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Abstract

Spatial self-attention layers, in the form of Non-Local
blocks, introduce long-range dependencies in Convolu-
tional Neural Networks by computing pairwise similarities
among all possible positions. Such pairwise functions un-
derpin the effectiveness of non-local layers, but also deter-
mine a complexity that scales quadratically with respect to
the input size both in space and time. This is a severely
limiting factor that practically hinders the applicability of
non-local blocks to even moderately sized inputs. Previ-
ous works focused on reducing the complexity by modifying
the underlying matrix operations, however in this work we
aim to retain full expressiveness of non-local layers while
keeping complexity linear. We overcome the efficiency limi-
tation of non-local blocks by framing them as special cases
of 3rd order polynomial functions. This fact enables us to
Sformulate novel fast Non-Local blocks, capable of reducing
the complexity from quadratic to linear with no loss in per-
formance, by replacing any direct computation of pairwise
similarities with element-wise multiplications. The pro-
posed method, which we dub as “Poly-NL”, is competitive
with state-of-the-art performance across image recognition,
instance segmentation, and face detection tasks, while hav-
ing considerably less computational overhead.

1. Introduction

Convolutional Neural Networks (CNNs) have led to a
revolution in machine learning, and, specifically, are cur-
rently the undisputed state of the art in computer vision on
various tasks. Nonetheless, CNNs, even if composed by a
deep stack of convolutional operators, have a limited recep-
tive field [32], which makes the crucial long-range depen-
dencies hard to capture.

Recent work on spatial self-attention ameliorated this is-
sue with a novel set of modules for neural networks [50, 45].
These blocks extract non-local interactions among all spa-

tial positions of the input and weight them with a set of
learnable parameters. Passing through a Non-local block,
each input position takes into account the contribution of
all the others, scaled by their similarity with a given refer-
ence. These blocks introduce the possibility to reason about
the whole space in one glance and make non-local behavior
easier to be captured by the network. Inserting Non-local
blocks in neural architectures has been proven very effec-
tive [2, 14,49, 37, 38, 36], but the computation of a similar-
ity score for each pair of points scales quadratically with the
number of spatial positions. As such, the expensive com-
putational and storage complexity makes non-local blocks
impractical to compute even upon moderately sized input.

Recent works tackle such limitation via an efficient com-
putation of the similarity matrix [56, 31, 42] but miss to pro-
vide a theoretical overview of the Non-local block formula-
tion. In this work, we build upon the aforementioned line of
research, and revisit Non-local layers under the lens of poly-
nomials, framing them as special cases of 3"¢ order poly-
nomials. Powered by this intuition, we derive an efficient
version of Non-local neural networks, Poly-NL which takes
into account long-range dependencies without the need to
compute explicitly any pairwise similarity. Poly-NL layers
perform computations using the same set of interactions as
the Non-local block of [50], and at the same time reduce the
overall complexity drastically from O(N?) to O(N) with
no loss in performance.

In this work, we link polynomials and the Non-Local
layer. Our goal is to efficiently extract high-order interac-
tions from the input while capturing long-range spatial de-
pendencies. Thus, our contribution can be summarized as
follows:

* We bridge the formulations between high-order poly-
nomials and non-local attention. In particular, we
prove that self-attention (in the form of Non-local
blocks) can be seen as a particular case of general 37
order polynomials.



* We propose "Poly-NL” a novel building block for neu-
ral networks, which can be seen as polynomials of the
input matrix. In particular, we propose an alternative
Non-local block that reduce complexity from quadratic
to linear with respect to the spatial dimensions.

* We showcase the efficiency and the effectiveness of
our method across a range of tasks: image recognition,
instance segmentation, and face detection.

2. Related Work

Multiplicative interactions [21] can be found at the core
of various machine learning models such as Bilinear lay-
ers, LSTM, and Higher-order Boltzmann machines. In
LSTM [19, 24], element-wise products are used to fuse rep-
resentations. In Bilinear layers [44, 6, 30, 53] feature maps
of different networks get bilinearly combined together to
capture pairwise interactions. In k*"-order Boltzmann ma-
chines [34, 35, 40] k** order multiplicative interactions are
used to define the energy function. These high order inter-
actions capture the many possible ways in which the output
can depend on the input. More recently, II—nets [12] use
polynomial expansions as a function approximator, replac-
ing traditional activation functions with polynomials of the
input vectors and use tensor decompositions [23] to reduce
the number of learnable parameters.

