
Robust Canonical Time Warping for the Alignment of Grossly Corrupted
Sequences

Yannis Panagakis?, Mihalis A. Nicolaou?, Stefanos Zafeiriou?, and Maja Pantic?,†
?Department of Computing, †EEMCS,

Imperial College London, University of Twente,
180 Queens Gate, Drienerlolaan 5,

London SW7 2AZ, U.K. 7522 NB Enschede, The Netherlands
{i.panagakis,mihalis,s.zafeiriou,m.pantic}@imperial.ac.uk

Abstract

Temporal alignment of human behaviour from visual
data is a very challenging problem due to a numerous rea-
sons, including possible large temporal scale differences,
inter/intra subject variability and, more importantly, due to
the presence of gross errors and outliers. Gross errors are
often in abundance due to incorrect localization and track-
ing, presence of partial occlusion etc. Furthermore, such
errors rarely follow a Gaussian distribution, which is the
de-facto assumption in machine learning methods. In this
paper, building on recent advances on rank minimization
and compressive sensing, a novel, robust to gross errors
temporal alignment method is proposed. While previous ap-
proaches combine the dynamic time warping (DTW) with
low-dimensional projections that maximally correlate two
sequences, we aim to learn two underlying projection matri-
ces (one for each sequence), which not only maximally cor-
relate the sequences but, at the same time, efficiently remove
the possible corruptions in any datum in the sequences. The
projections are obtained by minimizing the weighted sum of
nuclear and `1 norms, by solving a sequence of convex op-
timization problems, while the temporal alignment is found
by applying the DTW in an alternating fashion. The supe-
riority of the proposed method against the state-of-the-art
time alignment methods, namely the canonical time warp-
ing and the generalized time warping, is indicated by the
experimental results on both synthetic and real datasets.

1. Introduction
Accurate temporal alignment of data sequences is a chal-

lenging problem raised in bioinformatics [14], speech pro-
cessing [12, 19], and computer vision [8, 11, 24, 27, 25, 26],
among many scientific disciplines. The problem is de-
fined as finding the temporal coordinate transformation that
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Figure 1. The RCTW applied on grossly-corrupted 3D data. (a)
Original grossly-corrupted 3D data. (b) Alignment of the two data
sequences onto an error-free common low-rank latent subspace
which has been robustly estimated by the RCTW. (c) The removed
gross errors.

brings two given data sequences into alignment in time.
Some particular applications in computer vision include the
alignment and the temporal segmentation of human motion
[27, 26], the alignment of facial and motion capture data
[25], the alignment of Kinect data [24], and view invariant
action recognition [8, 11].

The dynamic time warping (DTW) [19] aligns two se-
quences by minimizing the pairwise squared Euclidean dis-
tance via dynamic programming. Although, the DTW has
been widely used for temporal alignment of data sequences,
it has two main drawbacks: 1) the DTW fails under arbi-
trary affine transformations of one or both sequences and 2)
cannot handle sequences with different dimensions. To al-
leviate the just mentioned drawbacks Zhou et al. proposed
the canonical time warping (CTW) [25]. The CTW aligns
two sequences in a common low-dimensional (or low-rank)
latent subspace found by the canonical correlation analysis
(CCA) [9]. The main limitation of the CTW is that, it is un-
able to handle sequences that lie on different manifolds. To
this end, the dynamic manifold temporal warping (DMTW)
[8] and the manifold warping (MW) [24] extend the CTW to
handle more complex spatial transformations through man-

4321



ifold learning. Since these methods rely on the DTW to
find the temporal alignment, it is unclear how to adaptively
constrain the temporal warping [26]. This drawback of the
aforementioned DTW-based warping methods is addressed
by the isotonic cca (ICCA) [21] and the generalized time
warping (GTW) [26], where alternative constraints are im-
posed in order to guarantee monotonicity in the alignment
space.

Despite the success of these methods in practise they are
unable to uncover a common low-rank latent space for tem-
poral alignment when high-dimensional data sequences are
corrupted by gross non-Gaussian errors. Such errors are of-
ten occur in real video and motion capture data due to inac-
curate tracking, illumination variations, partial occlusions,
and gross pixel/angle corruptions. Indeed, it is known that
the CCA-based alignment methods, discussed in the pre-
vious paragraph, are extremely fragile to the presence of
gross corruptions [5]. This is a consequence of the con-
ceptual similarity of the CCA with the principal component
analysis [9].

