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Abstract—Robust principal component analysis (RPCA) is a powerful method for learning low-rank feature representation of various
visual data. However, for certain types as well as significant amount of error corruption, it fails to yield satisfactory results; a drawback
that can be alleviated by exploiting domain-dependent prior knowledge or information. In this paper, we propose two models for the
RPCA that take into account such side information, even in the presence of missing values. We apply this framework to the task of UV
completion which is widely used in pose-invariant face recognition. Moreover, we construct a generative adversarial network (GAN) to
extract side information as well as subspaces. These subspaces not only assist in the recovery but also speed up the process in case
of large-scale data. We quantitatively and qualitatively evaluate the proposed approaches through both synthetic data and eight
real-world datasets to verify their effectiveness.

Index Terms—RPCA, GAN, side information, UV completion, face recognition, in the wild.
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1 INTRODUCTION

UV space embeds the manifold of a 3D face into a 2D
contiguous atlas. Contiguous UV spaces are natural

products of many 3D scanning devices and are often used
by 3D Morphable Model (3DMM) construction [1], [2], [3].
Although UV space by nature cannot be constructed from
an arbitrary 2D image, a UV map can still be obtained by
fitting a 3DMM to the image and sampling the correspond-
ing texture [4]. We illustrate this procedure in Figure 1.
Unfortunately, due to self-occlusion of the face, those UV
maps are often incomplete and lack facial parts that are
informative. Once completed, this UV map, combined with
the corresponding 3D face, is extremely useful, as it can be
used to synthesise 2D faces of arbitrary poses. Afterwards,
we can probe image pairs of similar poses to improve
recognition performance [5]. Hence, the success of pose-
invariant face recognition relies on the quality of UV map
completion.

Recovering UV maps from a sequence of related facial
frames is a challenging task because self-occlusion at large
poses leads to incomplete and missing data. Meanwhile, the
imperfection in fitting leads to regional errors. We adapt the
approach of robust principal component analysis (RPCA)
with missing data [6] to address this difficult problem. In
other words, we operate directly on the images themselves
rather than on their labels [7]. Principal Component Pursuit
(PCP) as proposed in [8], [9] and its variants e.g., [10], [11],
[12], [13], [14], [15], [16] are popular algorithms to solve
RPCA. PCP employs the nuclear norm and the l1-norm
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(convex surrogates of the rank and sparsity constraints,
respectively) in order to approximate the original l0-norm
regularised rank minimisation problem. Unavoidably, PCP
operates in an isolated manner where domain-dependent
prior knowledge [17], i.e., side information [18], is always
ignored. Moreover, real-world visual data rarely satisfies the
stringent assumptions imposed by PCP for exact recovery
[19]. These call for a more powerful framework that can
assimilate useful priors to alleviate the degenerate or sub-
optimal solutions of PCP.

It has already been shown that side information is pro-
pitious in the context of matrix completion [20], [21] and
compressed sensing [22]. Recently, noiseless features have
been capitalised on in the PCP framework [23], [24], [25],
[26]. In particular, an error-free orthogonal column space
was used to drive a person-specific facial deformable model
[24]. And such features can also remove dependency on the
row-coherence which is beneficial in the case of a union of
multiple subspaces [25], [26], [27], [28]. More generally, Chi-
ang et al. [23] used both a column and a row space to recover
only the weights of their interaction in a simpler problem.
The main hindrance to the success of these methods is the
need for a set of clean, noise-free data samples in order to
determine the column and/or row spaces of the low-rank
component. But there are no prescribed way to find them in
practice.

On a separate note, rapid advances in neural networks
for image inpainting offer an agglomeration of useful priors.
Pathak et al. [29] proposed to use context encoders with a
reconstruction and an adversarial loss to generate contents
for the missing regions that comply with the neighbour-
hood. Yang et al. [30] further improved inpainting with a
multi-scale neural patch synthesis method. This approach is
based on a joint optimisation of image content and texture
constraints, which not only preserves contextual structures
but also produces fine details. Li et al. [31] combined a
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Fig. 1. The procedure of getting the UV map from an arbitrary 2D image.

reconstruction loss, two adversarial losses, and a semantic
parsing loss to ensure genuineness and consistency of local-
global contents. These methods are by no means definitive
for the following reasons: (a) their masks are artificial and
do not have semantic correspondence with a 3D face; (b)
they do not allow missing regions to be over 50% which is
commonplace in our case.

This paper is based on our preliminary work [32] but has
been extended to 1) the problem of UV completion and 2)
to incorporate side information provided by generative ad-
versarial networks. As such, we have extended PCP to take
advantage of noisy prior information aiming to realise better
UV map reconstruction. We then perform pose-invariant
face recognition experiments using the completed UV maps.
Experimental results indicate the superiority of our frame-
work. The overall workflow is explicated in Figure 2. Our
contributions are summarised as follows:

• A novel convex program is proposed to use side
information, which is a noisy approximation of the
low-rank component, within the PCP framework.
The proposed method is able to handle missing
values while the developed optimisation algorithm
has convergence guarantees.

• Furthermore, we extend our proposed PCP model
using side information to exploit prior knowledge
regarding the column and row spaces of the low-rank
component in a more general algorithmic frame-

Fig. 2. Given an input sequence of incomplete UV maps, we extract
the shape using 3DMM and perform preliminary completion using GAN.
With the left subspace and side information provided by GAN, we then
carry out PCPSFM to produce more refined completion results. After
that, we attach the completed UV texture to the shape creating images
at various poses for face recognition.

work.
• In the case of UV completion, we suggest the use of

generative adversarial networks to provide subspace
features and side information, resulting in a seamless
integration of deep learning into the robust PCA
framework.

• We demonstrate the applicability and effectiveness
of the proposed approaches on synthetic data as well
as on facial image denoising, UV texture completion
and pose-invariant face recognition experiments
with both quantitative and qualitative evaluation.

The remainder of this paper is organised as follows. We
discuss relevant literature in Section 2, while the proposed
robust principal component analysis using side information
with missing values (PCPSM) along with its extension that
incorporates features (PCPSFM) is presented in Section 3.
In Section 4, we first evaluate our proposed algorithms on
synthetic and real-world data. Then we introduce GAN as
a source of features and side information for the subject
of UV completion. Finally, face recognition experiments are
presented in the last subsection.

Notations Lowercase letters denote scalars and upper-
case letters denote matrices, unless otherwise stated. For
norms of matrix A, ‖A‖F is the Frobenius norm; ‖A‖∗ is
the nuclear norm; and ‖A‖1 is the sum of absolute values of
all matrix entries. Moreover, 〈A,B〉 represents tr(ATB) for
real matrices A,B. Additionally, A◦B symbolises element-
wise multiplication of two matrices of the same dimension.

