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ABSTRACT
Deep bottleneck features (DBNFs) have been used success-
fully in the past for acoustic speech recognition from audio.
However, research on extracting DBNFs for visual speech
recognition is very limited. In this work, we present an ap-
proach to extract deep bottleneck visual features based on
deep autoencoders. To the best of our knowledge, this is the
first work that extracts DBNFs for visual speech recognition
directly from pixels. We first train a deep autoencoder with a
bottleneck layer in order to reduce the dimensionality of the
image. Then the autoencoder’s decoding layers are replaced
by classification layers which make the bottleneck features
more discriminative. Discrete Cosine Transform (DCT) fea-
tures are also appended in the bottleneck layer during train-
ing in order to make the bottleneck features complementary to
DCT features. Long-Short Term Memory (LSTM) networks
are used to model the temporal dynamics and the performance
is evaluated on the OuluVS and AVLetters databases. The ex-
tracted complementary DBNF in combination with DCT fea-
tures achieve the best performance resulting in an absolute
improvement of up to 5% over the DCT baseline.

Index Terms— Deep Bottleneck Features, Visual Speech
Recognition, Deep Autoencoders, Long-Short Term Recur-
rent Neural Networks

1. INTRODUCTION

Deep bottleneck features (DBNFs) have been used success-
fully for acoustic speech recognition. The standard approach
for extracting DBNFs involves the use of a deep network with
a bottleneck layer in the middle [1]. The output of the bottle-
neck layer is treated as the bottleneck features which are then
concatenated with other features, like Mel-Frequency Cep-
stral Coefficients, and fed to a temporal model, usually a Hid-
den Markov Model (HMM).

Different variants have also been proposed. Sainath et
al. [2] trained a deep neural network with a constant number
of hidden units per hidden layer and then used the output of
the final layer as input to a deep autoencoder with a bottle-
neck layer in the middle. In this way, the features are first

transformed to a discriminative representation before their
dimensionality is reduced. Another approach has been pro-
posed by Gehring et al. [3] who first train a stacked denoising
autoencoder and then add a bottleneck layer and classifica-
tion layers. The final network is fine-tuned to predict target
phoneme states. Finally, Noda et al. [4] used a deep denoising
autoencoder for producing denoised audio features without
explicitly using the bottleneck features.

Recently few works on audiovisual or visual-only speech
recognition have also been presented. Noda et al. [4] used a
convolutional neural network to predict the phoneme that cor-
responds to an input image. Huang and Kingsbury [5] used a
deep belief network in order to predict the posterior probabil-
ities of HMMs states. However, to the best of our knowledge
there are only three works which extract deep bottleneck vi-
sual features. Ngiam et al. [6] applied principal component
analysis (PCA) to the mouth Region of Interest (ROI) and
trained a deep autoencoder to extract bottleneck features. The
features from the entire utterance were fed to a support vec-
tor machine ignoring the temporal dynamics of the speech. A
similar approach was proposed by Ninomiya et al. [7] who
also applied PCA to the mouth ROIs and used a deep autoen-
coder to extract bottleneck features but an HMM was used in
order to take into account the temporal dynamics. Sui et al.
[8] extracted local binary patterns from the mouth ROI and
used a deep autoencoder to reduce their dimensionality. Then,
the bottleneck features were concatenated with Discrete Co-
sine Transform (DCT) features and fed to an HMM.

In this work, we propose a framework based on a deep
autoencoder to extract DBNFs for visual speech recognition
directly from pixels. We also include DCT features during
training in the bottleneck layer in order to reduce the redun-
dant information of DBNFs and make them complementary
to DCT features. We also use a Long-Short Term Memory
Recurrent Neural Network (LSTM-RNN) in order to model
the temporal dynamics. To the best of our knowledge, this
is the first work which extracts DBNFs directly from pixels
which are also complementary to DCT features.