In this paper, the robust canonical time warping (RCTW)
is proposed for accurate temporal alignment of grossly
corrupted high-dimensional data sequences. In particu-
lar, given two grossly corrupted high-dimensional data se-
quences, the RCTW aims to learn two low-rank projections
which can efficiently remove the possible corruptions in the
original noisy data sequences while simultaneously finding
the temporal alignment that maximizes the spatial correla-
tion between the error-free data sequences. In other words,
the RCTW aligns the corrupted sequences in a error-free
common low-rank latent subspace which is robustly esti-
mated, even in the presence of gross errors. The projections
are obtained by minimizing the weighted sum of nuclear
and `1 norms, by solving a sequence of convex optimiza-
tion problems, while the temporal alignment is found by
applying the DTW in an alternating fashion. An illustrative
example of the working principle of the RCTW is shown
in Fig. 1. Unlike the small Gaussian noise assumed in the
CTW, the GTW, and the ICCA (due to the involvement of
the CCA) [10], the RCTW can handle adequately the gross
corruptions of large magnitude [1], provided that the cor-
ruptions are sparse enough (i.e., only a fraction of entries
are corrupted). The RCTW model is mainly motivated by
the success of robust principal component analysis (RPCA)
[5] and inductive RPCA (IRPCA) [1] in gross error correc-
tion, and especially from the successful combination of rank
minimization principles with spatial alignment [18].

The effectiveness of the RCTW in temporal alignment
of grossly corrupted data sequences is assessed both visu-
ally and quantitatively by conducting 3 sets of experiments:
1) on the alignment of grossly corrupted synthetic data, 2)
on the alignment of human walking in the presence of large
occlusions, and 3) on the alignment of similar facial expres-

sions made by two different individuals in the presence of
noise spikes.

To summarize, the contributions of the paper are as fol-
lows:

• A novel method i.e., the RCTW, is proposed for accu-
rate temporal alignment of high-dimensional data se-
quences despite large occlusions and corruptions.

• An efficient algorithm for the RCTW is derived by
solving a sequence of convex problems. Each of the
these convex problems is solved efficiently by employ-
ing first-order optimization techniques.

• Three different sets of experiments on synthetic and
real video data validate that the proposed method ac-
curately aligns grossly corrupted data sequences com-
pared to state-of-the-art alignment methods, namely
the CTW [25] and the GTW [26].

The paper is organized as follows. In Section 2, basic
notation conventions are introduced. The DTW and the
CTW are briefly reviewed in Section 3. The RCTW is de-
veloped in Section 4. Experimental results are presented in
Section 5. Conclusions are drawn in Section 6.

2. Notations
Throughout the paper, matrices are denoted by uppercase

boldface letters (e.g., X,Y), vectors are denoted by lower-
case boldface letters (e.g., x, y), and scalars appear as either
uppercase or lowercase letters (e.g., T, d, i, µ, ε). I denotes
the identity matrix of compatible dimensions. 1 is a vector
of ones. The ith column of X is denoted as xi and the set
of real numbers is denoted by R.

A variety of norms will be used. For example, ‖X‖0 is
`0 quasi-norm counting the number of nonzero entries in X.
The matrix `1 norm is denoted by ‖X‖1 =

∑
i

∑
j |xij |.

‖X‖F =
√∑

i

∑
j x

2
ij =

√
tr(XTX) is the Frobenius

norm, where tr(·) denotes the trace of a square matrix. ‖x‖2
denotes the `2 norm. The nuclear norm of X is denoted by
‖X‖∗ and it is defined as the sum of its singular values.

3. Time Warping
To make the paper self-contained the DTW [19] and the

CTW [25] are briefly reviewed.

3.1. Dynamic Time Warping

Given two data sequences X = [x1|x2| . . . |xTx ] ∈
Rd×Tx and Y = [y1|y2| . . . |yTy ] ∈ Rd×Ty , the DTW
aligns the sequences by solving [19]:

argmin
∆x,∆y

1

2
‖X∆x −Y∆y‖2F

s.t. ∆x ∈ {0, 1}Tx×T ,∆y ∈ {0, 1}Ty×T ,
(1)
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where ∆x and ∆y are binary selection matrices encoding
the alignment path. Although the number of possible align-
ments is exponential in TxTy , the DTW is able to recover
the optimal alignment path in O(TxTy) by employing dy-
namic programming.