2 RELATED WORK

We discuss two different lines of research, namely low-rank
recovery as well as image completion.

2.1 Robust principal component analysis

Suppose that there is a matrix L0 ∈ Rn1×n2 with rank
r � min(n1, n2) and a sparse matrix E0 ∈ Rn1×n2 with
entries of arbitrary magnitude. If we are provided with the
observation matrix X = L0 + E0, RPCA aims to recover
them by solving the following objective:

min
L,E

rank(L) + λ‖E‖0 s. t. X = L + E, (1)

where λ is a regularisation parameter. However, (1) cannot
be readily solved because it is NP-hard. PCP instead solves
the following convex surrogate:

min
L,E
‖L‖∗ + λ‖E‖1 s. t. X = L + E, (2)
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which, under mild conditions, is equivalent to (1). There
exist many efficient solvers for (2) and its applications
include background modelling from surveillance video and
removing shadows and specularities from face images.

One of the first methods for incorporating dictionary
was proposed in the context of subspace clustering [25],
[26]. The LRR algorithm assumes that we have available an
orthogonal column space U ∈ Rn1×d1 , where d1 ≤ n1, and
optimises the following:

min
K,E

‖K‖∗ + λ‖E‖1 s. t. X = UK + E. (3)

Given an orthonormal statistical prior of facial images, LRR
can be used to construct person-specific deformable models
from erroneous initialisations [24].

A generalisation of the above was proposed as Principal
Component Pursuit with Features (PCPF) [23] where further
row spaces V ∈ Rn2×d2 , d2 ≤ n2, were assumed to be
available with the following objective:

min
H,E

‖H‖∗ + λ‖E‖1 s. t. X = UHVT + E. (4)

There is a stronger equivalence relation between (4) and
(1) than (2). The main drawback of the above mentioned
models is that features need to be accurate and noiseless,
which is not trivial to fulfil in practical scenarios.

In the case of missing data, robust matrix recovery
methods [6], [33] enhance PCP to deal with occlusions:

min
L,E
‖L‖∗ + λ‖E ◦W‖1 s. t. X = L + E, (5)

where W is the matrix of binary occlusion masks. Its Jacobi-
type update schemes can be implemented in parallel and
hence are attractive for solving large-scale problems. Dis-
gruntled at the unrealistic uniform sampling assumption for
missing entries, Liu et al [26] set out to use the isomeric
condition hypothesis to tackle irregular and deterministic
missing data.

2.2 Image completion neural networks
Recent advances in convolutional neural networks (CNN)
also show great promises in visual feature learning. Context
encoders (CE) [29] use an encoder-decoder pipeline where
the encoder takes an input image with missing regions
producing a latent feature representation and the decoder
takes the feature representation generating the missing im-
age content. CE uses a joint loss function:

L = λrecLrec + λadvLadv, (6)

where Lrec is the reconstruction loss and Ladv is the adver-
sarial loss. The reconstruction loss is given by:

Lrec(x) = ‖w ◦ (x− F ((1−w) ◦ x)‖22, (7)

where w is a binary mask, x is an example image and
CE produces an output F (x). The adversarial loss is based
on Generative Adversarial Networks (GAN). GAN learns
both a generative model Gi from noise distribution Z to
data distribution X and a discriminative model Di by the
following objective:

Lai = min
Gi

max
Di

Ex∈X [log(Di(x))]+Ez∈Z [log(1−Di(Gi(z)))].

(8)

For CE, the adversarial loss is modified to

Ladv = max
D

Ex∈X [log(D(x))+log(1−D(F ((1−w)◦x)))].

(9)
Generative face completion [31] uses two discriminators

instead with the following objective

L = Lp + λ1La1 + λ2La2 , (10)

where Lp is a parsing loss of pixel-wise softmax between
the estimated UV texture Ii,j and the ground truth texture
I∗i,j of width W and height H

Lp =
1

W ×H

W∑
i=1

H∑
j=1

∣∣Ii,j − I∗i,j∣∣ . (11)

Patch synthesis [30] optimises a loss function of three
terms: the holistic content term, the local texture term and
the TV-loss term. The content constraint penalises the l2
difference between the optimisation result and the previous
content prediction

lc = ‖w ◦ (x− xi)‖22, (12)

where xi is the optimisation result from the last iteration at
a coarser scale. The texture constraint penalises the texture
appearance across the hole,

lt =
1

|wφ|
∑
i∈wφ

‖Pi ◦ φ(x)− Pnn(i) ◦ φ(x)‖22, (13)

where wφ is the corresponding mask in the VGG-19 feature
map φ(x), |wφ| denotes the number of patches sampled in
wφ, Pi is the local neural patch at location i, and nn(i)
is the nearest neighbor of i. Last, the TV loss encourages
smoothness:

lTV =
∑

i,j∈wφ

((xi,j+1 − xi,j)
2 + (xi+1,j − xi,j)

2). (14)

3 ROBUST PRINCIPAL COMPONENT ANALYSIS
USING SIDE INFORMATION

In this section, we propose models of RPCA using side infor-
mation. In particular, we incorporate side information into
PCP by using the trace distance of the difference between
the low-rank component and the noisy estimate, which can
be seen as a generalisation of compressed sensing with prior
information where l1 norm has been used to minimise the
distance between the target signal and side information [22].

3.1 The PCPSM and PCPSFM models
Assuming that a noisy estimate of the low-rank component
of the data S ∈ Rn1×n2 is available, we propose the fol-
lowing model of PCP using side information with missing
values (PCPSM):

min
L,E

‖L‖∗ + α‖L− S‖∗ + λ‖W ◦E‖1

s. t. X = L + E,
(15)

where α > 0, λ > 0 are parameters that weigh the effects of
side information and noise sparsity.

The proposed PCPSM can be revamped to generalise the
previous attempt of PCPF by the following objective of PCP
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using side information with features and missing values
(PCPSFM):

min
H,E

‖H‖∗ + α‖H−D‖∗ + λ‖W ◦E‖1

s. t. X = UHVT + E, D = UTSV,
(16)

where H ∈ Rd1×d2 ,D ∈ Rd1×d2 are bilinear mappings for
the recovered low-rank matrix L and side information S
respectively. Note that the low-rank matrix L is recovered
from the optimal solution (H∗,E∗) to objective (16) via L =
UH∗VT . If side information S is not available, PCPSFM
reduces to PCPF with missing values by setting α to zero. If
the features U,V are not present either, PCP with missing
values can be restored by fixing both of them at identity.
However, when only the side information S is accessible,
objective (16) is transformed back into PCPSM.