First, an autoencoder is trained in order to compress the
high dimensional image of the mouth ROI to a low dimen-
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sional representation using a bottleneck layer in the middle.
Then the decoding layers of the autoencoder are removed and
replaced with classification layers and a softmax output layer
in order to make the low dimensional representation more dis-
criminative for visual speech recognition. At this stage, the
DCT features can be appended to the bottleneck layer with
the aim of making the DBNFs not only discriminative but
also complementary to the DCT features. Finally, the com-
plementary deep bottleneck features (DBNF-C) are concate-
nated with the DCT features and are fed to an LSTM-RNN
which models the temporal dynamics of the utterance.

We perform experiments on two different databases,
OuluVS and AVLetters. The use of complementary DBNFs
in combination with DCT features results in the best perfor-
mance leading to an absolute improvement of up to 5% over
the DCT baseline. We also demonstrate the benefit of mak-
ing the DBNFs complementary to DCT features and show
that the bottleneck size does not have a great impact on the
performance of the system.

2. DATABASES

The databases used in this study are the AVLetters [9] and
OuluVS [10]. The AVLetters contains 10 speakers saying 3
times the letters A to Z, so in total there are 30 utterances per
letter. The mouth ROIs are provided and their size is 60 by 80.

The OuluVS contains 20 speakers saying 10 utterances,
5 times each, so in total there 100 examples per utterance.
The utterances are the following: “Excuse me”, “Goodbye”,
“Hello”, “How are you”, “Nice to meet you”, “See you”, “I
am sorry”, “Thank you”, “Have a good time”, “You are wel-
come”. Sixty six points are tracked on the face using the
tracker proposed in [11]. The mouth is located based on the
mouth points and is rescaled to 32 by 32.

3. DEEP BOTTLENECK VISUAL FEATURES

The deep bottleneck visual feature extraction algorithm con-
sists of 3 stages as shown in Fig. 1. The first stage involves the
training of a deep autoencoder as shown in Fig. 1a. First, the
encoding layers are trained in a greedy layer-wise manner us-
ing Restricted Boltzmann Machines (RBMs) [12]. The same
architecture as in [13] is used, where 3 sigmoid hidden layers
are used with sizes of 2000, 1000 and 500, respectively, fol-
lowed by a linear bottleneck layer. Then, the decoding layers
are initialised with the same weights as the encoding layers
but in reverse order exactly in the same way as in [13]. The fi-
nal step is the fine-tuning of the deep autoencoder for optimal
reconstruction. The output of the bottleneck layer, which is a
low dimensional representation of the input image, is treated
as the DBNFs.

In the second stage, we remove the decoding layers and
add two classification layers followed by an output soft-
max layer. Ideally, we would like the target classes to be
the visemes shown in each image. However, there are no
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Fig. 1: System Overview. First, a deep autoencoder is trained
(a) in order to compress the high dimensional image to a low
dimensional representation which is the output of the bottle-
neck layer. Then, the decoding layers are replaced by clas-
sification layers (b) aiming to make the bottleneck features
more discriminative. Optionally, the DCT features can be ap-
pended in the bottleneck layer in order to make the bottleneck
features complementary to DCT features. Finally, both types
of features are augmented with their first and second deriva-
tives, concatenated and fed to an LSTM-RNN classifier (c)
which models the temporal dynamics.

viseme labels in the datasets so we clustered the images using
the k-means algorithm in order to create viseme-like clus-
ters/targets. We set the number of clusters/targets to 15 since
this is the usual number of visemes used in the literature
[14]. The deep network is then fine-tuned with the aim of
making the DBNFs more discriminative for visual speech
recognition. During fine-tuning we can also append the DCT
features to the bottleneck layer as shown in Fig. 1b. This
will force the DBNFs not only to be discriminative but also
complementary to DCT features.

Finally, in the third stage, we model the temporal dynam-
ics of the features using an LSTM-RNN. The DBNFs and the
DCT features are first augmented with their first and second
derivatives and concatenated. Then, they are fed to an LSTM-
RNN classifier which classifies the utterance.
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Fig. 2: Classification Rate (CR) as a function of the number of deep complementary bottleneck features (DBNF-C) and their
combination with DCT (DCT + DBNF-C).

