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Abstract. In this paper we study the feasibility of using standard de-
formable model fitting techniques to accurately track the deformation
and motion of the human eye. To this end, we propose two highly de-
tailed shape annotation schemes (open and close eyes), with +30 fea-
ture landmark points, high resolution eye images. We build extremely
detailed Active Appearance Models (AAM), Constrained Local Models
(CLM) and Supervised Descent Method (SDM) models of the human eye
and report preliminary experiments comparing the relative performance
of the previous techniques on the problem of eye alignment.
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1 Introduction

In recent years, the automatic analysis of facial images and video has attracted
a lot of interest from the computer vision and machine learning research com-
munities [1].

Within this context, eyes have proven to be among the most discriminative
regions of the human face providing, for example, a reliable source of biometric
information for face identification and recognition. On the same page, psychol-
ogist have reported strong evidence that the behaviour and movement of the
eyes has strong connections with the brain cognitive processes [2] and offer im-
portant cues to understand the subtleness of facial behaviour [3]. On the other
hand, gaze tracking is known to play an important role in the design of successful
applications in human-computer interaction [4].

Consequently, the development of generic eye alignment algorithms capable
of localizing and discriminating between different eye regions and capable of ac-
curately describing the deformation and motion of the eyes is essential for the
development of future human-centred-interfaces. For example, effective and reli-
able eye alignment is typically the first step in any deception and concealment-of-
intent detection systems due to the proven correlation between eyelid movement
and intentional deceit [5].

However, despite recent advances [6,7,8,4,9], accurate and robust eye align-
ment in unconstrained scenarios remains an extremely challenging task. The
main difficulty arises from the very diverse appearance of eyes caused by both
anatomical differences between individuals (Figure 1a) and the high deformabil-
ity and fast movement of the different eye components (Figure 1b). Moreover,
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(a) Anatomic.

(b) Motion.

(c) In-the-wild.

Fig. 1: Appearance variability of eyes.

other factors such as different illumination conditions, head pose and partial oc-
clusion contribute to increase the appearance variability of the eyes in in-the-wild
images (Figure 1c).

In this paper, we study the feasibility of using standard deformable model
fitting techniques, such as Active Appearance Models (AAM) [10,11] and Con-
strained Local Models (CLM) [12], as well as the recently proposed Supervised
Descent Method (SDM) [13], to accurately track the deformation and motion of
the human eye. To this end, we propose two highly detailed shape annotation
schemes (open and close eyes), with +30 feature landmark points, for annotating
high resolution eye images. Using the previous schemes, we build extremely de-
tailed eye models and conduct a preliminary study comparing the performance
of the previous three techniques on the problem of eye alignment.

The remainder of the paper is structured as follows. Section 2 reviews prior
work on eye tracking. Our newly proposed annotation schemes for open and close
eyes are describe in Section 3. Section 4 offers a quick overview of the different
deformable model fitting techniques considered in the paper, i.e. AAM, CLM
and SDM. Experimental results are presented in Section 5 and conclusions are
drawn in Section 6

2 Prior Work

A largely diverse number of approaches, ranging from simple techniques based on
the application of edge detectors and Hough transform [6,7] to more sophisticated
model-based approaches [9,4], have been used to solve the eye alignment problem.

The two closest works to the approach present in this paper are the ones of
Moriyama et al. [4] and Orozco et al. [9]. The authors of [4] propose a 2D handly-
crafted parametrised generative eye shape model inspired by the anatomical
structure of the human eye. Their approach requires manual initialization for
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the eye’s texture. Fitting the previous eye model to a novel image is posed as an
image alignment problem within the standard Lucas Kanade framework.

On the other hand, the authors of [9] propose an on-line appearance-based
tracker that automatically adapts to changes in eye texture. They use a parametrised
shape model based on a hand-crafted standard designed by the computer anima-
tion industry (Face Animation Parameters (FAP)). Fitting of their eye model
is posed as a gradient descent optimization problem. Their approach requires
careful manual initialization to ensure that the model gradually learns a useful
representation of the eye texture.