Multiplicative interactions are also crucial in the con-
text of self-attention. Self-attention methods have been pro-
posed as mechanisms to self-recalibrate feature maps and
have been used either as replacement or addition to tradi-
tional residual blocks [18]. Complementary to our work,
some of these methods accumulate contextual information
into lightweight global-descriptors, either extrapolating a
single scalar for each spatial position [46], channel [20, 4],
channel and position [51] or region of space [26].

Closer to our work, it is the idea of modeling non-local
long-range dependencies among spatial positions. While
this is not new in computer vision [3, 25, 13] it is rel-
atively recent in the context of neural networks architec-
ture, in the form of “Non-local” attention modules, capa-
ble to attend at the same time every element of the in-
put [50, 45]. Examples of successful use of these mod-
ules can be found in natural language processing as well as
in computer vision, where some form of self-attention has
been used to achieve state-of-the-art performance in vari-
ous problems as translation [37], question answering [36],
classification [38, 2], segmentation [47, 5], and video pro-
cessing [49], among others. While some works focused on
extending the scope of Non-local blocks, by capturing chan-
nels’ correlations [, 54, 15] or considering multiple reso-
lutions of the image [33, 14], recent work has sparked a
discussion on the scalability of these modules, and on how
to overcome their intrinsic efficiency limitations [43].

Existing solutions focus on increasing the efficiency of
the similarity operator, for example by reducing the num-
ber of positions attended [10, 55] or using low dimensional
latent spaces [ 11, 56, 8, 48] or on the computation order of
the matrix-formula [42, 22]. In this work, we propose an
alternative solution to this problem. We introduce a faster
reformulation of the Non-Local block by framing non-local
dependencies as 3"¢ order interactions. Our method can ex-
tract non-local dependencies using no matrix multiplication
computed along the spatial dimension.

3. Non-locality and high-order interactions

We start by introducing notation and background, then
proceed in formalizing the concept of 3" order interactions.
Our goal is to accelerate Non-local blocks in a principled
manner without losing the rich, long-range interactions that
have proven successful in practice.

3.1. Background

Notation. We follow the notation of Kolda et al. as
in [23]. Vectors are denoted as lower-case bold letters (e.g.
x) and matrices as upper-case bold letters (e.g X). The el-
ement (7, 7) of a matrix X can be indicated as x(; ;). Ten-
sors are identified with bold Euler script letters (e.g. X).
The order of a tensor is the number of dimensions, also
known as way or mode. Hadamard products are indicated
using the symbol “®”. Given two tensors, we define their
double-dot product as the tensor contraction with respect to
the last two indices of the first one and the first two indices
of the second one, identified with the bullet “e” symbol. In
the case of a tensor W € RI1xJ2XInaxIN and a matrix
X € RIn-1XIn their double-dot product is a tensor of order
N-2,ie. Y = W e X of dimension I; X Iy--- X In.o.
Specifically, in element-wise form, such double-dot product
reads

I Ina

Y(r,vine) = E : E : Wiy, in-2yin-1,in) L (in1,in)"

in=11%np1=1

Non-local Block. A generic self-attention block for neu-
ral networks highlights relevant interactions in a feature
map using a function g, designed to manipulate the input,
and a function f, in charge of extracting similarities from
it. In [50], the authors introduce the “Non-local block™, a
self-attention block used to highlight non-local long-range
dependencies in the input. It operates on a folded feature
map X € RVXC of N spatial positions and C' channels and
outputs a matrix Z of the same dimensionality

Z=Y+X=f(X)g(X)+X (1)

where f: RV*C — RN*N ig a pairwise function that
calculates similarity for each pair of spatial positions, and
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Figure 1: Two views of the Poly-NL block. a) Poly-NL as a non-local self-attention block for neural networks. The symbol
® denotes Hadamard products. Gray boxes represent convolutions of kernel size 1 and an averaging function over the rows.
The output of the average pooling undergoes an expansion before the Hadamard multiplication. b) Poly-NL as a 3"¢ order
polynomial module for neural networks. In the first box the space of 3"¢ order interactions is represented as a line of (NC)3
white dots, containing all possible triplets. The learnable parameters of ng’l]y,NL € RNXCOXNXOXNXCXNXC wejoht each
triplet (¢ )T (e, £)T (g,n) DY its iIMpPOrtance wq p,c,d,e, f,9,h)- Lhis is depicted in the second box as a line of colored dots. The
output element y, ) is the weighted summation of every triplet.

