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Principal Component Analysis With Complex Kernels

Athanasios Papaioannou, Student Member, IEEE, Stefanos Zafeiriou, Member, IEEE,

Non-linear complex representations, via the use of complex kernels,
can be applied to model and capture the nonlinearities of complex
data. Even though, the theoretical tools of Complex Reproducing Kernel
Hilbert Spaces (CRKHS) have been recently successfully applied to the
design of digital filters and regression and classification frameworks
there is limited research on component analysis and dimensionality
reduction in CRKHS. The aim of this paper is to properly formulate the
most popular component analysis methodology, i.e. Principal Component
Analysis (PCA), in CRKHS. In particular, we define a general Widely
Linear Kernel Complex PCA (WLCKPCA) framework. Furthermore, we
show how to efficiently perform Widely Linear PCA (WLPCA) in small
sample sized problems. Finally, we show the usefulness of the proposed
framework in robust reconstruction using Euler data representation.

Index Terms—Principal Component Analysis, Complex Kernels, Pat-
tern Recognition, Machine vision

I. INTRODUCTION

PRINCIPAL component analysis (PCA), which appeared first
in [1], is one of the most widely used data analysis tool for

dimensionality reduction, lossy data compression, feature extraction
and data visualization [2]. Arguably, the application of PCA to face
representation and dimensionality reduction [3] was the starting point
for the vast development of the very popular field of component
analysis and subspace learning [4]–[8].

PCA is used to transform a number of observed correlated variables
into a smaller number of uncorrelated ones, which account for as
much of the total variance as possible. The PCA is originally defined
on real-valued random variables [9]. However, complex data arise
in many applications such as analysis of signal from radars, sonars,
image processing etc. Recently, there is a lot of research towards
developing neural networks with complex data [10]–[13]. In the
case of PCA, in order to deal with complex-valued data, the direct
extension of real PCA was firstly proposed, the so-called Circular
Complex Principal Component Analysis (CCPCA) [14], [15]. In
CCPCA only the Hermitian covariance matrix is taken into account
and hence the information of the pseudo-covariance matrix is not
taken into consideration. The underlying assumption of CCPCA is
that the data are proper and circular1. In order to amend this and
exploit the general non-circularity of complex data [17], [18] a
Widely Linear PCA (WLPCA) was proposed in [15]. In [15] only
the case that the signal dimensionality is smaller than the number
of samples was considered. Recently, a Probabilistic Complex Non-
circular PCA (PCNCPCA) [19] was proposed by formulating and
solving a Maximum Likelihood (ML) optimization problem. The
PCNCPCA, even though it does not assume a widely linear model,
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1A complex random signal is proper if it is uncorrelated with its complex
conjugate. A signal is circular iff x and x′ = ejαx have the same probability
distribution for any given real α [16]

it takes into account the pseudo-covariance matrix. Furthermore, due
to its probabilistic nature it explicitly models data noise but does not
have a closed form solution (i.e., optimization is performed using
gradient descent rules), converges to a local optimum and, hence
needs careful data initialization.

The majority of the complex PCA [15], [16] approaches proposed
assume linear data dependencies. But, in many applications non-linear
data dependencies naturally arise. The non-linear nature of various
phenomena constituted the extension of real PCA to kernel PCA [20]
one of the most popular methodologies for non-linear dimensionality
reduction and feature extraction. To the best of our knowledge, even
though nonlinear complex kernels have been recently studied for the
design of digital filters and regression frameworks [21]–[23], very
limited research has been conducted on non-linear component anal-
ysis using positive definite complex kernels and in the limited work
conducted circularity was always assumed [24], [25]. In this paper
we aim at advancing the state-of-the-art by formulating a general
Widely Linear Complex Kernel PCA (WLCKPCA) methodology. In
particular the contributions of the paper are

• we formulate the general framework of performing PCA using
the widely linear model in Complex Reproducing Kernel Hilbert
Spaces (CRKHS).

