
different hardware configurations. The current system is ca-
pable of tracking the face and estimating the 3D head-pose
under uncontrolled natural settings at 30 to 45 FPS on con-
ventional consumer-grade computers. Another benefit of the
system is that it allows for the direct use of 3D shape model
during the alignment procedure and therefore, can be easily
used for applications that require 3D facial information. We
demonstrate this via fully-automatic and real-time facial ex-
pression recognition application built on top of the current
face tracking system.

2. OVERVIEW OF CLM FRAMWORK
The Constrained Local Model (CLM) is a typical part-

based deformable model which utilizes the response maps
generated by the local patch experts and optimizes the shape
model parameters based on these responses. The advan-
tages of CLM can be summarized as (1) by optimizing on
response maps instead of the actual facial texture, unseen
variations (such as pose, illumination and expression) can
be well generalized, (2) the influence of partial occlusion is
reduced since our interest lies only in local parts.

The standard CLM framework can be represented by the
model M = {S,D} where S is the shape model and D is the
set of trained patch experts for each facial point in shape
model. It can be described as a group of linear classifiers
D = {wi, bi}

n
i=1, where wi and bi are the weights and biases

of the ith patch expert. The probabilistic response map (i.e.
p (li = 1 | x, I)) for the ith landmark being correctly aligned
(li = 1) at location x of image I is modeled by a logistic
function [1, 9]:

p (li = 1 | x, I) =
1

1 + e{d(w
T

i
h(x;I)+bi)+c}

, (1)

where d and c are computed through a cross-validation pro-
cedure. h is a feature extraction function, and h(x; I) de-
note the features computed from the local areas centered
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around location x in image I. In this paper, we mainly use
Histogram of Oriented Gradient (HOG) [4] features for its
robustness against illumination and geometric transforma-
tion. We empirically set the parameters as follows: bin size
is 9, cell size is 5 and block size equal to 2, and the clip-
ping values for normalization is 0.2. For each patch expert,
we compute HOG features on the set of positive and nega-
tive samples extracted from training images, and use Linear
Support Vector Machine (SVM) to train the classifier due to
its computational advantage on large scale datasets. Cross-
validation is performed during the training process to select
the best parameters of Linear SVM.

For the CLM based fitting, Asthana et al. proposed a
discriminative approach named as Discriminative Response
Map Fitting (DRMF) [1] to estimate the shape model pa-
rameters. Different from generative fitting method like RLMS
[9], which maximizes the probability of a reconstructed shape,
given that all landmark points are correctly aligned in the
image, DRMF aims to find a mapping from the current
response map estimate to the shape model parameter up-
dates. Specifically, a perturbation of ∆p is introduced and
for the local area around ith landmark point of this per-
turbed shape, we compute the response estimate Ri(∆p) =
p(li = 1 | x+xi(∆p)). After that, from these perturbed re-
sponse estimates {Ri(∆p)}ni=1, we want to learn a mapping
function f such that f({Ri(∆p)}ni=1) = ∆p.

The training procedure of DRMF [1] contains two main
steps and can be summarized as follows. The first step is
to learn a dictionary for the approximation of the response
map, so as to extract the relevant feature for learning the fit-
ting update model. PCA would be applied during the dictio-
nary training procedure. The second step aims to learn the
parameter update model iteratively which can be achieved
by a cascaded regression based procedure. In [1], Linear
Support Vector Regression (SVR) was used.

3. IMPLEMENTATION DETAILS
Our implementation of DRMF framework takes the ad-

vantage of several pre-processing steps, and exploits the po-
tential parallelism in feature extraction and response map
calculation using Compute Unified Device Architecture (CUDA)
framework. The current system can easily perform the fit-
ting at 30 to 45 FPS on conventional consumer-grade com-
puters. The system is based on a fast CPU-GPU hybrid de-
sign of the HOG-CLM framework with DRMF method and
consists of two main parts. The first part aims at reducing
the computational complexity at CPU level. The second
part is focused on how to utilize the CUDA framework to
parallelize the algorithm efficiently.

3.1 Modified DRMF fitting
To reduce the computational cost, it is essential to re-

move some redundancies within the CLM framework while
preserving the accuracy.
Image Resolution: In the CLM training procedure,

there is a pre-processing step to register all the training im-
ages to a reference 2D shape, so as to remove any 2D rigid
movement. During the fitting step, the same registration
process will be applied as well. In general, the size of the
reference shape (obtained by training the shape model on
the images from Multi-PIE [6]) is 160 × 160 in the original
scale. Within the local N ×N region around each landmark
point, we convolve a w×w patch expert to get the alignment

(a) (b) (c)

Figure 1: Image Pre-processing Procedure. (a) Original im-
age with bounding box. (b) Cropped image with an ex-
tended bounding box in the original scale. (c) Registered
image with the Reference Shape of size 50× 50.

probability response map. The complexity for computing re-
sponses of n points is O(nN2) without considering the HOG
feature computation time. The size of local region is mainly
determined by that of the reference shape as it needs to be
large enough to capture discriminative facial structure and
to achieve an optimal fitting performance. Instead of us-
ing the original scale, we empirically found that the 50× 50
reference shape, with the local region size of 31 × 31 and
the patch-size of 11× 11, had the best balance between the
accuracy and the computational cost. This pre-processing
step is displayed in Figure 1.