g: RVXC 5 RNXC which has the form of a unary func-
tion computing a new representation for the input. In the
case where g(X) is a linear embedding and f(X) is an em-
bedded dot-product, the contribution of the self-attention to
the output can be written as

YV = (XWoW/XT)(XW,) = XW,XTXW, (2)

where Wy, W, W, are matrices of learnable parameters
of dimension C' x C'. To produce the output Y, the Non-
local block computes the dot-product between a similarity
matrix (XW ;X ") € RV*N and an embedding of the in-
put (XW,) € R¥*C_ This matrix multiplication recali-
brates the features of the n'”* position via aggregating infor-
mation from all the others. The pairwise function provides
the similarity weights for the contribution of each position
and uses a matrix multiplication along the N dimension.
Such matrix multiplication on the N dimension is at the
core of the non-local processing but introduces a quadratic
term in computation that makes the complexity of this mod-
ule equal to O(N?).

Polynomials for Neural Networks. Recently in [12],
the authors adopted polynomials as layers of neural net-
works. We follow their formulation of a polynomial func-
tion P: RVX¢ — RNXC guch that Y = P(X), in which
each element of the output matrix is expressed as a polyno-
mial of all the input elements z(; ;). The output of the layer

is formed as
D d
Y =PX)=) WH]ex+ WP 3)
d=1 j=1

where D is the order of the polynomial, W!4 is the ten-
sor of learnable parameters associated with a specific order
d, and WO is a bias matrix of learnable parameters. The

order of the tensor W/ increases exponentially for higher-

order polynomial terms, i.e. W4l € RN *XCxITj_i(NxC),

3.2. 34 order interactions

To present our method, we start by describing 3" or-
der interactions terms for a feature map X € RH*WxC,
We consider its folding X € RV*C where the spatial di-
mensions have been grouped together N = H x W. To
capture all potential 3"¢ order dependencies between X’s
elements, we consider their linear combination weighted
with a set of learnable parameters. In other words, we iso-
late the 37¢ order term (D = 3) of Eq. (3) by assuming
wloll = o, Wl = 0,WE2 = 0. Under the aforemen-
tioned assumptions, Eq. (3) becomes

Y = (((Wm eX)eX)eX) 4

where W0l is a tensor of order 8 and dimension
RNXCXNXCXNXCEXNXC — We can find all possible 37¢



order interactions, i.e. the multiplication of all possible
triplets of the input’s elements summed together, clearly
highlighted in its element-wise formula

N C
Yad) = D D Waiesone promTledT(eNTgh) )
c.e,gd,f,h

As depicted in Eq. (5), in a 3¢ order polynomial each el-
ement of the output matrix, Y(a,b)» benefits from the con-
tributions of every possible triplet x(c )T (e, f)T(g,1), €ach
weighted by its unique importance ws, , ., ;.- 1he
use of WHB! in its most general form would allow taking
into account every possible pattern in the input but, at the
same time, it would increase the number of parameters ex-
ponentially. A well-known problem in higher-order mod-
els [40, 12] is the number of parameters considered, which
tends to be the most expensive part of their implementa-
tion. The number of the parameters to determine in Eq. (3)
depends on the order of the polynomial and, even without
considering orders lower than D, the parameters required
are (N C)D (for instance, the use of D = 3 on an input
1024 x 196 will introduce nearly extra 102! parameters).
Different approaches can be considered for reducing the
number of parameters, for example by taking into account
prior knowledge about the task or the nature of the input
data [23, 35]. One approach to reduce the complexity is by
selecting only a limited subsets of all the possible combina-
tions (¢, q)T (e, £)T(g,n) €Xploiting a particular structure of
the tensor W, For example, assigning the same weight
to a group of triplets will guarantee the same contribution
for each of them, or imposing some zero-weights on one
subsets of triplet will cancel their impact on the output
Y(a,p)- These choices can be expressed in a formal way,
which makes the format of the W!* tensor sparse, because
some of the dimensions are constrained to be diagonal, or
low-rank, since repeated values are used along some dimen-
sions. The central idea of this paper is to factor the interac-
tion tensor W3l in a particular way, to extract only a mini-
mal subset of 3"¢ order interactions from the input data. In
other words, the choice of such tensor allows its replace-
ment with matrices of smaller size, implemented using only
pre-existing building blocks for neural networks.