3.2 The algorithm
If we substitute B for H −D and orthogonalise U and V,
the optimisation problem (16) is identical to the following
convex but non-smooth problem:

min
H,E

‖H‖∗ + α‖B‖∗ + λ‖W ◦E‖1

s. t. X = UHVT + E, B = H−UTSV,
(17)

which is amenable to the multi-block alternating direction
method of multipliers (ADMM).

The corresponding augmented Lagrangian of (17) is:

l(H,B,E,Z,N) = ‖H‖∗ + α‖B‖∗ + λ‖W ◦E‖1
+ 〈Z,X−E−UHVT 〉+

µ

2
‖X−E−UHVT ‖2F

+ 〈N,H−B−UTSV〉+
µ

2
‖H−B−UTSV‖2F ,

(18)

where Z ∈ Rn1×n2 and N ∈ Rd1×d2 are Lagrange multipli-
ers and µ is the learning rate.

The ADMM operates by carrying out repeated cycles of
updates till convergence. During each cycle, H,B,E are
updated serially by minimising (18) with other variables
fixed. Afterwards, Lagrange multipliers Z,N are updated at
the end of each iteration. Direct solutions to the single vari-
able minimisation subproblems rely on the shrinkage and
the singular value thresholding operators [8]. Let Sτ (a) ≡
sgn(a) max(|a|−τ, 0) serve as the shrinkage operator, which
naturally extends to matrices, Sτ (A), by applying it to ma-
trix A element-wise. Similarly, let Dτ (A) ≡MSτ (Σ)YT be
the singular value thresholding operator on real matrix A,
with A = MΣYT being the singular value decomposition
(SVD) of A.

Minimising (18) w.r.t. H at fixed B,E,Z,N is equivalent
to the following:

arg min
H
‖H‖∗ + µ‖P−UHVT ‖2F , (19)

where P = 1
2 (X−E + 1

µZ + U(B + UTSV− 1
µN)VT ). Its

solution is shown to be UTD 1
2µ

(P)V. Furthermore, for B,

arg min
B

l = arg min
B

α‖B‖∗ +
µ

2
‖Q−B‖2F , (20)

where Q = H−UTSV+ 1
µN, whose update rule isDα

µ
(Q),

and for E,

arg min
E

l = arg min
E

λ‖W ◦E‖1 +
µ

2
‖R−E‖2F , (21)

Algorithm 1 ADMM solver for PCPSFM
Input: Observation X, mask W, side information S, fea-

tures U,V, parameters α, λ > 0, scaling ratio β > 1.
1: Initialize: Z = 0, N = B = H = 0, β = 1

‖X‖2 .
2: while not converged do
3: E = Sλµ−1(X−UHVT + 1

µZ)◦W + (X−UHVT +
1
µZ) ◦ (1−W)

4: H = UTD 1
2µ

( 1
2 (X − E + 1

µZ + U(B + UTSV −
1
µN)VT ))V

5: B = Dαµ−1(H−UTSV + 1
µN)

6: Z = Z + µ(X−E−UHVT )
7: N = N + µ(H−B−UTSV)
8: µ = µ× β
9: end while

Return: L = UHVT , E

where R = X −UHVT + 1
µZ with a closed-form solution

Sλµ−1(R) ◦W + R ◦ (1−W). Finally, Lagrange multipliers
are updated as usual:

Z = Z + µ(X−E−UHVT ), (22)

N = N + µ(H−B−UTSV). (23)

The overall algorithm is summarised in Algorithm 1.

3.3 Complexity and convergence

Orthogonalisation of the features U,V via the Gram-
Schmidt process has an operation count of O(n1d

2
1) and

O(n2d
2
2) respectively. The H update in Step 4 is the most

costly step of each iteration in Algorithm 1. Specifically,
the SVD required in the singular value thresholding action
dominates with O(min(n1n

2
2, n

2
1n2)) complexity. Note that

this complexity is shared by both of our proposed PCPSM
and PCPSFM algorithms, as well as exsiting PCP and LRR
algorithms.

A direct extension of the ADMM has been applied to
our 3-block separable convex objective. Its global conver-
gence is proved in Theorem 1. We have also used the
fast continuation technique already applied to the matrix
completion problem [34] to increase µ incrementally for
accelerated superlinear performance [35]. The cold start
initialisation strategies for variables H,B and Lagrange
multipliers Z,N are described in [36]. Besides, we have
scheduled E to be updated first and taken the initial learn-
ing rate µ as suggested in [37]. As for stopping criteria, we
have employed the Karush-Kuhn-Tucker (KKT) feasibility
conditions. Namely, within a maximum number of 1000 iter-
ations, when the maximum of ‖X−Ek−UHkV

T ‖F /‖X‖F
and ‖Hk − Bk − UTSV‖F /‖X‖F dwindles from a pre-
defined threshold ε, the algorithm is terminated, where k
signifies values at the kth iteration.

Theorem 1. Let the iterative squence {(Ek,Hk,Bk,Zk,Nk)}
be generated by the direct extension of ADMM, Algorithm 1,
then the sequence {(Ek,Hk,Bk,Zk,Nk) converges to a Karush-
Kuhn-Tucher (KKT) point in the fully observed case.

Proof. We first show that function θ3(x3) = ‖E‖1 is sub-
strong monotonic. From [8], we know that (x∗1, x

∗
2, x
∗
3, λ
∗) =
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(H0,E0,B0,Z0) is a KKT point, where H0 = UTL0V,
B0 = H0 −UTSV, Z0ij = λ[sgn(E0)]ij , if (i, j) ∈ Ω and
|Z0ij | < λ, otherwise. Since θ3(x3) is convex, by definition,
we have

θ3(x∗3) ≥ θ3(x3) + 〈y3, x
∗
3 − x3〉, ∀x3 and ∀y3 ∈ ∂θ3(x3).

(24)
Since A3 is identity in (17), we have

θ3(x3)− θ3(x∗3) + 〈AT3 λ∗, x∗3 − x3〉
=λ‖E‖1 − λ‖E0‖1 + 〈Z0,E0〉 − 〈Z0,E〉,
=λ‖E‖1 − 〈Z0,E〉
≥0,

(25)

where the third line follows from Z0ij = λ[sgn(E0)]ij when
(i, j) ∈ Ω and E0ij = 0 when (i, j) /∈ Ω, and the fourth
line follows from |Z0ij | ≤ λ, |Z0ijEij | ≤ |Z0ij ||Eij | and
‖E‖1 =

∑
i,j |Eij |. As E is bounded, there always exists

µ > 0 such that

λ‖E‖1 − 〈Z0,E〉 ≥ µ‖E−E0‖2F . (26)

Thus, overall we have

θ3(x3) ≥ θ3(x∗3) + 〈AT3 λ∗, x3 − x∗3〉+ µ‖E−E0‖2F . (27)

Combining with (24), we arrive at

〈y3−AT3 λ∗, x3−x∗3〉 ≥ µ|x3−x∗3|2, ∀x3 and ∀y3 ∈ ∂θ3(x3),
(28)

which shows that ‖E‖1 satisfies the sub-strong monotonic-
ity assumption.