4. EXPERIMENTAL STUDIES

4.1. Experimental Setup

We first partition the data into training and test sets. The same
protocol as the one used in [6], [9] is followed for the AVLet-
ters datasets. The first two utterances of each subject are used
for training and the last utterance is used for testing. This
means that there are 520 training utterances and 260 test utter-
ances. The total number of training and test frames is 12293
and 6269, respectively. Since the dimensionality of the mouth
ROIs is too high (60 x 80), the images are first downscaled to
30 by 40 so the input dimensionality is 1200. A similar pro-
tocol is followed for the OuluVS database. The first 3 utter-
ances of each subject are used for training and the other two
are used for testing. There are 600 utterances for training and
400 utterances for testing. The total number of training and
test frames is 16128 and 10946, respectively. The mouth ROI
size is 32 by 32 so the input dimensionality is 1024.

The next step is the normalisation of data. As recom-
mended in [12] the data should be z-normalised, i.e. the mean
and standard deviation should be equal to 0 and 1 respectively,
before training an RBM with linear input units. Hence, each
image is z-normalised before training the autoencoder. Then,
the extracted DBNFs and DCT features are also z-normalised
before they are fed to the LSTM classifier.

Finally, the DCT features are extracted using a 2D DCT
transform applied to the mouth ROI and the 32 lowest fre-
quency coefficients are selected in a zig-zag left-to-right man-
ner. The dimensionality of the DCT features after adding the
first and second derivatives is 96.

4.2. Training

RBM Training: A Gaussian-Bernoulli RBM [12] is used
for the first layer since the input (pixels) is real-valued, fol-
lowed by two Bernoulli-Bernoulli RBMs and one Bernoulli-
Gaussian RBM for the linear bottleneck layer. Each RBM
is trained for 20 epochs with a mini-batch size of 100 and
L2 regularisation coefficient of 0.0002 using contrastive di-
vergence. The learning rate is fixed to 0.1 for the Bernoulli-
Bernoulli RBMs and to 0.001 when one layer (input or bot-

tleneck) is real-valued as suggested in [12].
Autoencoder Training: The autoencoder (Fig. 1a) is fine-
tuned for 30 epochs using stochastic gradient descent and the
mean squared error as a cost function. The mini-batch size
is 100 and the learning rate is fixed to 0.001. Momentum
is also used which increases linearly from 0.5 to 0.9 after 20
epochs. In order to reduce overfitting L2 regularisation is used
together with the max-norm constraint [15]. The L2 regular-
isation coefficient is set to 0.005 and the maximun norm for
the weights connected to any hidden neuron is set to 3 [15].
Classifier Training: The classifier (Fig. 1b) is trained using
exactly the same parameters as the autoencoder above. The
only difference is that the cross-entropy error is used as the
cost function. The weights in the new layers are initialised
from a Gaussian distribution with µ = 0 and σ = 0.1.
LSTM-RNN Training: A GPU implementation of LSTMs
is used [16] with the default parameters, i.e., momentum is
set to 0.9 and the input is corrupted with Gaussian zero-mean
noise with standard deviation of 0.1. The learning rate is set
to 10−4 and one hidden layer with 180 cells is used. LSTMs
are trained per frame, therefore during evaluation we apply
majority voting to assign a single label to the sequence.

4.3. Effect of Bottleneck Size

A crucial parameter in the design of the deep bottleneck fea-
ture extraction system is the size of the bottleneck layer. In
order to investigate the effect of this parameter we evaluate
the performance as the size varies. We should emphasise that
the total number of bottleneck features is 3 times the bottle-
neck size since we add the first and second derivatives. For
example, if the bottleneck size is 50 then the dimensionality
of the features fed to the LSTM-RNN is 150.

Fig. 1 shows the classification rate as a function of the size
of the bottleneck layer. In case of OuluVS, Fig. 2a, the per-
formance remains relatively stable beyond 50 neurons when
DBNF-C is considered achieving the maximum performance
of 79.5% for 60 neurons. When DBNF-C features are com-
bined with DCT features then the performance remains rel-
atively stable beyond 40 neurons with a maximum of 81.8%
when the size is 50.

Similar patterns are observed for the AVLetters database,
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Table 1: Classification Rate on the OuluVS and AVLetters
databases. The bottleneck size is set to 50. DBNF: Deep Bot-
tleneck Features, DBNF-C: Deep Bottleneck Features which
are complementary to DCT features.