3.2. Canonical Time Warping

The CTW [25] incorporates CCA into the DTW, allow-
ing the alignment of data sequences of different dimensions
by projecting them into a common latent subspace found by
CCA [9]. Furthermore, the CCA-based projections perform
feature selection by reducing the dimensionality of the data
to that of the common latent subspace, handling the irrele-
vant or possibly noisy attributes.

Formally, let X = [x1|x2| . . . |xTx ] ∈ Rdx×Tx and
Y = [y1|y2| . . . |yTy ] ∈ Rdy×Ty be two data sequences
of different dimensionality (i.e., dx 6= dy), the CCA is in-
corporated into the DTW by solving [25]:

argmin
Vx,Vy,∆x,∆y

1

2
‖VxX∆x −VyY∆y‖2F

s.t. X∆x1 = 0, Y∆y1 = 0,

VxX∆x∆
T
xXTVT

x = I,

VyY∆y∆
T
y YTVT

y = I,

VxX∆x∆
T
y YTVT

y = D,

∆x ∈ {0, 1}Tx×T ,∆y ∈ {0, 1}Ty×T .
(2)

Vx ∈ Rd′×dx and VyRd
′×dy project X and Y, respectively

onto a common latent subspace of d′ ≤ min(dx, dy) dimen-
sions, where the correlation between the data sequences is
maximized. D is a diagonal matrix of compatible dimen-
sions. The set of constraints in (2) is imposed in order to
make the CTW translation, rotation, and scaling invariant.
The solution of (2) is obtained by solving CCA and DTW
in an alternating fashion.

4. Robust Canonical Time Warping
In this section, the alignment of high-dimensional data

sequences in the presence of noise is investigated. Provided
that the errors in the data sequences follow Gaussian distri-
bution with small variance, the CCA is still able to uncover
the common low-rank latent subspace and thus the CTW
will accurately align two such noisy data sequences.

However, in real world conditions, the performance of
the CCA and thus that of the CCA-based time warping
methods (i.e., CTW and GTW) is limited since the CCA
is not robust to gross corruptions. That is, the estimation
of the common low-rank latent subspace found by the CCA
could be far away from the underlying true common sub-
space in the presence of gross corruptions [1].

To this end, the RCTW is proposed as a robust to gross

errors extension of the CTW. Consequently, the main aim
of the RCTW is to learn two low-rank projections, which
are able to uncover a common error-free low-rank subspace
for the temporal alignment. Let X = [x1|x2| . . . |xTx ] ∈
Rd×Tx and Y = [y1|y2| . . . |yTy ] ∈ Rd×Ty be the high-
dimensional grossly corrupted data sequences to be aligned,
Px ∈ Rd×d and Py ∈ Rd×d are the low-rank projections
matrices, and ∆x ∈ {0, 1}Tx×T , ∆y ∈ {0, 1}Ty×T encode
the alignment path. Based on the desired low-rankness of
the projections and the sparsity of the noise, the unknown
matrices Px,Py,∆x,∆y as well as the sparse distortion
terms (i.e., Ex and Ey) can be found by solving:

argmin
Px,Py,Ex,

Ey,∆x,∆y

rank(Px) + rank(Py) + λx‖Ex‖0 + λy‖Ey‖0

+
µ

2
‖PxX∆x −PyY∆y‖2F

s.t. X = PxX + Ex,Y = PyY + Ey,

∆x ∈ {0, 1}Tx×T ,∆y ∈ {0, 1}Ty×T .
(3)

where λx, λy, µ are nonnegative parameters.
Problem (3) is difficult to solve due to the discrete na-

ture of the rank function [23] and the `0 norm [15]. A
convex relaxation of (3) is obtained by replacing the rank
function and the `0 norm by their convex envelopes as fol-
lows, namely by the nuclear norm [7] and the `1 norm [6],
respectively as follows:

argmin
Px,Py,Ex,

Ey,∆x,∆y

‖Px‖∗ + ‖Py‖∗ + λx‖Ex‖1 + λy‖Ey‖1

+
µ

2
‖PxX∆x −PyY∆y‖2F

s.t. X = PxX + Ex,Y = PyY + Ey,

∆x ∈ {0, 1}Tx×T ,∆y ∈ {0, 1}Ty×T .