• we show how, by using this framework, WLPCA can be per-
formed in Small Sample Size (SSS) problems (i.e., where the
data dimensionality M is significantly greater than the number
of training samples N ). SSS problems often arise in computer
vision problems such as image reconstruction and recognition
where number of image’s pixels is much greater than number
of images, namely M ≫ N .

• we show that by using the proposed WLPCA models and a
newly proposed complex robust kernel state-of-the-art results
can be achieved in face reconstruction.

The remainder of the paper is organized as follows. In Section
II, we briefly describe the theory of Reproducing Complex Kernel
Hilbert Spaces (RKHS). In Section III, we discuss circular complex
PCA in RCKHS. In section IV, we formulate the proposed widely
linear PCA model in RCKHS. In Section V, we show how in the case
of a special kernel where the non-linear mapping to the feature space
is known, robust reconstruction can be performed by the proposed
widely linear PCA model. Experimental results are described in
Section VI. Finally, conclusions are drawn in Section VII.

II. COMPLEX RKHS

The theory of Reproducing Kernel Hilbert Spaces was generally
defined using both real and complex kernels [26]. Even though,
frameworks for Complex Kernel Least Mean Squares (CKLMS)
[21], [27] and for Support Vector Machines (SVMs) [28] have been
proposed, there is very limited work on component analysis and
subspace learning with complex kernels and in the limited studies
circularity of the data was assumed [24], [25], [29]. Before defining
the proposed WLKPCA model we will make a brief introduction on
complex RKHS focusing on the differences between the pure real
space.

Let C be the set of complex numbers. Let a function k : CM ×
CM → C (CM is the so-called input space) with k(xi,xj) =
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k∗(xj ,xi) where xi,xj ∈ CM and ∗ is the complex conjugation in
C. Let us assume a finite set T = {x1, . . . ,xN} with xi ∈ CM . Let
us also define the Hermitian matrix K = [k(xi,xj)] ∈ CN×N . K is
positive semi-definite (psd) iff for all c ∈ CN it satisfies cHKc ≥ 0,
where H is the Hermitian transposition operation. The kernel k is
psd iff for all sets T the corresponding kernel matrix K is psd.

Similar to the case of real kernels a complex kernel can define an
arbitrary dimensional complex Hilbert space F (F is the so-called
feature space and we assume that it is isomorphic with CF with
F ≫ M ) and a function ϕ : CM → F 2 such that ϕ(x) = k(·,x)
(reproducing property). The norm and inner product in F is defined
by means of k as ⟨ϕ(x), ϕ(y)⟩H = k(y,x) = ϕ(y)Hϕ(x).
The inner product is sesquilinear (i.e., linear in one argument and
antilinear in the other) and Hermitian the following hold (this is not
the case for real kernels)

⟨aϕ(x) + bϕ(z), ϕ(y)⟩H = a⟨ϕ(x), ϕ(z)⟩H
+b⟨ϕ(z), ϕ(y)⟩H

⟨ϕ(x), aϕ(y) + bϕ(z)⟩H = a∗⟨ϕ(x), ϕ(y)⟩H
+b∗⟨ϕ(x), ϕ(z)⟩H

⟨ϕ(x), ϕ(y)⟩∗H = ⟨ϕ(y), ϕ(x)⟩H.

(1)

Some complex kernel which properties have been studied are
the Szego and Bregman kernels [30]. Another interesting kernel
is complex Gaussian kernel k(z,w) = exp−

∑M
i=1(zi−w∗

i )
2

σ2 [27],
[31]. Methods for complexifying real kernels such as the linear
kernel, the polynomial kernel, the Gaussian kernel [32], [33] have
been proposed. Recently, complex kernels have been proposed in the
literature that can efficiently compute the dot product between two
vectors with arbitrary number of linear complex filter responses (i.e,
in this case ϕ(x) and ϕ(y) is the vector with arbitrary number of
linear responses). For this particular kernel there is a closed-form
solution given by ϕ(x) = H1/2f(x) where H is a matrix which
contains the sum of the power spectrum of the filters and f(x) is
the 2D Discrete Fourier Transform (DFT) of the vectorized image
x [34]. Another category of recently introduced complex kernels
are the robust kernels proposed in [24], [25] and are defined as
k(x,y) =

∑
k exp(απj(xi−yj)). This particular kernel has a closed

form feature space representation

ϕ(x) =
1√
2
exp(jαπx) =

1√
2

 ejαπx1

...
ejαπxM

 (2)

where the elements 0 ≤ xi ≤ 1 and for 0 ≤ a < 2 the mapping ϕ
is invertible and the invert is given by x = 1

πa
∠ϕ(x).