Dim OuluVS AVLetters

DBNF 150 75.8 44.6

DBNF-C 150 78.0 48.5

DCT 96 76.8 54.6

DCT + DBNF 246 79.8 55.4

DCT + DBNF-C 246 81.8 58.1

Fig. 2b. The main difference is that the performance is sta-
ble across all sizes. The performance of DBNF-C varies from
48.1% to 50.8% when 60 and 50 neurons are used, respec-
tively, and the performance of DCT + DBNF-C varies be-
tween 55.4% and 58.1% for 20 and 50 neurons, respectively.

Overall, we observe that when the DBNF-C are combined
with the DCT features the performance is more stable than
when the DBNF-C features are used alone. The use of 40
to 60 bottleneck neurons results in very similar performance
for both databases and further increasing the bottleneck size
does not seem to improve the performance. This same con-
clusion was also reached in [7]. In both cases the maximum is
achieved when the bottleneck size is 50, i.e., the dimensional-
ity of DBNF-C is 150, and this is the size used in subsequent
experiments.

4.4. Results

Results on both databases are shown in Table 1. The DCT
features are used as a baseline since they are the most com-
monly used feature in visual speech recognition. As expected
they perform well and they outperform the bottleneck features
in most cases. The addition of the DBNFs to the DCT fea-
tures leads to an absolute improvement of 3% and 0.8% for
the OuluVS and AVLetters databases, respectively, over the
DCT baseline. This confirms the hypothesis that the bottle-
neck features contain useful information for the task at hand.
A further improvement is observed when the complementary
DBNFs are combined with the DCT features. An absolute
improvement of 5% and 3.5% for the OuluVS and AVLet-
ters databases, respectively, is reported. This clearly shows
that the deep bottleneck features benefit when they are trained
together with the DCT features. The joint training reduces
the redundant information in the deep bottleneck features and
makes them more complementary to the DCT features.

The best performance obtained on the AVLetters (58.1%)
is similar to the performance achieved by [10] but it is worse
than the results reported by Ngiam et al. [6] and Pei et al.
[17]. However, the comparison with these works is not fair.
Ngiam et al. used two external databases with thousands of

additional training examples in order to train the deep autoen-
coders. Pei et al. used both appearance and shape features
and a different training and test protocol so the results cannot
be directly compared. In addition, both approaches tackle the
problem as a classification problem where features from the
entire utterance are extracted and fed to a classifier assum-
ing that the beginning and end of the utterance is known. On
the other hand, we extract features directly from pixels on a
per frame basis and we model the temporal dynamics without
explicit knowledge of the beginning and end of the sequence.

Due to lack of space we just report the most common
mistakes for the best approach, i.e., DCT + DBNF-C. The
best performing utterances for the OuluVS are the follow-
ing: “I am sorry” and “Have a good time”, whereas the most
confused pair is “Thank you” and “Nice to meet you”. For
the AVLetters database, the most common confusions are be-
tween B and P, C and T, D and T, and U and Q. This is not
surprising since both letters in each pair have the same visual
representation. They consist of two phonemes where the first
ones belong to the same viseme class [14] and the second one
is the same. The letters which are classified correctly most of
the time 1 are the following: F, O, R, V, Y. This is also not sur-
prising since their visual representation is quite distinct from
other other letters [14].

5. CONCLUSIONS

In this work, we present an approach to extract DBNFs di-
rectly from pixels. DBNFs are first created using a deep au-
toencoder which is then converted to a deep classifier in order
to make the DBNFs more discriminative. We also append the
DCT features in the bottleneck layer, which forces the DBNFs
to become complementary to DCT features during training.
The extracted complementary DBNFs are concatenated with
the DCT features and fed to an LSTM classifier. Experimental
results on two databases demonstrate that the extracted DB-
NFs when combined with the DCT features outperform the
standard DCT baseline. In addition, the complementary DB-
NFs further improve the performance when combined with
the DCT features, since they have been trained to contain less
redundant and more complementary information to DCT fea-
tures. Finally, we show that the performance does not depend
much on the bottleneck size and a wide range of sizes leads
to good performance.
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