Conversely, the models used in this paper make less assumption with respect
to the shape and texture of the eyes since both of them are (either explicitly
or implicitly) statistically learned from training data. Moreover, they can be
automatically initialize using the coarse initialization provided by an off-the-
shelf eye detector, removing the need for manual initialization. On the other
hand, these thechniques rely on the availability of annotated training data.

3 Eye Model

Eyes are highly deformable organs that can be decomposed in several different
parts [4] (Figure 3). Some of this parts might become partially or completely
occluded by others due to the natural motion of the eyes. For example, on the
open right eye images in Figure 1b all five different regions: upper lid, lower lid,
sclera, iris and pupil are visible. In contrast, on the half-open and closed right
eye images on the same figure, only the some of the previous parts are visible
and the rest are naturally occluded.

In order to fit eyes using standard deformable model fitting techniques, one
needs to define the shape of the object being modeled explicitly, as a set of feature
landmark points. While this might be simple for some objects (e.g. frontal faces
or rear cars), the self-occluding nature of the eyes produces drastic changes in
their appearance making the definition of a single set of feature landmark points
non trivial.

In this work, we propose to solve the previous problem by differentiating
between full/half-open eyes and close eye and use two different sets of landmarks
to describe the shape of the eyes in both of these states. Note that, although the
open/half-open eye landmarks are adequate to describe most of the eye motion
they cannot deal with the singularity that a close eye represents (it would be
indeed very difficult to annotate close eye images using the set of landmark
points describing the shape of full/half-open eyes).

A direct consequence of the previous decision is that all deformable model
fitting techniques will need to differentiate between full/half-open eyes and close
eyes. Hence, given a novel eye image this techniques will need to fit both full/half-
open eye and close eye models to the image and evaluate the correctness of each
model using a particular score metric. In this paper, we use a simple Support
Vector Machine (SVM) classifier to determining the correctness of each model.
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(a) Upper eyelid (b) Lower eyelid (c) Sclera (d) Iris (e) Pupil

Fig. 2: A possible decomposition of eyes in different parts.

(a) Full/half-open eye (b) Close eye

Fig. 3: Full/half-open and close eye feature landmarks points.

Full/Half-Open Eye Model. The shape of full/half-open eyes is described by
set of 38 feature landmarks points annotating the five different eye regions depict
in Figure 3, i.e. (i) upper eyelid, (ii) lower eyelid, (iii) sclera, (iv) iris and, (v)
pupil. A detailed diagram with the specific meaning of each landmark is shown
in Figure 3a.

Close Eye Model. To describe the shape of close eyes 17 feature landmark
points are used. Note that, the upper and lower eyelid are the only parts visible
in this state. An annotated close eye is shown in Figure 3b.

4 Deformable Eye Fitting

This section reviews the three different deformable model fitting techniques used
in this paper, i.e. AAM, CLM and SDM.

4.1 Active Appearance Models

Active Appearance Models (AAM) [10,11] are global deformable models that
describe the shape and texture of a particular object as a linear combination of
a set of bases. The shape model is built from a set of landmarks describing the
shape of the object. These landmarks are first normalized with respect to a 2D
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global similarity transform and then Principal Component Analysis (PCA) is
applied to obtained a set of linear shape bases. The previous basis are composed
with a 2D global similarity transform that allows shapes to be arbitrarily posi-
tioned on the image coordinate system. The shape model can be mathematically
expressed as:

s = sR(̄s + Vp) +

[
tx
ty

]
(1)

where s̄ ∈ R2v×1 is the mean shape, and V ∈ R2v×n and p ∈ Rn×1 denote
the shape eigenvectors and shape parameters, respectively. Note that, s, R and
t are the scale, rotation and translation parameters of the 2D global similarity
transform.