Additionally, ‖H‖∗, ‖B‖∗ are close and proper convex
and A’s have full column rank. We thus deduce that the di-
rect extension of ADMM, Algorithm 1, applied to objective
(17) is convergent according to [38].

4 EXPERIMENTAL RESULTS

4.1 Parameter calibration
In this section, we illustrate the enhancement made by side
information through both numerical simulations and real-
world applications. First, we explain how parameters used
in our implementation are tuned. Second, we compare the
recoverability of our proposed algorithms with state-of-the-
art methods for incorporating features or dictionary, viz.

(a)

0.07 0.14 0.21 0.28

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(b)

0.07 0.14 0.21 0.28
-14

-12

-10

-8

-6

-4

-2

Fig. 3. Log-scale relative error (log ‖L−L0‖F
‖L0‖F

) of PCPSM (a) when side
information is perfect (S = L0) and (b) when side information is the
observation (S = M).

PCPF [17] and LRR [11] on synthetic data as well as the
baseline PCP [9] when there are no features available. Last,
we show how powerful side information can be for the
task of UV completion in post-invariant face recognition,
where both features and side information are derived from
generative adversarial networks.

For LRR, clean subspace X is used as in [24] instead of
the observation X itself as the dictionary. PCP is solved via
the inexact ALM [37] and the heuristics for predicting the
dimension of principal singular space is not adopted here
due to its lack of validity on uncharted real data [39]. We also
include Partial Sum of Singular Values (PSSV) [40] in our
comparison for its stated advantage in view of the limited
number of images available. The stopping criteria for PCPF,
LRR, PCP and PSSV are all set to the same KKT optimality
conditions for reasons of consistency.

In order to tune the algorithmic parameters, we first con-
duct a benchmark experiment as follows: a low-rank matrix
L0 is generated from L0 = JKT , where J,K ∈ R200×10

have entries from a N (0, 0.005) distribution; a 200 × 200
sparse matrix E0 is generated by randomly setting 38000
entries to zero with others taking values of ±1 with equal
probability; side information S is assumed perfect, that
is, S = L0; U is set as the left-singular vectors of L0;
and V is set as the right-singular vectors of L0; all en-
tries are observed. It has been found that a scaling ratio
β = 1.1, a tolerance threshold ε = 10−7 and a maximum
step size µ = 107 to avoid ill-conditioning can bring all
models except PSSV to convergence with a recovered L
of rank 10, a recovered E of sparsity 5% and an accuracy
‖L−L0‖F /‖L0‖F on the order of 10−6. Still, these apply to
PSSV as is done similarly in [40].

Although theoretical determination of α and λ is beyond
the scope of this paper, we nevertheless provide empirical
guidance based on extensive experiments. A parameter
weep in the α − λ space for perfect side information is
shown in Figure3(a) and for observation as side information
in Figure3(b) to impart a lower bound and a upper bound
respectively. It can be easily seen that λ = 1/

√
200 (or

λ = 1/
√

max(n1, n2) for a general matrix of dimension
n1 × n2) from Robust PCA works well in both cases. Con-
versely, α depends on the quality of the side information.
When the side information is accurate, a large α should be
selected to capitalise upon the side information as much as
possible, whereas when the side information is improper, a
small α should be picked to sidestep the dissonance caused
by the side information. Here, we have discovered that a
value of 0.2 works best with synthetic data and a value of
0.5 is suited for public video sequences, both of which will
be used in all experiments in subsequent sections together
with other aforementioned parameter settings. It is worth
emphasising again that prior knowledge of the structural
information about the data yields more appropriate values
for α and λ.

4.2 Phase transition on synthetic datasets

We now focus on the recoverability problem, i.e. recovering
matrices of varying ranks from errors of varying sparsity.
True low-rank matrices are created via L0 = JKT , where
200 × r matrices J,K have independent elements drawn
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Fig. 4. Domains of recovery by various algorithms in the fully observed case: (I,III) for random signs and (II,IV) for coherent signs.
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Fig. 5. Domains of recovery by various algorithms in the partially observed case: (I,III) for random signs and (II,IV) for coherent signs.
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randomly from a Gaussian distribution of mean 0 and
variance 5 ·10−3, thus r is the rank of L0. Next, we generate
200×200 error matrices E0, which possess ρs ·2002 non-zero
elements located randomly within the matrix. We consider
two types of entries for E0: Bernoulli ±1 and PΩ(sgn(L0)),
where P is the projection operator. X = L0 + E0 thus be-
comes the simulated observation. For each (r, ρs) pair, three
observations are constructed. The recovery is successful if
for all these three problems, the following criteria regarding
the recovered L is met:

‖L− L0‖F
‖L0‖F

< 10−3. (29)

In addition, let L0 = MΣYT be the SVD of L0. Feature
U is formed by randomly interweaving column vectors of
M with d arbitrary orthonormal bases for the null space
of MT , while permuting the expanded columns of Y with
d random orthonormal bases for the kernel of YT forms
feature V. Hence, the feasibility conditions are fulfilled:
C(U) ⊇ C(L0), C(V) ⊇ C(LT0 ), where C is the column
space operator.

For each trial, we construct the side information by
directly adding small Gaussian noise to each element of
L0: lij → lij + N (0, 2.5r · 10−9), i, j = 1, 2, · · · , 200. As a
result, the standard deviation of the error in each element is
1% of that among the elements themselves. On average, the
Frobenius percent error, ‖S−L0‖F /‖L0‖F , is 1%. Such side
information is genuine in regard to the fact that classical
PCA with accurate rank is not able to eliminate the noise
[41]. We set d to 10 throughout.

Full observation Figures 4 (a.I) and (a.II) plot results
from PCPF, LRR and PCPSFM. On the other hand, the
situation with no available features is investigated in Figures
4 (a.III) and 4 (a.IV) for PCP and PCPSM. The frontier
of PCPF has been advanced by PCPSFM everywhere for
both sign types. Especially at low ranks, errors with much

higher density can be removed. Without features, PCPSM
surpasses PCP by and large, with significantly more recov-
ery at small sparsity levels for both sign cases. Results from
RPCAG and PSSV are worse than PCP with LRR marginally
improving (see Figures 4(b.I), (b.II), (b.III) and b(IV)).