(4)

Problem (4) can be solved iteratively by employing
the linearized alternating directions method (LADM) [13],
which is a variant of the alternating direction augmented
Lagrange multiplier method (ADM) [3]. That is, (4) is
solved by minimizing the (partial) augmented Lagrangian
function:

L(Px,Py,Ex,Ey,∆x,∆y,Λ1,Λ2)

= ‖Px‖∗ + ‖Py‖∗ + λx‖Ex‖y + λ2‖Ey‖1

+
µ

2
‖PxX∆x −PyY∆y‖2F

+ tr
(
Λ1

T (X−PxX−Ex)
)

+ tr
(
Λ2

T (Y −PyY −Ey)
)

+
µx
2
‖X−PxX−Ex‖2F +

µy
2
‖Y −PyY −Ey‖2F

s.t. ∆x ∈ {0, 1}Tx×T ,∆y ∈ {0, 1}Ty×T ,
(5)
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where Λ1,Λ2 are the Lagrange multipliers for the equal-
ity constraints in (4) and µx, µy are nonnegative penalty
parameters. By employing the LADM, (5) is minimized
with respect to each variable in an alternating fashion and
finally the Lagrange multipliers are updated at each iteration
as outlined in Algorithm 1. The derivation of Algorithm 1
is provided next.

If only Px is varying and all the other variables are
kept fixed, we simplify (5) writing L(Px) instead of
L(Px,Py,Ex,Ey,∆x,∆y,Λ1,Λ2). Let t denote the
iteration index, given Px[t], Py[t], Ex[t], Ey[t], ∆x[t],
∆y[t],Λ1[t], and Λ2[t], the iterative scheme of LADM for
(5) reads as follows:

Px[t+1] = argmin
Px[t]

L(Px[t]) (6)

Ex[t+1] = argmin
Ex[t]

L(Ex[t]) (7)

Py[t+1] = argmin
Py[t]

L(Py[t]) (8)

Ey[t+1] = argmin
Ey[t]

L(Ey[t]) (9)

(∆x[t+1],∆y[t+1]) = argmin
∆x[t],∆y[t]

L(∆x[t],∆y[t])(10)

Solving subproblems (6) and (8). By fixing the other
variables, subproblem (6) is reduced to

argmin
Px[t]

‖Px‖∗ +
µ

2
‖PxX∆x −PyY∆y‖2F

+ tr
(
Λ1

T (X−PxX−Ex)
)
+
µx
2
‖X−PxX−Ex‖2F .

(11)
Although the standard procedure for solving nuclear norm
regularized least squares problems is the singular value
thresholding operator [4], it cannot be directly applied in
case of (11), due to the existence of the second term (i.e.,
µ
2 ‖PxX∆x − PyY∆y‖2F ). To this end, following [13],
the differentiable terms in (11) i.e., the function f(Px) =
µ
2 ‖PxX∆x−PyY∆y‖2F + tr

(
Λ1

T (X−PxX−Ex)
)
+

µx
2 ‖X−PxX−Ex‖2F is linearly approximated with respect

to Px at Px[t] as follows:

f(Px) ≈ f(Px[t]) + tr
(
(Px −Px[t])

T∇f(Px[t])
)

+
µxηx
2
‖Px −Px[t]‖2F ,

(12)

where, ηx is a proximal parameter. The gradient of f(Px[t])
with respect to Px[t] is given by:

∇f(Px[t]) = µx(Px[t]XXT + Ex[t]X
T −XXT )

+ µ(Px[t]X∆x[t]∆
T
x[t]X

T −Py[t]Y∆y[t]∆
T
x[t]X

T )

−Λ1[t]X
T .