The AAM’s texture model is obtained by warping the texture information
onto a common reference frame (generating the so called shape-free textures) and
applying PCA to the vectorized warped textures. The texture model is defined
by the following expression:

t = t̄ + Uc (2)

where t ∈ RF×1 is the mean texture, and U ∈ RF×m and c ∈ Rm×1 denote the
texture eigenvectors and texture parameters, respectively.

Figure 4 and Figure 5 show the mean and first three principal components of
a full/half-open open and a close eye intensity-based AAM using the annotation
scheme described in the previous section.

Fitting Active Appearance Models (AAM). Fitting an AAM consists of
minimizing the Sum of Squared Differences (SSD) between a vectorized warped
image (given a first estimate of the shape, the image is warped onto the reference
frame and then vectorized) and the linear texture model:

po, co = arg min
p,c

||p||2Λ−1 + ||c||2Σ−1 +
1

σ2
||i[p]− t̄ + Uc||2 (3)

Where i[p] = vec(I ◦W(p)) denotes the vectorized warped image, Λ and Σ are
diagonal matrices containing the eigenvalues associated to the shape and texture
eigenvectors V and U respectively, and σ2 quantifies the estimated uncertainty
about image.

There exist several algorithms to solve the previous optimization problem
[10,11,14,15]. A concise review can be found in [16]. In these paper, we use the
Alternating Inverse Compositional (AIC) algorithm proposed by the authors of
[14]. For further details on AAM and the AIC algorithm the reader is referred
to [14] and [16].

4.2 Constrained Local Models (CLM)

Constrained Local Models (CLM) [17,12] are parts-based deformable models
that define the texture of a particular object as independent local image regions
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(a) Shape model

(b) Texture model

Fig. 4: Full/half-open eye Active Appearance Model

(a) Shape model

(b) Texture model

Fig. 5: Close eye Active Appearance Model

around each landmark. Their shape is represented using the same global PCA-
based shape model used by AAM.

Even though generative approaches could be used to model local image re-
gions, the usual approach is discriminative. For each landmark a classifier that
quantifies the likelihood of the landmark being correctly aligned is learned based
on the support of its local image region. The previous likelihood can be defined
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as:

`(li = 1|xi, I) =
1

1 + exp{li Ci(I,xi)}
(4)

where Ci denotes a linear classifier that discriminates between aligned and mis-
aligned locations, i.e.:

Ci(I,xi) = wi [I(yi), · · · , I(ym)] + bi (5)

and {yi}mi=1 ∈ Ωxi
, i.e. the image patch around the current landmark estimate

xi.

Fitting Constrained Local Models. Fitting Constrained Local Models in-
volves solving the following optimization problem [12]:

po = arg min
p

||p||2Λ−1 +
∑
xi∈s

K∑
j=1

wj

ρ2
||xi − yj ||2 (6)

where wj = 1
1+exp{li Cj(I,xj)} denotes the likelihood of each candidate landmark

yj in a particular local patch, Λ is a diagonal matrix containing the eigenval-
ues associated to the eigenvectors V of the shape model and ρ2 quantifies the
estimated uncertainty about shape.

The previous optimization problem can be solve using several strategies[17,12].
See [12] for a detailed review. The most popular technique for solving the expres-
sion in Equation 6 is the Regularised Landmark Mean-Shift (RLMS) algorithm
proposes by Saragih et al. in [12]. This is the approach used in this paper. For
further details on CLM and the RLMS the reader is referred to [12].

4.3 Supervised Descent Method (SDM)

The Supervised Descent Method (SDM) [13] is a recently proposed techniques
for solving general nonlinear optimisation problems in computer vision. This
technique can be used to solve the deformable model fitting problem by defining
a local appearance model around each landmark (similar to the one defined by
CLM) and an implicit non-parametric shape model.