Partial observation Figures 5 (a.I) and (a.II) map out
the results for PCPF, LRR and PCPSFM when 10% of the
elements are occluded and Figures 5 (a.III) and (a.IV) for
featureless PCP and PCPSM. In all cases, areas of recovery
are reduced. However, there are now larger gaps between
PCPF and PCPSFM, so as for PCP and PCPSM. This marks
the usefulness of side information particularly in the event
of missing observations. We realise that in unrecoverable
areas, PCPSM and PCPSFM still obtain much smaller values
of ‖L− L0‖F . FRPCAG fails to recover anything at all.

4.3 Face denoising

If a surface is convex Lambertian and the lighting is
isotropic and distant, then the rendered model spans a 9-
D linear subspace [42]. Nonetheless, facial images are only
approximately so because facial harmonic planes have neg-
ative pixels and real lighting conditions entail unavoidable
occlusion and albedo variations. It is thus more reasonable
to decompose facial image formation as a low-rank com-
ponent for face description and a sparse component for
defects. In pursuit of this low-rank portrayal, we suggest
that there can be further boost to the performance of facial
characterisation by leveraging an image which faithfully
represents the subject.

We consider images of a fixed pose under different illu-
minations from the extended Yale B database for testing. All
64 images were studied for each person. 32556×64 observa-
tion matrices were formed by vectorising each 168×192 im-
age and the side information was chosen to be the average of
all images, tiled to the same size as the observation matrix

(c.I) (c.II) (c.III) (c.IV) (c.V) (c.VI) (c.VII) (c.VIII) (c.IX) (c.X)

(b.I) (b.II) (b.III) (b.IV) (b.V) (b.VI) (b.VII) (b.VIII) (b.IX) (b.X)

(a.I) (a.II) (a.III) (a.IV) (a.V) (a.VI) (a.VII) (a.VIII) (a.IX) (a.X)

Fig. 6. Comparison of face denoising ability: (I) Observation; (II) side information; (III) PCP; (IV) PCPSM; (V) LRR; (VI) PCPF; (VII) PCPFSM; (VIII)
PSSV; (IX) RPCAG; and (X) FRPCAG.
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for each subject. In addition, 5% of the randomly selected
pixels within each image were set as missing entries.

For LLR, PCPF and PCPSFM to run, we learn the feature
dictionary following an approach by Vishal et al. [43], which
is a popular method for extracting high-level attributes [44].
In a nutshell, the feature learning process can be treated
as a sparse encoding problem. More specifically, we si-
multaneously seek a dictionary D ∈ Rn1×c and a sparse
representation B ∈ Rc×n2 such that:

min
D,B
‖M−DB‖2F s. t. γi ≤ t for i = 1 . . . n2, (30)

where c is the number of atoms, γi counts the number of
non-zero elements in each sparsity code and t is the sparsity
constraint factor. This can be solved by the K-SVD algorithm
[45]. Here, feature U is the dictionary D and feature V
corresponds to a similar solution using the transpose of the
observation matrix as input. For implementation details, we
set c to 40, t to 40 and used 10 iterations for each subject.

As a visual illustration, two challenging cases are ex-
hibited in Figure6. For subject #2, it is clearly evident that
PCPSM and PCPSFM outperform the best existing methods
through the complete elimination of acquisition faults. More
surprisingly, PCPSFM even manages to restore the flash in
the pupils that is barely present in the side information.
For subject #34, PCPSM indubitably reconstructs a more
vivid right eye than that from PCP which is only discernible.
With that being said, PCPSFM still prevails by uncovering
more shadows, especially around the medial canthus of the
right eye, and revealing a more distinct crease in the upper
eyelid as well a more translucent iris. We further unmask
the strength of PCPSM and PCPSFM by considering the
stringent side information made of the average of 10 other
subjects. Surprisingly, PCPSM and PCPSFM still manage to
remove the noise and recover an authentic image (Figure6
(c.IV) and 6 (c.VII)). We also notice that PSSV, RPCAG,
FRPCAG do not improve upon PCP as in simluation ex-
periments. Thence, we will focus on comparisons with PCP,
LRR, PCPF only.

4.4 UV map completion

We concern ourselves with the problem of completing the
UV texture for each of a sequence of video frames. That is,
we apply PCPSM and PCPSFM to a collection of incomplete
textures lifted from a video. This parameter-free approach is
advantageous to a statistical texture model such as the 3D
Morphable Model (3DMM) [46], [47] by virtue of its diffi-
culty in reconstructing unseen images captured ’in-the-wild’
(using any commercial cameras in arbitrary conditions).

4.4.1 Texture extraction
Given a 2D image, we extract its UV texture by fitting the
3DMM. More specifically, following [48], three parametric
models are employed. These are a 3D shape model (31), a
texture model (32) and a camera model (33):

S(p) = s + Usp, (31)

T (λ) = t + Utλ, (32)

W(p, c) = P(S(p), c), (33)

where p ∈ Rns ,λ ∈ Rnt and c ∈ Rnc are shape, texture and
camera parameters to optimise; Us ∈ R3N×ns and Ut ∈
R3N×nt are the shape and texture eigenbases respectively,
with N being the number of vertices in the shape model;
s ∈ R3N and t ∈ R3N are the corresponding means of shape
and texture models, which are learnt from facial scans of
10000 individuals [47];P(s, c) : R3N → R2N is a perspective
camera transformation function. The complete cost function
for 3DMM fitting is:

min
p,λ,c
‖F(W(p, c))− T (λ)‖2 + βl‖W(p, c))− sl‖2

+ βs‖p‖2Σ−1
s

+ βt‖λ‖2Σ−1
t
, (34)

where F(W(p, c)) denotes the operation of sampling the
feature image onto the projected 2D locations. The second
term is a landmark term with weighting βl in order to
accelerate in-the-wild 3DMM fitting, where the 2D shape, sl,
is provided by [49]. The final two terms are regularisation
terms to counter over-fitting, where Σs and Σt are diagonal
matrices with the main diagonal being eigenvalues of the
shape and texture models respectively. Eq. 34 is solved by
the Gauss-Newton optimisation framework (see [48] for de-
tails). We empirically set βl = 105, βs = 3× 106 and βt = 1
following [50], [51]. Note that any landmark localisation
techniques [52] can be applied within our framework and

I

II

III

IV

V

VI

VII

VIII

Fig. 7. (row I) original sequences; (row II) random masks; (row III)
sample inputs; (row IV) side information; (row V) PCP; (row VI) PCPSM;
(row VII) LRR; (row VIII) PCPSFM.
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TABLE 1
Quantitative measures of UV completion by various algorithms on the

4DFAB dataset.