HOG Feature Computation: For the HOG based DRMF
method, we calculate the HOG feature of every w×w patch
within the search region. For n landmark points, a total
number of n × (N − w)2 feature vectors have to be com-
puted. However, these features have significant redundancy
as one pixel can contribute to several regions (See Figure
2(a)). To reduce the redundancy, we follow a look-up ta-
ble based approach to retrieve the HOG instances within
the designated region. We calculate the HOG features once
for every patch within the W × H registered image, and
create an index table to store the position of each window.
The number of feature vectors to compute in this case be-
comes (W −w)× (H −w) (Figure 1(c)). To make sure that
(W × H) ≪ nN2, we crop the original image according to
either the face bounding box provided by [10] or previous
frame’s tracking result. Although this approach introduces
a new overhead of searching the look-up table, the overall
reduction achieved in the HOG computation is much more
significant. Moreover, due to the previously discussed regis-
tration step, the whole computation is invariant to the image
resolution. The procedure this outlined in Figure 2.
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Figure 2: Two HOG Computation Schemes. (a) Sliding
windows in n local N ×N search regions. (b) w×w sliding
window over W ×H image and HOG feature look-up table.

3.2 CPU-GPU Hybrid Implementation
Our test shows the baseline implementation of the DRMF

fitting procedure can only achieve 10 frames-per-second on
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consumer-grade computers. This processing speed is insuf-
ficient for real-time facial expression analysis, which often
requires at least 30 FPS to capture the fast changes in face
region. Hence we identify the performance bottleneck in
the algorithm and accelerate these steps by exploiting their
potential parallelism using CUDA.
The per-frame DRMF fitting procedure consists of four

steps: pre-processing (image cropping and coarse registra-
tion), HOG feature extraction, response map computation,
and regression. We tested our baseline implementation on
7030 images from Multi-PIE database [6] on four consumer-
grade computers. The average time spent on each step is
shown in Table 1. The result shows that HOG feature ex-
traction and response map computation are the most time-
consuming steps. Together they take up roughly 88% of
the execution time. Nonetheless, since the CLM assumes
conditionally independence of local patch experts and the
computation of HOG feature and regression are intrinsically
parallelizable, these two step can by accelerated by paral-
lelizing most of their computations using multiple threads
running on GPU.

Table 1: Average per-frame processing time (ms) break-
down for Multi-PIE database on 4 test machines.

Aa Bb Cc Dd

Pre-process 0.99 0.87 0.89 0.74
HOG Feature 58.80 56.02 51.19 47.57
Response Map 50.73 43.97 43.70 36.15
Regression 14.31 12.38 12.53 10.37

Total 124.83 113.24 108.32 94.83

a
Intel Core i7-2860QM with NVidia Quadro 5010M and 24GB RAM.

b
Intel Xeon E5-1620 with NVidia GeForce GTS 450 and 24GB RAM.

c
Intel Xeon E5-1620 with Zotac GeForce GTX 660 and 32GB RAM.

d
Intel Core i7-4900MQ with NVidia GeForce GTX 780M and 16GB RAM.
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Figure 3: HOG Computation for a single window with
CUDA. (a) Extract w×w patch from the image and assign
it as a block. (b) Computation step for HOG in CUDA.

HOG feature computation with CUDA: The HOG
features are extracted in in three steps: gradient compu-
tation, cell histogram creation with gradient binning, and
block normalization. In the DRMF framework, response
maps are computed only over a local region around each
landmark point. Therefore, we require the HOG features
instead of the responses from all the patches.

For gradient computation and cell histogram creation, we
assign each patch to a separate block and, within it, each
pixel to an individual thread. Since the patch is reasonably
small (for example, 11×11), this assignment does not violate
CUDA’s per-block thread number limit. To avoid potential
aliasing effect, a trilinear interpolation is performed when
binning the value into the cell histograms [4]. After obtain-
ing all the cell histograms, we use the L2-Hys norm for block
normalization, with each bin of the normalized histogram as-
signed to an individual thread. This procedure (for a single

patch) is illustrated by Figure 3.
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Figure 4: Response Map Computation with CUDA. (a) Ex-
tract pixel locations for ith landmark. (b) Extract corre-
sponding HOGs from look-up table. (c) Compute alignment
probability. (d) Obtain the response map.

Response Map computation with CUDA: For each
landmark point, a pre-trained SVM classifier is applied to
compute the response map using HOG feature. In our CUDA
implementation, we assign each landmark point to one block.
Within the block, each individual thread extracts the feature
value and computes decision value for a single feature dimen-
sion. Shared memory is used to sum up the decision val-
ues of each block and compute the alignment/misalignment
likelihood for the landmark point. This procedure (for one
landmark point) is illustrated by Figure 4.