4. Method

In this section, we characterize the set of 3"¢ order in-
teractions associated with non-local dependencies and pro-
pose a method that accesses them without the expensive
computation of a similarity matrix. The proposed method
“Poly-NL” is a novel non-local block, capable of selecting
the same interactions as a Non-local layer at a fraction of its
original computational cost in both space and time.

4.1. Poly-NL layer

As described in Section 3.1, a major drawback of the
Non-local block is its complexity, which depends on the
number of spatial positions as O(N?). To address this
drawback we propose Poly-NL, a non-local spatial self-
attention module that avoids any matrix multiplications
along dimension N. Poly-NL takes in input a matrix X €
RY*C and outputs a matrix of the same dimensionality Z,
that can be computed as Z = aX + YN with o and 3
are learnable scalars. The matrix Y™ is the core of the
Poly-NL layer and can be written as follows

YPYNE = (9(XW; © XW3) 0 X)W, (©6)
where ®: RV*¢ — RV*C ig an average pooling on spatial
positions followed by an expand function, W1, Wy, W3 €
RE*C are matrices of learnable parameters and © indicates
element-wise multiplication. A visual depiction of the mod-
ule is presented in Figure 1, Poly-NL is a layer that scales
linearly with the dimension N (i.e. has a complexity of
O(N)).

Noteworthily, Poly-NL extracts the same set of depen-
dencies as the Non-local block but learns a different set of
weights to process them. In order to connect the two formu-
lations, we describe the set of interactions captured by these
two blocks. The set of spatial interactions associated with
Poly-NL is clearly highlighted in its element-wise formula

c N
1
Poly-NL
Yian) = Z Z N Vlnay W2s,a) W3 a0 T (a,d) L e, )T (e,h)

d,f,h e
)
In Poly-NL, each element y(lefl;;IL of the output ma-
trix is computed using the contribution of a set of triplets
T(a,d)T (e, )T (e,h)> Weighted using the learnable parameters
W,y W2(5,0)W3a,0) -
Analogously, we highlight the set of interaction captured
by the non-local module of Eq. (2), by writing its element-
wise formulation

c N
y(N;,b) = Z Zwf(d,f)wg(h.,b)x(avd)x(evf)x(eﬁh)' ®)
df.h e

In the Non-local block, each element of the output matrix
y?;b) is computed using the contribution of a set of triplets
T(a,d)T(e,f)T(c,h)> Weighted using the learnable parameters
Wiy 1y Waq, 4 - AS Visible from the comparison between the
two formulas, Poly-NL and Non-Local block modules are
closely connected. They both access the same set of triplets
and optimize through backpropagation a set of learnable
weights. Nevertheless, the two modules differ consider-
ably in terms of computational efficiency. Poly-NL does
not need to explicitly compute any pairwise-function and
can be therefore viewed as a linear complexity alternative
to the Non-Local blocks.
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Figure 2: Runtime and Peak memory consumption performance comparison between Poly-NL and other non-local meth-
ods executed on a CPU Intel(R) Core(TM) i9-9900X CPU (a) and a RTX2080 GPU (b,c). Poly-NL exhibits lower computa-

tional overhead than competing methods, which is of importance with an increasing number of spatial positions.

Method APbom APbomSO APbom75 APmask APmaskSO Apmask75
MaskR-CNN 37.9 59.2 41.0 34.6 56.0 36.9
+ Non-local 38.8 60.6 42.0 354 57.3 37.7
+ TESA 39.5 60.9 43.1 354 57.2 37.5
+ Latent-GNN 38.9 60.4 42.4 353 57.3 374
+ Efficient-NL 38.9 60.3 42.2 354 57.2 37.7
+ Poly-NL 39.2 60.8 422 354 57.4 37.6

Table 1: Results of Poly-NL and other Non-Local methods on Instance Segmentation-COCO.