In the following we will briefly describe how Circular Complex
Kernel PCA (CCKPCA) is formulated. Then, we will formulate a
widely linear model for PCA with complex kernels. Before let us
define the kernels matrices that we use hereafter. First, let us define
the centralized kernel matrix K̃ as

K̃ = [⟨ϕ(xi)−mϕ, ϕ(xj)−mϕ⟩H]

= ⟨ϕ(xi), ϕ(xj)⟩H − 1
N

∑N
k=1⟨ϕ(xi), ϕ(xk)⟩H−

− 1
N

∑N
k=1⟨ϕ(xk), ϕ(xj)⟩H + 1

N2

∑N
k=1

∑N
l=1⟨ϕ(xk), ϕ(xl)⟩H

= (I− 1
N
E)K(I− 1

N
E)

(3)
where E = [1] and mϕ = 1

N

∑
i ϕ(xi). Furthermore, assuming that

the data in T are ordered in a matrix Xϕ = [ϕ(x1), . . . , ϕ(xn)],
then K = XH

ϕ Xϕ. Similarly, assuming the centralized matrix X̃ϕ =

[ϕ(x1)−mϕ, . . . , ϕ(xN )−mϕ] = Xϕ(I− 1
N
E) then K̃ = X̃H

ϕ X̃ϕ.

2function ϕ can be explicit or implicit depending on the choice of the kernel

Finally, we will encounter the following vectors g(t) and g̃(t) as
g(t) = XH

ϕ ϕ(t) = [k(t,xi)] and

[g̃(t)]j =
[
X̃H

ϕ (ϕ(t)−mϕ)
]
j

= k(t,xj)− 1
N

∑N
i=1 k(t,xi)

− 1
N

∑N
k=1 k(xk,xj) +

1
N2

∑N
k=1

∑N
l=1 k(xk,xl).

(4)
From the above equations, we can conclude that g(t) and g̃(t) can
be computed using only kernel k.

III. CIRCULAR PRINCIPAL COMPONENENT ANALYSIS WITH

COMPLEX KERNELS

Let us assume set T and a complex positive definite kernel k which
defines an explicit or implicit mapping ϕ() to an CRKHS F . We can
define the total scatter matrix in F

Sϕ =

N∑
i=1

(ϕ(xi)−mϕ)(ϕ(xi)−mϕ)
H = X̃ϕX̃

H
ϕ . (5)

In CCPCA a set of bases Uϕ in F should be found by solving the
following optimization problem

Uϕ = argmax
Uϕ

tr[UH
ϕ SϕUϕ]

subject to UH
ϕ Uϕ = I

(6)

Since, the dimensionality of F is larger than N , subspace Uϕ can be
always written as a linear combination of X̃ϕ as Uϕ = X̃ϕV, where
V ∈ CM×N . Hence optimization problem (6) can be reformulated
as

Vo = argmax
V

tr[VHX̃H
ϕ X̃ϕX̃

H
ϕ X̃ϕV]

subject to VHK̃V = I.
(7)

or equivalently

Vo = argmax
V

tr[VHK̃2V]

subject to VHK̃V = I.
(8)

Computing the derivatives with regards to V and V∗ and the
Lagrange multiplies of the constraint we get that the solution of
the problem is given by performing eigenanalysis on the centralized
kernel matrix K̃ = X̃H

ϕ X̃ϕ = MΛMH and Uϕ = X̃ϕMΛ− 1
2 .