Since the PCA projection and the shape parameter up-
date is performed iteratively, with less than 1msec for each
iteration (10 iterations in total), it is not very profitable to
use CUDA. More importantly, the iterative fitting proce-
dure is obviously not parallelizable. Although each iteration
may be implemented using CUDA, the overhead imposed
by frequent data transfer between the host (CPU) and the
device (GPU) may outweigh the potential benefit of multi-
threading. Therefore, the last step in the DRMF fitting
remains to run on CPU. As a result, our DRMF implemen-
tation is a CPU-GPU hybrid approach. Moreover, the HOG
feature and response map computation steps in CUDA have
been designed in a more flexible manner as compared to [8]
and can easily adapt the changes in HOG parameters.

4. EXPERIMENTS
To evaluate the accuracy and speed of our CPU-GPU hy-

brid implementation of DRMF method, we conducted two
main experiments. Firstly, we conducted the generic land-
mark localization experiment on both controlled (Multi-PIE
[6]) and uncontrolled (LFPW [2] and Helen [7]) databases.
For the initialization of localization experiment, we used the
mean faces centered in the bounding boxes provided the our
in-house face detector [1]. We employed Shape Root-Mean
Square (RMS) error normalized w.r.t. the inter-ocular dis-
tance of the face to measure the fitting performance, which
is unbiased for different size of faces. Secondly, we evalu-
ated the CPU-GPU hybrid implementation in terms of its
efficiency by showing the speed-up obtained over the single-
threaded baseline version.

4.1 Landmark Localization Experiments
The purpose of this experiment is to compare the fitting

performance of the DRMF method against the Regular-
ized Landmark Mean-Shift (RLMS) [9] method. For con-
trolled settings’ experiments, all 346 subjects from Multi-
PIE database were used. Among them, subjects 001-170
with pose range from −30◦ to 30◦ in yaw direction, all ex-
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pressions and two illumination conditions (one frontal illumi-
nation and another randomly selected non-frontal illumina-
tion) are used as training set. The total number of training
images is over 8400. To achieve the best possible perfor-
mance, we train multi-view models for both methods. The
views are divided into three parts according to the yaw di-
rection, −30◦ to −15◦, −15◦ to 15◦ and 15◦ to 30◦. The test
set consists of 7030 images from subjects 171-346 with vary-
ing expressions, pose and illumination variations. To test
the performance of the DRMF method under uncontrolled
settings, the Labelled Face Parts in the Wild (LFPW) [2]
and Helen [7] database are used. We combine the training
set of Multi-PIE with LFPW (811 images) and Helen (2000
images) to train both the RLMS and DRMF methods for
this experiment. The test set of LFPW contains 224 im-
ages, and Helen includes 330 images.
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Figure 5: Results for Landmark Localization Experiments.

From the results in Figure 5, we observe that DRMF
shows significant improvement over the RLMS method. The
result on uncontrolled testset is particularly impressive con-
sidering that these images are captured under challenging
real world conditions. It shows that not only does the DRMF
method outperforms the RLMS method under controlled
settings but also can efficiently handle the challenging varia-
tions of pose, illumination, expression and partial occlusion
present in the LFPW and Helen database.
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Figure 6: CPU-GPU hybrid implementation vs. Single-
threaded CPU implementation on average processing time
(ms) break-down. For each sub group, the left bar displays
the processing time of CPU baseline version, while the right
bar shows the processing time of hybrid implementation.

4.2 Computational Speed-up
To demonstrate the speed-up of the CPU-GPU hybrid im-

plementation (comparing to baseline), the average per-frame
execution time of the tracker on the Multi-PIE database is
measured on the same computers listed in Table 1. The ex-
periment result is presented in Figure 6. As shown in the fig-
ure, the CPU-GPU hybrid implementation runs much faster
than the baseline version on all test machines. In particu-
lar, depending on the computer’s specific hardware config-
uration, the steps implemented using CUDA (HOG feature
extraction and response map computation) are 6 to 10 times

faster than their counterparts in the baseline version and an
overall speed-up of 3 to 5 times is achieved. Comparing to
the baseline version’s 10 FPS processing speed, the CPU-
GPU hybrid is capable of reaching 30 to 45 FPS on our
consumer-grade test machines. These results clearly show
the advantages of using the GPU to exploit potential paral-
lelism in DRMF to obtain substantial acceleration. See the
sample tracking results in Figure 7.

5. THE DEMONSTRATION
In the live demonstration, we will show the CPU-GPU

hybrid implementation based real-time system capable of
tracking 66 facial landmark points on the face at 30-45 FPS
on a conventional consumer-grade computer. Moreover, built
on top of this system, a real-time 3D head-pose estima-
tion and facial expression recognition application will also
be demonstrated. The system will receive live video stream
from a normal consumer-grade web-camera where the at-
tendees will be able to interact with the system in real-time
under uncontrolled natural settings. For comparison pur-
poses, the non-parallel CPU implementation of the system
will also be demonstrated so that the attendees are able to
judge the benefits of using GPU for designing real-time sys-
tems, without compromising on accuracy.
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(a) With expression and pose changes.

(b) With partial occlusion.

(c) With illumination change.

Figure 7: Real-time Face Tracking Results.
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