Interestingly, both of these blocks are also special cases
of 3"¢ order polynomials of Eq. (4). The outputs of these
blocks YN and YP¥N- | can be equivalently computed us-
ing Eq. (4), in which Wh[;i and Wllfﬂy_NL are block-sparse,
low-rank, and can be decomposed through smaller matrices
(i.e. WyW ¢ and W1 W,y W, respectively).

4.2. Relation with other Non-local blocks

The idea of decomposing higher-order tensors in smaller
matrices is not new [9, 35], but can be used to cast a new
light on a series of popular self-attention models. Besides
Non-local block and Poly-NL, other popular non-local vari-
ants can be framed as special cases of 3"¢ order polyno-
mials [1, 56, 42]. We compare Poly-NL to these methods
and discuss the advantages of our formulation in terms of
computational efficiency.

Figure 2 depicts the complexity overhead of various spa-
tial Non-local blocks for different sizes of the input matrix
X. In the visualization, we examine both the number of spa-
tial positions (Figures 2b and 2c) and the number of chan-
nels (as in Figure 2a). The charts examine the performance
of five different methods (TESA [1], NL [50], L-GNN [56],
E-NL [42] and Poly-NL) and a showcase how the proposed
solution is able to process inputs size otherwise unmanage-
able by other formulations. We report computational time
on CPU (Figure 2a) and GPU (Figure 2b) as measure of
time complexity and peak memory usage on GPU as indi-

cator of space complexity (Figure 2¢). To ease comparisons
among methods, we include as baseline a regular convolu-
tion layer (CONV), where no attention mechanism is used.
All benchmarks were executed considering a single layer
of each method on identical hardware, under comparable
implementations, and hyper-parameters (please check addi-
tional material for full-nets run-times and implementation
details). For each method, the values shown in the charts
are the median of 20 runs.

The TESA block of [1] proposes to integrate spatial cor-
relations together with channels’ dependencies by comput-
ing six matrix multiplications on the three different matri-
cizations of the input tensor X. This procedure increments
the patterns captured by the self-attention but it is burdened
by a very high computational complexity of O(N?). The
Latent-GNN block of [56], given the input matrix X €
RN*C | proposes to use a latent representation N x d to
extract long-range dependencies with O(Nd?) complexity.
The block uses matrix multiplications to compute a low-
rank matrix d X d, which captures latent space interactions,
and a matrix d x C, which captures its relation with the in-
put channels. This method has a computational complexity
that is linear with respect to the number of spatial positions
N but depends on the choice of the hyperparameter d and a
sequence of matrix dot-product multiplications to compute
the output. Lastly, the “Efficient Non-local block™ [42] pro-
poses to compute the original formula of Eq. (2) from right

10000



Method APboa; APb()I5O APbo;v75 APmask APmaskSO APmask?E)
MaskR-CNN 379 59.2 41.0 34.6 56.0 36.9

w/ Poly-NL

+ on Res3 38.6 60.1 41.5 35.2 56.9 374

+ on Res4 39.2 60.8 42.2 354 574 37.6

+ on Res5 38.7 60.6 41.9 35.2 57.2 37.3

+ on Res345 39.8 61.7 43.2 36.0 58.4 38.3

Table 2: Ablation study of Poly-NL placement in MaskR-CNN for Instance Segmentation. Adding Poly-NL on different
ResNet blocks yields changes in performance. An application of Poly-NL on all ResNet blocks provides the best results

when compared to a sole application on a single block.

Method Top-1  Top-5
ResNet-50 75.62  92.68
+ Non-local 76.09  93.00
+ TESA 76.49 93.05
+ Latent-GNN 7528 92.33
+ Efficient-NL  75.86  93.02
+ Poly-NL 76.30 93.06

(a) Imagenet

Method Fasy Medium Hard
ResNet-50 95.49 94.85 89.87
+ Non-local 95.88 95.14 91.94
+ TESA 96.22 95.61 92.58
+ Latent-GNN 96.00 95.31 92.49
+ Efficient-NL 96.06 95.42 92.55
+ Poly-NL 96.37 95.71 92.76

(b) Face Detection

Table 3: Results of Non-Local variants for image classification on ImageNet and face detection on WIDER FACE.

to left. This procedure avoids the computation of pairwise-
spatial similarities and makes the complexity linear with re-
spect to IV, but it still requires computing a sequence of two
matrix dot-products multiplications to extract the output.