Subject #1 #2 #3 #4 #5
PSNR PCP 35.99

±0.79
26.75
±0.88

32.65
±0.88

31.33
±0.99

29.10
±1.68

(dB) PCPSM 39.56
±1.30

30.63
±1.47

34.66
±1.29

35.86
±1.85

32.80
±2.93

LRR 40.94
±2.13

30.69
±1.71

36.38
±2.10

35.94
±2.53

33.97
±3.93

PCPSFM 41.48
±2.06

31.46
±1.69

37.29
±2.37

36.60
±2.36

34.80
±4.14

SSIM PCP 0.973
±0.004

0.922
±0.012

0.962
±0.010

0.956
±0.007

0.949
±0.013

PCPSM 0.987
±0.004

0.952
±0.013

0.969
±0.010

0.981
±0.006

0.973
±0.013

LRR 0.990
±0.005

0.952
±0.013

0.975
±0.010

0.982
±0.007

0.978
±0.014

PCPSFM 0.991
±0.004

0.958
±0.013

0.979
±0.010

0.984
±0.007

0.981
±0.013

the visible mask of facial region is a natural product of the
3DMM fitting process.

4.4.2 Quantitative evaluation

We quantitatively evaluate the completed UV maps by our
proposed methods on the 4DFAB dataset [53]. 4DFAB is
the first 3D dynamic facial expression dataset designed for
biometric applications, where 180 participants are invited to
attend four sessions at different times. Hence, to complete
UV maps for one session, we can leverage images from
another session as side information. For each of 5 randomly
selected subjects, one dynamic sequence of 155 frames is
randomly cut from the second session. After vectorisation,
a 32556× 155 observation matrix is formed. To produce UV
masks of different poses, we rotate each face with different
yaw and pitch angles. The yaw angle ranges from −90◦

to 90◦ in steps of 6◦, whereas the pitch angle is selected
from {−10◦,−5◦, 0◦, 5◦, 10◦}. Therefore, for each subject,
a set of 155 unique masks are generated. We also tiled
one image of the same subject from the first session into
a 32556× 155 matrix as side information. U is provided by
the left singular vector of the original sequence while V is
set to the identity.

From Figure 7, we observe that (I) RPCA approaches
can deal with cases where more than 50% of the pixels
are missing; (II) imperfect side information (shaved beard,
removed earrings and different lightings) still help with
the recovery process. We record peak signal-to-noise ratios
(PSNR) and structural similarity indices (SSIM) between the
completed UV maps and the original maps in Table 1. It is
evident that with the assistance of side information, much
higher fidelity can be achieved. The use of imperfect side
information nearly comes on a par with perfect features.

4.4.3 Generative adversarial networks

More often than not, ground-truth U, V are not accessi-
ble to us for in-the-wild videos. Learning methods such
as (30) must be leveraged to acquire U or V. However,
(30) is not ideal: (I) it is not robust to errors of arbitrary
magnitude; (II) it cannot handle missing values; (III) it
requires exhaustive search of optimal parameters which

vary from video to video; (IV) it only admits greedy so-
lutions1. As a matter of fact, we can use GAN to produce
authentic pseudo ground-truth. Then we apply truncated
singular value decomposition to the vectorised frames and
use the obtained left and right singular vectors as U and V
subspace features respectively. Moreover, such completed
sequence provides us with good side information. For each
color channel, we average the video frames before tiling it
back to the original length. This resulting matrix is taken
as side information. For GAN, we employ the image-to-
image conditional adversarial network [55] (appropriately
customised) to conduct UV completion. Details regarding
the architecture and training of GAN can be found in the
supplementary materials.

4.4.4 Qualitative demonstration
To examine the ability of our proposed methods on in-
the-wild images. We perform experiments on the 300VW
dataset [56]. This dataset contains 114 in-the-wild videos
that exhibit large variations in pose, expression, illumina-
tion, background, occlusion, and image quality. Each video
shows exactly one person, and each frame is annotated with
68 facial landmarks. We perform 3DMM fitting on these
videos and lift one corresponding UV map for each frame,
where the visibility mask is produced by z-buffering based
on the fitted mesh. Side information is generated by taking
the average of the completed UVs from GAN. U and V are
assigned to the singular vectors of the completed texture
sequence from GAN.

We display results for one sample frame from each of 9
arbitrary videos in Figure 9 of the supplementary materials.
As evident from the images, GAN alone has unavoidable
drawbacks: (I) when 3DMM fitting is not accurate, GAN is
unable to correct such defects; (II) when the image itself
contains errors, GAN is unable to remove them. On the
other hand, PCP often fails to produce a complete UV.
PCPSM always produces a completed UV texture, which
is an improvement over PCP, but it generates undesirable
boundaries. Visually, LRR and PCPSFM have the best per-
formance, being able to produce good completed UVs for
a large variety of poses, identities, lighting conditions and
facial characteristics. This justifies the quality of subspaces
and side information from GAN for use in the robust PCA
framework. We also synthesise 2D faces of three different
poses using the the completed UV maps in Figure8.

4.5 Face recognition
Face recognition is a crucial element of biometrics [57], [58],
[59], [60], [61], [62], [63]. In this paper, we focus on the set-
based face verification, i.e. to decide whether two sets of
facial images are of the same person or not. One face set
could consist of one or multiple samples of the same person
(e.g. still images, or frames from a video of the person, or a
mixture of both). Therefore, traditional face verification is a
special case of the set-based face verification.

The simplest approach to the set-based face verification
problem is to generate a feature vector per image, aggregate

1. There is a variant of KSVD [54] that can fill holes which are smaller
than the size of the atoms. We evaluate it against our GAN-based
approach in Figure 3 and Table 1 of the supplementary materials.
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GAN PCP PCPSM LRR PCPSFM

Fig. 8. 2D face synthesis of three views (−45◦, 0◦, 45◦) from the completed UV maps by various methods.

them into one vector to represent the set (e.g. calculate the
feature centre by average), and then compute the cosine
similarity between sets. However, the combination rule of
averaging is oversimplified since not all face images in one
set are of equal importance. The features derived from a
profile face is probably of less importance than the features
coming from a frontal face as there is signal loss due to self-
occlusion under pose variations.

More specifically, we focus on pose-invariant face recog-
nition. Modern approaches to pose-invariant face recog-
nition include pose-robust feature extraction [64], multi-
view subspace learning [65], face frontalisation by synthesis
[51], etc [66]. Nonetheless, these methods often fall short
of expectations either due to fundamental limitations or
inability to fuse with other useful methods. For example,
Generalised Multi-view Analysis [67] cannot take account
of pose normalisation [68] or deep neural network-based
pose-robust feature extraction [69], and vice versa. Hence, it
is fruitful to provide a framework where information from
different perspectives can be fused together to deliver better
prediction.