Feature extraction can be easily computed using only k

y = UH
ϕ (ϕ(t)−mϕ)

= Λ− 1
2MHX̃H

ϕ (ϕ(t)−mϕ)

= Λ− 1
2MH g̃(t)

(9)

where g̃(t) can be computed by (4).

IV. WIDELY LINEAR PRINCIPAL COMPONENT ANALYSIS WITH

COMPLEX KERNELS

The above complex PCA is optimal under a noise model of
a circular Gaussian. That is, it uses only the information of the
covariance Σϕ = X̃ϕX̃

H
ϕ , assuming that the pseudo-covariance

Cϕ = X̃ϕX̃
T
ϕ is zero [17] [35]. In the following, in order to exploit

the information of the pseudo-covariance we extent the widely linear
PCA proposed in [36] in arbitrary CRKHS. The proposed extension
also provides a methodology for performing a widely linear PCA
in SSS problems. First, we show how arbitrary psd complex kernels
can be efficiently incorporated. This leads to an implementation of
Widely Linear Complex PCA (WLCPCA) of O(N3) complexity. The
proposed methodology can be also applied in the case of the linear
kernel (i.e., k(x,y) = yHx) to perform a widely linear PCA in
O(N3) (instead of the algorithm of O(M3) proposed in [36]).

We incorporate the pseudo-covariance information by augment-
ing the complex random signal with its complex conjugate in the
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CRKHS. To do so, in order to ease the derivations let us define z(xj)
or simply zj as zj = ϕ(xj) − mϕ in F and define the augmented
signal

zj , 1√
2

[
ϕ(xj)−mϕ

ϕ∗(xj)−m∗
ϕ

]
=

1√
2

[
zj
zj

∗

]
∈ C2F

∗ (10)

Before proceeding to the construction of the algorithm, we need to
define the following real and imaginary parts of the complex mapped
vector zj

zrj = Real[zj ] ∈ RF

zcj = Imag[zj ] ∈ RF (11)

and the real composite vector z̃j which is obtained by stacking zrj
on zcj

z̃j ,
[

zrj
zcj

]
∈ R2F (12)

We can build the vector zj using matrices zrj and zcj via the use of
a 2F × 2F unitary matrix

TF =
1√
2

[
IF jIF
IF −jIF

]
(13)

where IF is an F × F identity matrix. It is easy to verify that
TH

F TF = TFT
H
F = I. Having defined TF we can build

zj =
1√
2

[
zj
z∗j

]
= TF

[
zrj
zcj

]
= TF z̃j (14)

The main matrices that will be used in the analysis are summarised
in the below table.

Summary of used symbols
Σz̃z̃ covariance matrix of the real composite

vector Xz̃X
T
z̃ =

EV D
WϕΛWT

ϕ

Σzz augmented covariance matrix
XzX

H
z =

EV D
UϕΛUϕ

H =
AEV D

UϕLUϕ

K̃R centralized kernel of the real compos-
ite vector XT

z̃ Xz̃ = Real[K̃] =
EV D

ΞΛΞT

Ξ eigenvectors of K̃R

Λ eigenvalues of K̃R

Wϕ eigenvectors of Σz̃z̃, Wϕ =

Xz̃ΞΛ− 1
2

Uϕ eigenvectors of Σzz , Uϕ = TFWϕ

Uϕ augmented eigenvectors of
Σzz ,Uϕ = UϕT

H
N
2

Let us define the covariance matrix of the real composite vector
z̃j

Σz̃z̃ =
1

N

n∑
j=1

z̃j z̃
T
j = Xz̃X

T
z̃ =

[
Σrr Σrc

ΣT
rc Σcc

]
(15)

where Σrr = XzrX
T
zr , Σcc = XzcX

T
zc , Σrc = XzrX

T
zc , Xz̃ =√

1
n
[z1 . . . zN ], Xzr =

√
1
N
[zr1 . . . z

r
N ] and Xzc =

√
1
N
[zc1 . . . z

c
N ].