As displayed in Figures 2b and 2c, increasing the num-
ber of spatial positions greatly impacts efficiency. Run
times of TESA and NL, which both depend quadratically
on N, quickly become impractical, even in cases where
the input dimension is small. Efficient methods (E-NL,
L-GNN, Poly-NL) scale better with increasing spatial po-
sitions. Nonetheless, our method holds a competitive ad-
vantage across all figures, due to its lack of any matrix
dot-product multiplication on the spatial dimension N. As
shown in Figure 2a, the number of channels impact linearly
the runtime performance of most methods, with the notable
exception of TESA. Even in this case, our proposed method
is performing significantly better than competing methods
especially when the number of channels becomes signifi-
cant.

As visible on the figures, Poly-NL consistently outper-
forms existing competitors, and has an efficiency on par
with a regular convolution layer (CONV) since by design
it avoids the explicit computation of any attention matrix.

5. Experiments

We evaluate the proposed method on three different
tasks: object detection and instance segmentation on
COCO [29], image classification on ImageNet [39], and

face detection on the WIDER FACE dataset [52]. We
provide empirical evidence that Poly-NL outperforms pre-
viously proposed Non-local neural networks while main-
taining an optimal trade-off between efficiency and perfor-
mance.

5.1. Instance Segmentation on MS COCO

We tested our method on object detection and instance
segmentation, where the network processes an image and
produces a pixel-pixel mask that identifies both the category
and the instance for each object. We use the MS-COCO
2017 dataset [29], composed by 118k images as training
set, 5k as validation set and 20k as test set, and the Mask
R-CNN baseline of [17]. For all the experiments, we report
the standard metrics of Average Precision AP, APsg, and
AP;5 for both bounding boxes and segmentation masks.
The Mask R-CNN architecture is composed of a ResNet-
FPN backbone for feature extraction followed by a stage
that predicts class and box offsets. We trained with 8 Tesla
V-100 GPUs and 2 images per GPU (effective batch size 16)
using random horizontal flip as augmentation during train-
ing. We use an SGD solver with weight decay of 0.0001,
momentum of 0.90, and an initial learning rate of 0.02. All
models are trained for 26 epochs with learning rate steps
are executed at epoch 16 and 22 with gamma 0.1. We used
as backbones ResNet-50 [18] architectures pre-trained on
Imagenet.

Following prior work, we modify the Mask R-CNN
backbone by adding one non-local layer right before the last
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Figure 3: Class saliency maps of different methods. Grad-Cam [4 1] evaluates regions of the image which correspond to the
class of interest. The use of non-local blocks helps to discriminate classes’ characteristics.

residual block of Res4. This procedure highlights the capac-
ity of the self-attention to boost features’ representation and
improve the quality of the candidate object bounding boxes.
We compare our method against four different spatial self-
attention layers, the original Non-local block of [50], the ef-
ficient Latent-GNN variant of [56], the Efficient-NL of [42]
and the recently proposed TESA [!]. For fair comparison,
we report the results from our training, achieved using pub-
lic available source codes and hyperparameters as provided
by the respective authors.

Quantitative results are summarized in Table 1. When
compared to the best performing method, TESA [1], Poly-
NL exhibits identical performance in AP,,,s; and slightly
lower accuracy for APy,,. However, we note that our pro-
posed method is nearly x 10 faster to compute than TESA at
the given resolution. Moreover, compared to the Non-local
layer [50] and its efficient variants Latent-GNN [56] and
Efficient-Net, our method improves performance by 0.3% 1
in APy, while keeping linear computational complexity.

We ablate the location we insert the proposed layer in
MaskR-CNN and present our findings in Table 2. We find
that employing self-attention on any block of the ResNet
backbone improves considerably the performance in both
detection and segmentation. It appears that Res4 is the
optimal block to insert Poly-NL into, since the numerical
improvement across all metrics is consistent. At the same
time, Table 2 shows that a combination of all ResNet blocks
leads to the best performance (at most 1.2% 7 in APy, and
1.5% 1 in AP,,4sx). Although having a self-attention block
at Res4 is preferable, the contribution of attention on multi-
ple blocks outperforms the usage on a single module. These
results suggest how complementary attention patterns can
be captured at different network stages.