We quantitatively evaluate our proposed fusion methods
by carrying out set-based face verification experiments. The
experiments are performed on four standard databases,
namely CFP [70], IJB [71], [72], [73], YTF [74] and PaSC
[75]. Evaluation results on these benchmarks will be given
in the next few sections. Overall, the proposed method

outperforms current state-of-the-art approaches [59], [60],
[76], [77], [78] by a large margin.

4.5.1 Face Feature Embedding
We employ ArcFace [79] with ResNet50 [80] as the back-
bone. The additive angular margin loss (m = 0.35) is used to
train a 512-D facial feature embedding model on the VGG2
training set [76], which contains 3,141,890 images from
8,631 identities. Following [79], we use five facial landmarks
(eye centres, nose tip and mouth corners) [81] to normalise
the face images by similarity transformation. The faces are
cropped and resized to 112 × 112. Figure 9 illustrates the
set-based face feature embedding used for face verification.
For one facial image set, we first extract 3D face shapes
and incomplete UV maps via 3DMM fitting [48]. Then, we
utilise the proposed UV completion methods (GAN [51],
PCP, PCPSM, LRR and PCPSFM) to derive completed UV
maps. Frontal faces are synthesised from the full UV maps
and the 3D shapes, which are then fed into the feature
embedding network. A set of 512-D features from the last
fully connected layer of network, is used to compute the
feature centre and eventually taken as the feature descriptor.

4.5.2 Evaluation Metrics
In this paper, we employ the standard 1:1 verification
protocol. The performance is reported by the true accept
(positive) rates (TAR) vs. false accept (positive) rates (FAR)
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Fig. 9. The proposed pipeline for video-based face recognition. The 3DMM [48] is fitted on the frames of the video and the incompleted UV maps
are estimated. The trained GAN [51] is then used to provide an initial estimate of the side information and the proposed methodology is applied to
generate the completed UV maps. The 3D model is reused to render the images in the frontal view. Deep neural network is used to extract features
from all frames and the average of the features is used to represent the video.

(from the receiver operating characteristics (ROC) curve).
Following [78], we are interested in the TAR values where
FAR=1e-4 and FAR=1e-5, which is also the security level
for financial applications. Apart from the ROC curve, we
also calculate the best threshold value from the positive and
negative pairs, and report the corresponding classification
accuracy for each method on the YTF dataset.

4.5.3 Ablation Experiments on CFP
The CFP dataset [70] consists of 500 subjects, each of which
has 10 frontal and 4 profile images. For each subject, we
construct four sets (with 3, 3, 4 and 4 faces respectively)
where each set includes at least one profile face. For set-
based face verification on CFP, we extensively compare all
possible 3, 000 positive pairs and 1, 996K negative pairs.

As shown in Table 2 and Figure 10, we compare the
proposed methods with several baseline methods. It can
be clearly observed that by leveraging subspace features or
side information from GAN (LRR/PCPSM), we ameliorate
the recognition results in terms of TAR over the vanilla PCP,
while a further boost in performance can be achieved when
both of them are considered together (PCPSFM). Compared
to the result of ArcFace, the proposed PCPSFM achieves a
TAR improvement of 1.7% at FAR=1e-5.
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Fig. 10. ROC curves on the CFP dataset.

4.5.4 Experiments on IJB
The IARPA Janus Benchmarks have been gradually enlarged
from IJB-A [71] to IJB-B [72] and IJB-C [73]. The IJB-A dataset
contains 5, 712 images and 2, 085 videos from 500 subjects,
with an average of 11.4 images and 4.2 videos per subject.

TABLE 2
Verification TAR on the CFP dataset, the higher TAR the better.

Method FAR=1e-6 FAR=1e-5 FAR=1e-4
ArcFace 0.901 0.950 0.989

GAN+ArcFace 0.905 0.957 0.991
PCP+ArcFace 0.902 0.953 0.990
LRR+ArcFace 0.911 0.963 0.993

PCPSM+ArcFace 0.907 0.961 0.991
PCPSFM+ArcFace 0.916 0.967 0.993

The IJB-B dataset is an extension of IJB-A, which contains
1, 845 subjects with 21.8K still images and 55K frames from
7, 011 videos. In total, there are 12, 115 templates with
10, 270 genuine matches and 8M impostor matches. The
IJB-C dataset is a further extension of IJB-B, having 3, 531
subjects with 31.3K still images and 117.5K frames from
11, 779 videos. In total, there are 23, 124 templates with
19, 557 genuine matches and 15, 639K impostor matches.
All images and videos from the IARPA Janus Benchmarks
are captured under unconstrained environment and show
large variations in expression and image qualities. Since IJB-
A has been superseded by IJB-B with its images being a
subset of IJB-B, we only report the results on IJB-B and IJB-
C.

In Figure11, we illustrate the ROC curves of the pro-
posed method against the baselines. We see that Arc-
Face [79] achieves strong performance. However, PCPSFM
further increases the performance through incorporating
feature subspace and side information even when there are
some low-resolution face images within the template. This
is because the proposed method can integrate information
from different face images within the template and there-
fore make the final template feature representation robust.
To conduct fair comparison with other methods [76], [77],
[78], no flip test and face detection scores are used during
evaluation even though both tricks are known to improve
the performance.

In Table 3 and 4, comparisons between the proposed
PCPSFM and the most recent methods [76], [77], [78],
[82], [83] are made. We can see from the results that the
baseline method, ArcFace [79], already achieves similar or
even better performance compared to the methods proposed
in [82], [83]. With the assistance of the proposed PCPSFM,
our method achieves the best result on both IJB-B and
IJB-C datasets outperforming counterparts [82], [83] even
with less identities in the training data and a smaller CNN
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embedding network.
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(a) ROC for IJB-B
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Fig. 11. ROC curves of 1:1 verification protocol on the IJB-B and IJB-C
dataset.

TABLE 3
1:1 verification TAR on the IJB-B dataset (Higher is better).

Method FAR=1e-4 FAR=1e-3
GOTS [72] 0.160 0.330

VGGFaces [60], [72] 0.550 0.720
FPN [83] 0.832 0.916

Light CNN [84] 0.877 0.920
Centre Loss [85] 0.807 0.900
Crystal Loss [82] 0.898 0.944

Whitelam et al. [72] 0.540 0.700
Navaneeth et al. [86] 0.685 0.830

ResNet50 [76] 0.784 0.878
SENet50 [76] 0.800 0.888

ResNet50+SENet50 [76] 0.800 0.887
MN-v [77] 0.818 0.902
MN-vc [77] 0.831 0.909

ResNet50+DCN(Kpts) [78] 0.850 0.927
ResNet50+DCN(Divs) [78] 0.841 0.930
SENet50+DCN(Kpts) [78] 0.846 0.935
SENet50+DCN(Divs) [78] 0.849 0.937

ArcFace [79] 0.899 0.945
GAN+ArcFace 0.904 0.949
PCP+ArcFace 0.901 0.947

PCPSM+ArcFace 0.907 0.951
LRR+ArcFace 0.909 0.952

PCPSFM+ArcFace 0.911 0.954

4.5.5 Experiments on YTF
The YouTube Face (YTF) dataset [74] consists of 3, 425
videos from 1, 595 different people. The clip duration varies
from 48 frames to 6, 070 frames. The average length is 181.3

TABLE 4
1:1 verification TAR on the IJB-C dataset (Higher is better).