Using the unitary transform in (13) the augmented covariance matrix
of the complex augmented random vectors zj can be defined as

Σzz = 1
N

∑N
j=1 zjz

H
j = XzX

H
z

=

[
Σzz Czz

C∗
zz Σ∗

zz

]
= TFΣz̃z̃T

H
F

(16)

where Σzz = 1
N

∑N
j=1 zjz

H
j is the covariance matrix and Czz =

1
N

∑N
j=1 zjz

T
j is the complementary covariance matrix or relation

[18] or pseudo-covariance matrix [14]. The corresponding problem
is to find a projection matrix Uϕ such that

Uϕ = argmax
U

tr[UH
ϕ ΣzzUϕ]

subject to UH
ϕ Uϕ = I.

(17)

In order to solve the above optimization problem we need to perform
eigenvalue decomposition (EVD) to the augmented covariance matrix
Σzz . This matrix can be written using EVD as follows:

Σzz = UϕΛUH
ϕ (18)

where UH
ϕ Uϕ = I

In the following we will show how to find the positive eigenvalues
of this matrix and represent Uϕ as a linear combination of the
augmented vectors z as Uϕ = XzV.

In order to compute V we exploit the relationship between Σzz
and Σz̃z̃ from (16). First, we exploit the relationship between the
eigenvalues of Xz̃X

T
z̃ and XT

z̃ Xz̃. That is, based on linear algebra we
can show that these matrices have the same positive eigenvalues [24]
and the corresponding eigenvectors are related by Wϕ = Xz̃ΞΛ− 1

2

where Ξ and Λ are the eigenvectors and eigenvalues of

K̃R = XT
z̃ Xz̃ = XT

zrXzr +XT
zcXzc

= Real[K̃] = ΞΛΞT (19)

where K̃ is the centralized kernel matrix in (3) and Wϕ are the
eigenvectors of Σz̃z̃.

The eigenvalues and eigenvectors of the augmented matrix can be
shown that are related with the respective eigenvalues and eigenvec-
tors of the matrix Σz̃z̃ as follow

Σzz = XzX
H
z

= TFXz̃X
T
z̃ T

H
F

= TFWϕΛNWT
ϕT

H
F

= UϕΛNUϕ
H

(20)

where Uϕ
HUϕ = I.

The above Eq. 20 summarizes the relationship of the spectrum of
Σz̃z̃ in the real domain with Σzz in complex domain. Furthermore,
it was made apparent that in order to perform eigenanalysis to these
two matrices we have just to calculate eigenvalues and eigenvectors
of kernel matrix K̃R.

Since we want to derive a Widely Linear model as in [15], we
need to arrange eigenvalues (and accordingly eigenvectors) in an
augmented manner, using an Augmented Eigenvalue Decomposition
(AEVD) which not only provides a more condensed representation
but also improves the result [36].

Now we will attempt to relate AEVD with our previous computa-
tions of Σzz and Σz̃z̃

Σzz = TFΣz̃z̃T
H
F

= TFWϕΛNWT
ϕT

H
F

= TFWϕT
H
N
2
TN

2
ΛNTH

N
2
TN

2
WT

ϕT
H
F

= UϕLU
H
ϕ

(21)

where
Uϕ = TFWϕT

H
N
2
= UϕT

H
N
2

(22)

and
L = TN

2
ΛNTH

N
2
=

[
Λ1 +Λ2 Λ1 −Λ2

Λ1 −Λ2 Λ1 +Λ2

]
(23)

where Λ1,Λ2 contain the eigenvalues of Σz̃z̃ ordered as

Λ1 = Diag(λ1, λ3, · · · , λ2k−1) (24)

Λ2 = Diag(λ2, λ4, · · · , λ2k) (25)

where k = N/2,
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Having an expression for Uϕ and choosing k ≤ N/2 we can
perform feature extraction from a test sample as

yWL = UH
ϕ z(t)

= TH
k WT

ϕT
H
F z

= TH
k Λ

− 1
2

2k ΞT
2kX

T
z̃ T

H
F z

= TH
k Λ

− 1
2

2k ΞT
2kX

H
z z

= TH
k Λ

− 1
2

2k ΞT
2kReal[g̃(t)]

(26)

where g̃(t) is computed by (4).