(13)

Consequently, an approximate solution of (11) can be ob-
tained as follows:

Px[t+1] ≈ argmin
Px

‖Px‖∗ + f(Px[t])

+ tr
(
(Px −Px[t])

T∇f(Px[t])
)
+
µxηx
2
‖Px −Px[t]‖2F

= argmin
Px

‖Px‖∗ +
µxηx
2
‖Px − (P[t] −

1

µxηx
∇f(Px[t])‖2F

= D 1
µxηx

[
Px[t] −

1

µxηx
∇f(Px[t])

]
.

(14)
The singular value thresholding operator defined for any
matrix Q as [4]: Dτ [Q] = USτVT with Q = UΣVT

being the singular value decomposition and Sτ [q] =
sgn(q)max(|q| − τ, 0) is the shrinkage operator [5], which
can be extended to matrices by applying it element-wise.

The solution of (8) in analogy with (6) is given by

Py[t+1] = D 1
µyηy

[
Py[t] −

1

µyηy
∇f(Py[t])

]
, (15)

where∇f(Py[t]) = µx(Py[t]YYT +Ey[t]Y
T −YYT ) +

µ(Py[t]Y∆y[t]∆
T
y[t]Y

T − Px[t]X∆x[t]∆
T
y[t]Y

T ) −
Λ2[t]Y

T .
Solving subproblems (7) and (9). By fixing the other

variables, subproblem (7) is reduced to

argmin
Ex[t]

λx‖Ex‖1 + tr
(
Λ1

T (X−PxX−Ex)
)

+
µx
2
‖X−PxX−Ex‖2F .

(16)

The subgradient of (16) provides a closed-form solution for
Ex[t+1] by employing the shrinkage operator:

Ex[t+1] = Sλx
µx

[X−Px[t+1]X +
1

µx
Λ1[t]]. (17)

In a similar manner to (7), the solution of (9) is given by:

Ey[t+1] = Sλy
µy

[Y −Py[t+1]Y +
1

µy
Λ2[t]]. (18)

Solving (10). Subproblem (10) is solved by apply-
ing the DTW on the clean latent spaces defined by
Px[t+1]X,Py[t+1]Y. Thus the warping matrices are ob-
tained as follows:

[∆x[t+1],∆y[t+1]] = DTW(Px[t+1]X,Py[t+1]Y). (19)

The Algorithm 1 terminates when the following criteria
are satisfied [13]:

max
(‖X−Px[t+1]X−Ex[t+1]‖F

‖X‖F
,

‖Y −Py[t+1]Y −Ey[t+1]‖F
‖Y‖F

)
< ε1,

(20)
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Algorithm 1 Solving (5) by the LADM method.
Input: Data sequences: X ∈ Rd×Tx and Y =∈ Rd×Ty , pa-
rameters: λx = 1/

√
max(d, Tx), λy = 1/

√
max(d, Ty).

Output: The projection matrices: Px,Py , the warping
matrices ∆x,∆y , and the error matrices Ex,Ey .

1: Initialize: Set Px[0],Py[0],Ex[0], and Ey[0] to zero ma-
trices of compatible dimensions. Initialize ∆x[0] and
∆y[0] by the DTW. t = 0 µ[0] = µx[0] = µy[0] = 10−6,
ρ = 1.9, ηx = 1.02σ2

x, ηy = 1.02σ2
y , where σx, σy are

the largest singular values of X and Y, respectively.
ε1 = 10−4, ε2 = 10−5.

2: while not converged do
3: Fix the other variables, and update Px[t+1] by:

Px[t+1] ← D 1
µx[t]ηx

[Px[t]−1/(µx[t] ·ηx)∇f(Px[t])].

4: Fix the other variables, and update Ex[t+1] by:
Ex[t+1] ← S λ1

µx[t]

[X−Px[t+1]X + 1
µx[t]

Λ1[t]].

5: Fix the other variables, and update Py[t+1] by:
Py[t+1] ← D 1

µy[t]ηy
[Py[t]−1/(µy[t] ·ηy)∇f(Py[t])].

6: Fix the other variables, and update Ey[t+1] by:
Ey[t+1] ← S λ2

µy[t]

[Y −Py[t+1]Y + 1
µy[t]

Λ2[t]].

7: Fix the other variables, and update the warping paths
∆x[t+1],∆y[t+1] by:
[∆x[t+1],∆y[t+1]]← DTW(Px[t+1]X,Py[t+1]Y).