SDM is posed as the cascade regression problem in which the following ex-
pression is optimised at each level:

Rk
o ,b

k
o = arg min

Rk,bk

N∑
i=1

M∑
j=1

||si,∗ − ski,j + RkΦ(Ii, si,j) + bk||22 (7)

Where N and M index the total number of images and perturbation respec-
tively, si,∗ ∈ R2v×1 denotes the correct position of the shape landmarks in a
particular image Ii, si,j are the perturbed version of si,∗ that we wish to correct,
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Φ(Ii, si,j) denotes the vectorized features extracted at each local appearance re-
gion, and finally Rk

o and bk
o are, respectively, the regression matrix and bias

term that minimise the previous expression.
The solutions Rk

o and bk
o are obtained in closed-form by solving a linear

least squares problem at each cascade level. Once inferred, Rk
o and bk

o are used
to correct the position of ski,j generating sk+1

i,j and, with it, the next regression
level of the cascade. In our implementation, this approach typically converges
after 4 or 5 cascade levels. For more details on the SDM problem formulation
for deformable object fitting and a more detailed explanation of its solution the
reader is referred to [13].

5 Experiments

This section reports the performance of the previous three deformable model
fitting techniques on the problems of eye alignment and eye tracking.

We report results for two different experiments. The first one compares, quan-
titatively, the accuracy of each technique, i.e. AAM, CLM, SDM. The second
experiment shows qualitative results on the Helen [18] dataset, a recently pro-
posed facial dataset containing high resolution in-the-wild images.

Note that, in order to save valuable space, all results are reported only for
right eye models. We empirically verified that the results for right and left eye
models are statistically equivalent (which is expected due to the obvious sym-
metry of the eyes).

5.1 Quantitative eye alignment results

We start by evaluating the relative performance of each method on the problem
of eye alignment.

For this experiment we collected and annotated two small dataset of 400
high resolution eye images each; one containing full/half-open eye images and
the other close eye images. We randomly divide the available 400 annotated
full/half-open eye images into equally sized training and testing sets. We train
each model with the previous training set and report the accuracy their fitting
accuracy on the testing set. The procedure is repeated for the available 400
annotated images containing closed eyes. Accuracy is reported using the error
measure defined in [19], in which “face size” is simply replaced by the analogous
“eye size”. All methods are initialized by randomly perturbing the correct sim-
ilarity transform and applying it to the mean shape of each model. Exemplar
initializations obtained using the previous procedure are display in Figure 7.

Figure 6 shows the Cumulative Error Distribution (CED) curves for full/half-
open and close eyes. The results show that all methods are significantly more
accurate fitting full/half-open eyes than close eyes. In particular, for full/half-
open eyes, AAM is the most accurate method (it obtains the best results in
the significant region 0.425 < err < 0.045) while SDM is the most robust (it
approaximatly fits all images with err < 0.065). CLM appear to be consistently
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Fig. 6: CED curves for full/half-open and close eyes, respectively.

inferior to AAM and SDM. It is worth noting, that all methods are capable
of fitting the sclera, iris and pupil parts accurately and the reported errors are
driven by the top (landmarks: [1-5]) and bottom landmarks (landmarks: [7-11])
of the upper and lower eyelids.

SDM is the most performant method for close eyes. The poor accuracy of
all methods fitting close eyes images can be explained by the lack of meaningful
features that can be extracted from the annotated close eye images, Figure 3b
and Figure 5. This suggest that more contextual information (from the eyebrow
or nose regions) might be necessary to accurately track close eyes using the
previous methods.

5.2 Eye alignment in-the-wild

This experiment reports qualitative eye fitting results on images from the Helen
dataset. All methods where initialized using the exact same procedure described
in the previous experiment. Results for the three different techniques are shown
in Figure 7.

6 Conclusions

In this paper we study the use of statistically learned models for deformable
eye fitting. We introduce two novel shape annotation schemes, one for full/half-
open eyes and another for close eyes, specifically designed to accurately annotate
high resolution eye images. Finally, we report preliminary results comparing the
performance of three different deformable model fitting techniques, i.e. Active
Appearance Models, Constrained Local Models and Supervised Descent Method
on the problem of eye alignment.
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Fig. 7: Qualitative results on the Helen dataset. Columns for each subjects show:
initialization, AAM result, CLM result and SDM result, respectively.
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