V. RECONSTRUCTION WITH WIDELY LINEAR KERNEL PCA

In the previous section we showed how dimensionality reduction
can be computed using widely linear kernel PCA for arbitrary psd
complex kernels. One of the main uses of PCA is to perform robust
reconstruction [24], [37]–[39]. Unfortunately, for arbitrary complex
kernels reconstruction would require inversion of, the unknown and
not computable function, function ϕ which is, in generally, infeasible.
One way to deal with this is to resort to the problem of pre-image
computation (requires the solution of separate optimization problem)
[24], [40], [41]. Recently, a robust kernel, defined in (2), has been
proposed based on the Euler representation of data for which a simple
and analytic pre-image computation exists [24]. In the following, we
show how the above framework can be applied to perform robust
image reconstruction in the case of the Euler kernel (2).

To reconstruct a test vector t using the augmented components Uϕ

of the widely linear representation we need to exploit the properties of
the widely linear transform [36]. The augmented component matrix
Uϕ = TpXz̃ΞpΛ

− 1
2

p TH
p
2

has the following block pattern

Uϕ =

[
U1 U2

U∗
2 U∗

1

]
(27)

The reconstruction of the augmented test image t can been performed
as

ẑ(t) = Uϕ UH
ϕ z(t)

=

[
U1 U2

U∗
2 U∗

1

] [
UH

1 UT
2

UH
2 UT

1

]
z

=

[
U1U

H
1 +U2U

H
2 U1U

T
2 +U2U

T
1

U∗
2U

H
1 +U∗

1U
H
2 U∗

2U
T
2 +U∗

1U
T
1

]
z(t)

(28)
From above we can conclude that

ẑ(t) = (U1U
H
1 +U2U

H
2 )z(t) + (U1U

T
2 +U2U

T
1 )z

∗(t) (29)

and the reconstructed image t̃ can be given by 1
πa

∠ẑ(t). An inter-
esting property of widely linear PCA approaches is that they provide
features up to k < N/2 (while circular and other PCA variants up
to N ) [36]. In that way, since it allows a kind of multiplexes of the
components, produces more condensed representations. The complete
algorithm for learning the subspace and reconstructing using the
widely linear kernel PCA for the kernel in (2) is given in Algorithm
1.

Algorithm 1 WIDELY LINEAR KERNEL PCA WITH EU-
LER KERNEL
Input: A set of n images Ij , j = 1, . . . , of M pixels, the
number m of principal components and parameter α.
Output: The principal subspace Uϕ and eigenvalues Σ.

1) Represent Ij in the range [0, 1] and obtain xj by writing
Ij in lexicographic order.

2) Compute zj ; using (2) and (10) form the augmented
matrix of the transformed data Xz ∈ C2M×N

3) Compute the kernel matrix K = [k(xi,xj)] and find the
eigendecomposition of KR = Real[K] = ΞΛΞH .

4) Find the m-reduced set, Ξm ∈ Cm×N and Λm ∈
Rm×m.

5) Compute Uϕ = XzΞmΛ
− 1

2
m TH

m
2

=

[
U1 U2

U∗
2 U1

∗

]
.

6) Reconstruct a test sample t first by using the widely
linear model (29) .

7) Fast pre-image computation: go back to the pixel domain
using t̃ = ∠z̃(t)

απ

VI. EXPERIMENTAL RESULTS

One of the main applications of PCA is to perform robust recon-
struction. In this section we evaluate and assess the robustness of the
proposed widely linear PCA using the Euler kernel for the application
on image de-noising based on subspaced-based image reconstruction.

For comparison, we select a number of standard and state-of-the-
art approaches such as PCA, R1-PCA [37], PCA-L1 [38], HQ-PCA
[39] and Euler PCA [24] (the last approach is the circular alternative
of the proposed widely linear model). We use the same parameters
and the same convergence for R1-PCA, PCA-L1, HQ-PCA as in [24].