8: Update the Lagrange multipliers by:
Λ1[t+1] ← Λ1[t] + µx[t](X−Px[t+1]X−Ex[t+1]).
Λ2[t+1] ← Λ2[t] + µy[t](Y −Py[t+1]Y −Ey[t+1]).

9: Update µx[t+1] by:
10: if µx[t]‖Px[t+1] −Px[t]‖F /‖X‖F ≤ ε2 then
11: µx[t+1] ← min(ρ · µx[t], 106).
12: end if
13: if µy[t]‖Py[t+1] −Py[t]‖F /‖Y‖F ≤ ε2 then
14: µy[t+1] ← min(ρ · µy[t], 106).
15: end if
16: Update µ[t+1] by: µ[t+1] ← min(µx[t+1], µy[t+1])
17: Check convergence conditions in (21) and (20).
18: t← t+ 1.
19: end while

and

max
(‖Px[t+1] −Px[t]‖F

‖X‖F
,
‖Py[t+1] −Py[t]‖F

‖Y‖F
,

‖Ex[t+1] −Ex[t]‖F
‖X‖F

,
‖Ey[t+1] −Ey[t]‖F

‖Y‖F
)
< ε2.

(21)
The dominant cost of each iteration in Algorithm 1 is the

computation the singular value thresholding operator (i.e.,
Step 3 and Step 5). Thus, the complexity of each iteration

is O(d2 · T ). Regarding the convergence of Algorithm 1,
there is no established convergence proof of the ADM for
more than two blocks of variables [3, 18]. Nevertheless,
weak convergence results can be derived if the block of
variables is assumed to be bounded (e.g., Proposition 2.2
in [22]). However, the application of ADM in optimiza-
tion problems with more than two blocks of variables (e.g.,
[1, 18]) yields algorithms whose convergence is empirically
guaranteed. This can be attributed to the convexity of (5)
with respect to all the blocks of variables.

If the dimensions of the data sequence are different i.e.,
X ∈ Rdx×Tx and Y ∈ Rdy×Ty with dy 6= dx, then the
dimensionality of the largest sequence can be reduced to
that of the smallest by a random projection matrix drawn
from a normal zero-mean distribution. Such a random pro-
jection matrix provides with high probability a stable em-
bedding [2] preserving the Euclidean distances between all
vectors in the original space in the feature space of reduced
dimensions. Furthermore, if both data sequences are high-
dimensional such as videos, random projections could be
applied to both of the for computational tractability.

5. Experimental Evaluation
In this section, the performance of the RCTW in tem-

poral alignment is assessed by conducting experiments
on both synthetic (Subsection 5.1) and real data (Subsec-
tion 5.2 and 5.3), contaminated by gross errors. Perfor-
mance comparisons are made against the state-of-the-art
temporal alignment methods, namely the CTW [25] and the
GTW [26]. The alignment error is evaluated by employing
the following metric [26]:

Err =
dist(Π∗, Π̂) + dist(Π̂,Π∗)

m∗ + m̂
,

dist(Π1,Π2) =

m1∑
i=1

min({‖π(i)
1 − π

(j)
2 ‖2})

m2
j=1), (22)

where m∗ is the length of Π∗ and m̂ is the length Π̂.

5.1. Synthetic Data

For the synthetic experiments a similar setting to [25]
was employed. That is, a set of 3D spirals data sequences
were generated as follows: X = SxZTx ∈ R3×Tx ,
Y = SyZTy ∈ R3×Ty , where Z ∈ R3×T is the true latent
data sequence. Sx,Sy ∈ R3×3 and Tx ∈ RTx×T ,Ty ∈
RTy×T are random spatial and temporal warping matrices,
respectively. Next, both X and Y are corrupted by adding
gross non-gaussian noise to a percentage of samples (i.e.,
columns of X and Y) ranging from 5 to 55%.