Method FAR=1e-4 FAR=1e-3
Centre Loss [85] 0.853 0.912
Crystal Loss [82] 0.919 0.957

GOTS [72] 0.160 0.320
FaceNet [59] 0.490 0.660

VGG [60] 0.600 0.750
ResNet50 [76] 0.825 0.900
SENet50 [76] 0.840 0.910

ResNet50+SENet50 [76] 0.841 0.909
MN-v [77] 0.852 0.920
MN-vc [77] 0.862 0.927

ResNet50+DCN(Kpts) [78] 0.867 0.940
ResNet50+DCN(Divs) [78] 0.880 0.944
SENet50+DCN(Kpts) [78] 0.874 0.944
SENet50+DCN(Divs) [78] 0.885 0.947

ArcFace [79] 0.921 0.959
GAN+ArcFace 0.926 0.962
PCP+ArcFace 0.924 0.961

PCPSM+ArcFace 0.928 0.963
LRR+ArcFace 0.931 0.964

PCPSFM+ArcFace 0.934 0.965

frames. We follow the unrestricted with labelled outside data
protocol and report the results on 5, 000 video pairs (2, 500
positive pairs and 2, 500 negative pairs).

This dataset is very challenging not only due to the
rich pose variations but also the serious compression arti-
facts. We compare the performance of the proposed method
with current state-of-the-art approaches on the YTF dataset.
In Table 5, we list the verification accuracy for the best-
performing deep learning methods. We see that our GAN
model alone is among the best reported architectures and
it outperforms the classical PCP. Nonetheless, their fusion
(PCPSM, LRR and PCPSFM) is superior to either of them.
More specifically, PCPSM improves PCP and GAN by 0.12%
and 0.06% respectively. Regarding LRR, the improvements
over PCP and GAN are 0.16% and 0.10% respectively.
Overall, PCPSFM achieves the best result, i.e., 0.12% over
PCPSM and 0.08% over LRR. We also plot the ROC curves
for these methods in Figure 12. In Table 6, we list the TAR
values under different FAR values. The proposed PCPSFM
achieves highest TAR (83.0%) at FAR=1e-3. Arguably, the
proposed PCPSFM does improve the accuracy of video-
based face verification.

TABLE 5
Verification accuracy (%) of different methods on the YTF dataset.

Methods Images Acc (%)
DeepID [58] 0.2M 93.20

VGG Face [60] 2.6M 97.30
Deep Face [57] 4M 91.40
FaceNet [59] 200M 95.10

Center Loss [85] 0.7M 94.9
Range Loss [87] 1.5M 93.70
Sphere Loss [88] 0.5M 95.0

Marginal Loss [89] 4M 95.98
ArcFace 3.1M 97.52

GAN+ArcFace 3.1M 97.66
PCP+ArcFace 3.1M 97.60

PCPSM+ArcFace 3.1M 97.72
LRR+ArcFace 3.1M 97.76

PCPSFM+ArcFace 3.1M 97.84
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Fig. 12. ROC curves of the proposed methods on the YouTube Faces
database under the “restricted” protocol.

TABLE 6
Verification TAR on the YTF dataset (Higher is better).

Method FAR=1e-3 FAR=1e-2 FAR=1e-1
ArcFace 0.790 0.953 0.985

GAN+ArcFace 0.810 0.961 0.987
PCP+ArcFace 0.807 0.957 0.986

PCPSM+ArcFace 0.820 0.962 0.987
LRR+ArcFace 0.822 0.963 0.987

PCPSFM+ArcFace 0.830 0.965 0.988

4.5.6 Experiments on PaSC
The PaSC dataset [75] includes 9, 376 still images and 2, 802
videos from 293 people. The images are evenly split with
respect to the distance to the camera, alternative sensors,
frontal versus not-frontal views and different environments.
There are three protocols for face verification: comparing
still images to still images, videos to videos, and still images
to videos. Since we have conducted image-to-image and
video-to-video experiments in previous sections, we only
report image-to-video results on PaSC with the public eval-
uation toolkit.

As the PaSC dataset [75] includes static images and
videos of the same people, it is very interesting to explore
face verification performance between modalities: static im-
age to dynamic video. Simply put, given only a few images
of a person, can we verify this person in the subsequent
video that he/she is seen or claimed to be seen? To set up
this experiment, we prepare a query set of 1, 401 handheld
(or alternatively controlled) videos and a target set com-
prising of 9, 376 still images from 293 identities. Figure 13
presents the ROC curve of each method. In Table 7, we
report the TAR at different FARs. The proposed PCPSFM
significantly improves TAR from 82.4% to 85.7% at FAR=1e-
5. In [75], the baseline method only obtains TAR of 42% at
FAR=1e-2, whereas our method PCPSFM achieves TAR of
99.0% at FAR=1e-2.

5 CONCLUSIONS

In this paper, we study the problem of robust principal
component analysis with features acting as side informa-
tion in the presence of missing values. For the application
domain of UV completion, we also propose the use of
generative adversarial networks to extract side information
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Fig. 13. ROC curves of the proposed methods on the PaSC dataset.

TABLE 7
Verification TAR on the PaSC dataset (Higher is better).

Method FAR=1e-5 FAR=1e-4 FAR=1e-3
ArcFace 0.824 0.948 0.976

GAN+ArcFace 0.833 0.953 0.979
PCP+ArcFace 0.824 0.950 0.978

PCPSM+ArcFace 0.839 0.953 0.979
LRR+ArcFace 0.849 0.954 0.980

PCPSFM+ArcFace 0.857 0.956 0.981

and subspaces, which, to the best of our knowledge, is the
first occasion where RPCA and GAN have been fused. We
also prove the convergence of ADMM for our convex ob-
jective. Through synthetic and real-world experiments, we
demonstrate the advantages of side information. In virtue
of in-the-wild data, we corroborate our fusion strategy.
Finally, face recognition benchmarks accredit the efficacy
of our proposed approach over state-of-the-art methods.
Further works include extending our approaches to new
application domains, such as pose estimation and gender
estimation [90].
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