Our data consists of a subset of the popular AR database [42]. In
particular, we use a total of 100 images of size 101×91 of different
subjects as shown in Fig. 1. Furthermore, the XM2VTS database [43]
is used. We use a total of 295 images of size 101× 91 of different
subjects as shown in Fig. 2.

Fig. 1. Cropped example images from AR database.

Fig. 2. Cropped example images from XM2VTS database.

For corruption we used skin-like occlusions. We created two
different sets. In the first one we corrupted randomly 10% of images
and in the second on 50%. As in [24], we occlude a subset of the
training data with hand signs of the American fingerspelling alphabet.
Examples of the corrupted images can be seen in the Fig. 3. The
chosen letter, its orientation and its position are randomized, and the
skin color is adjusted to fit the subject.

Our evaluation is based on the the angular error [37]. Angular error
between the corrupted subspace Bcor and the uncorrupted subspace
Borig = [borig

1 · · ·borig
m ] ∈ Rp×m is used as follows

ea(m) = m−
m∑
l=1

m∑
s=1

cos2
(
borig
l ,bcor

s

)
. (30)
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Fig. 3. Corrupted example images from AR database.

In the following, expect for the proposed widely linear PCA,
we used up to k = 50 components. Since, in our methodology
components are multiplexed we allowed up to 25 components (which
is exactly equivalent with using 50 in other methods). In all figures
the error rate is plotted versus the number of components (up to
50). For visualization purposes we show the performance of our 25
components in the same scale (i.e., in the corresponding graphs 10
components means 5, 20 means 10, 50 correspond to 25 and so on).

Fig. 4 shows the angular error for the AR database. HQ-PCA
and PCA-L1 perform the worst, especially when we have 10% of
occluded images. For the first 30 components, HQ-PCA is worse
than PCA-L1. For more than 30 components, HQ-PCA outperforms
PCA-L1. The other four methods performs similarly well. It can be
said that Euler PCA and Widely Linear PCA perform slightly better
than R1-PCA and standard PCA. It seems that Widely Linear PCA’s
performance is almost the same with Euler PCA’s performance, where
in some components Widely Linear PCA is better (e.g. for 25 and 35
components in the case of 10% of occluded images) while in some
other components Euler PCA outperforms Widely Linear PCA(e.g.
for 15 and 45 components in the case of 10% of occluded images).
We conclude to the same results as previous if we see the angular
error for the XM2VTS database in Figure 5. Again, HQ-PCA and
PCA-L1 perfom the worst while the other methods achieve a similar
performance.

Finally, visual reconstructions for some images and for all the
tested methods and for the same number of components are shown
in Fig. 6. As can be seen, the proposed widely linear PCA produces
visually the best reconstruction.

VII. CONCLUSION

In this brief we showed, theoretically, how to perform widely linear
PCA with complex kernels. A byproduct of our analysis is also the
solution of widely linear PCA in small sample size (SSS) problems
(ie., where the data dimensionality is larger than the available sam-
ples. We applied the proposed analysis to a recently proposed robust
complex kernel. Empirical results showed the proposed widely linear
kernel PCA framework not only outperforms its circular counterpart
but many state-of-the-art robust PCA methodologies. Future work on
the topic includes the extension of pre-image based reconstruction
techniques for arbitrary complex kernels.
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Fig. 4. Angular error with different rates of occluded images of AR database. In subfigure (a), 10% of images are selected randomly and corrupted by adding
the skin occlusion, where in subfigure (b) half of the images are corrupted. Here, the mean value over 3 executions with different random patches is shown.
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Fig. 5. Angular error with different rates of occluded images of XM2VTS database. In subfigure (a), 10% of images are selected randomly and corrupted
by adding the skin occlusion, where in subfigure (b) half of the images are corrupted. Here, the mean value over 3 executions with different random patches
is shown. Variance is indicated by error bars.
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Fig. 6. Reconstruction of PCA, PCA-L1, R1-PCA, HQ-PCA, EULER-PCA and Widely Linear PCA after learning with 50% hand occluded images in AR
database.