An example of the noisy synthetic data alignment ob-
tained by the CTW, the GTW, and the proposed RCTW is
depicted in Fig. 2. Clearly, the RCTW smooths the noise of
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CTW

(a)                                    (b)                                  (c)                                    (d)

Original sequences GTW RCTW

Figure 2. Alignment of synthetic data; 30% of the samples of each sequence have been contaminated by gross errors. (a) Initial noisy data
sequences. The alignment achieved by (b) the CTW, (c) the GTW, and (d) the RCTW.
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Figure 3. Comparison of the performance of the CTW, the GTW,
and the RCTW on synthetic data alignment. The mean alignment
path (left) and the mean alignment error (right) obtained by the
CTW, the GTW, and the RCTW (left) by applying 50 different
random spatial and temporal transformations on the latent data se-
quence Z.
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Figure 4. Mean alignment error obtained by the CTW, the GTW,
and the RCTW, as a function of the percentage of corrupted sam-
ples on synthetic data sequences.

the initial data sequencers, yielding a better alignment than
the CTW and the GTW.

In Fig. 3 we present averaged results on 50 data se-
quences, where the latent data sequence Z is perturbed by
50 different random spatial and temporal transformations.
The mean alignment error of the compared techniques is
presented in Fig. 4. It is clear from both figures that the
RCTW outperforms the compared approaches, exhibiting a
stable and low path alignment error.
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Figure 5. Mean alignment error obtained by the CTW, the GTW
and the RCTW on human walking sequences by the KTH.

5.2. Real Data I: Temporal Alignment of Human
Walking

In this set of experiments, the performance of the RCTW
in alignment of human actions is assessed by conducting ex-
periments on the KTH database [20]. To this end, 25 pairs
of sequences consisting of videos performing the same ac-
tion (walking) were randomly selected. Variations within
the pairs appear in clothing, background or view angle. To
make the experiment more challenging, we occlude 30% of
each frame. In Fig. 5 the mean alignment error obtained
by the CTW, the GTW and the RCTW on corrupted human
walking sequences is depicted. Clearly, the RCTW outper-
forms the CTW and the GTW with respect to alignment er-
ror. An illustrative example of aligning occluded human
walking sequences with the RCTW is depicted in Fig. 6. It
can be observed that the occlusions have been removed.

5.3. Real Data II: Temporal Action Unit Alignment

The MMI dataset [16] has been employed in order to as-
sess the performance of the RCTW on the temporal align-
ment of facial expressions. The MMI database [16] con-
sists of more than 300 videos which have been annotated in
terms of action units (AUs). In particular, each video con-
tains frame-by-frame annotations of each action unit acti-
vated covering all temporal phases (i.e., neutral, onset, apex,
offset) of each AU. We use a subset of the database with ap-
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Figure 6. Alignment of occluded human walking sequences ob-
tained by the RCTW. (a) The initial occluded walking sequences
i.e., X, Y. (b) Aligned sequences onto the error-free latent com-
mon space which has been robustly estimated by the RCTW. (c)
Magnitude of the recovered gross errors.

proximately 50 pairs of videos of 8 different subjects where
action unit 12 is activated.

The experiment proceeds as follows. Firstly, we extract
a set of 20 facial points using a person independent tracker
presented in [17]. We use 8 2D points (16 dimensional fea-
ture vector) which refer to the lower face. Subsequently, we
corrupt the facial features with sparse spike noise in order
to evaluate the robustness of the compared algorithms. In
particular, we draw values from a random normal distribu-
tion and add uniformly to 5% of the frames of each video.
This type of noise is common when using detection-based
trackers, in which case a point can be misdirected for sev-
eral frames.

Results are presented in Fig. 7. The error we used is the
percentage of misaligned frames for each pair of videos,
normalised per frame (i.e. divided by the aligned video
length). We present results on average (for the entire video,
Fig. 7(a)) and results regarding the apex (which is the ’peak’
of the expression, Fig. 7(b)). In the presented results, the
number of features corrupted by noise increases to 4 out of
8 (which essentially means that 50% of our features are cor-
rupted by noise). It is clear from the results that the RCTW
can outperform both the CTW and the GTW in this sce-
nario, maintaining relatively low error even when heavily
increasing the presence of noise.

6. Conclusions
By exploiting recent advances on matrix rank minimiza-

tion and compressive sensing we proposed the first method
which simultaneously discovers a subspace, in which
two sequences maximally correlate, and in the same time

removes possibly gross errors from the data. The proposed
method (i.e., the RCTW) outperforms the state-of-the-art
techniques in temporal alignment of data sequences in the
presence of gross errors.
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