5.2. Face Detection on WIDER FACE

We also apply our model to the task of face detection on
the WIDER FACE dataset [52], which consists of 32,203
images and 393, 703 face bounding boxes (40% training,
10% validation, and 50% testing) with a high degree of
variability in scale, pose, expression, occlusion, and illu-
mination. Compared to COCO [29], WIDER FACE [52]
contains more tiny and dense detection objects (i.e. faces).
51% of objects from COCO [29] have the relative scale to
the image below 0.11, while for a similar proportion, 55%
of faces in WIDER FACE are less than 0.02. In addition,
1% of images in COCO have more than 30 objects, while
there are 8% images contains more than 30 faces in WIDER
FACE and many images even include more than 150 faces.
Based on the detection rate of EdgeBox [58], three levels of
difficulty (i.e. Easy, Medium, and Hard) are defined by in-
crementally incorporating hard samples. By using the eval-
uation metric of IoU 0.5, we compare the Average Precision
(AP) of the proposed method and other baselines on Easy,
Medium and Hard subsets, respectively.

Our experiments are implemented with PyTorch based
on open source mmdetection [7]. Inspired by RetinaNet
[28], we choose ResNet-50 [18] as backbone and Feature
Pyramid Network (FPN) [27] as neck to construct the fea-
ture extractor. The losses of classification and regression
branches are focal loss [28] and DIoU loss [57], respec-
tively. Following [50], we insert one Poly-NL block right
before the last residual block of c4. To detect tiny faces, we
tile three scales of anchors over each level of the FPN. The
aspect ratio is set as 1.3 and the IoU threshold for positive
sampling matching is 0.35. For augmentation during train-
ing, square patches are cropped and resized to 640 x 640
from the original image with a random scale. Then, photo-
metric distortion and random horizontal flip with the prob-
ability of 0.5 are applied. We train the model by using SGD
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Z=X+Y

Figure 4: Non-local dependencies captured by Poly-NL. The norm of the extracted features per spatial location is visualized
over the input image. The attention contribution Y learns patterns complementary to those captured by the input X. The
summation of the aforementioned quantities merges together the contribution of short and long-range spatial dependencies.

optimizer (momentum 0.9, weight decay Se-4) with a batch
size of 8 x8 on 8 Tesla V100 GPUs. The initial learning rate
is set to 0.001, linearly warms up for the first 3 epochs, and
decays by a factor of 10 at 250-th epoch and 350-th epoch.
All the models are trained with 400 epochs from scratch
without any pre-training. During testing, we only employ
single scale inference with the short and long edge of im-
age bounded by 1100 and 1650, respectively. As shown in
Table 3b, all attention modules can significantly improve
the performance of face detection on WIDER FACE, indi-
cating the effectiveness of context modeling (i.e. capturing
long-range dependencies among pixels). Besides, the pro-
posed Poly-NL module consistently outperforms all other
non-local layers across the three levels of difficulty, achiev-
ing the mAP of 92.76% on the hard subset while being con-
siderably faster than all competing methods.

5.3. Classification on Imagenet

We evaluated our method on the task of large-scale im-
age classification, using Imagenet dataset [39], counting
1.28M training images of 1000 classes. For all the experi-
ments, we modify a ResNet-50 architecture [ 8] by insert-
ing a self-attention module and then train from scratch with
8 GPUs for 90 epochs, using a batch size of 256 and an SGD
optimizer with an initial learning rate of 0.1 and weight-
decay as described in [16]. Quantitative results are reported
in table (3a) and show the Top-1 and the Top-5 accuracy for
the evaluated methods. It is apparent that also in the classi-
fication task, where the goal is to provide a summary of the
input, reasoning about spatial dependencies benefits greatly
the accuracy. Poly-NL achieves the best performance on
Top-5 accuracy, and on Top-1, outperforms significantly

all other Non-Local neural networks with the exception of
TESA [1], which is very computationally demanding.

Beyond quantitative results, Fig. 3 illustrates qualitative
differences between different non-local variants. The visu-
alization is produced with Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [4 1], a technique that highlights
areas of high importance for image classification tasks. Our
proposed method more accurately captures global context
and salient features when compared to other Non-Local
methods.

Fig. 4 visualize the contribution of Poly-NL to the input’s
representation. The figure overlays the norm of different
features on top of the input image. We report the input’s
feature map X, the contribution of attention module Y and
their summation Z, i.e. output of the Poly-NL module. It
is apparent that Poly-NL learns to contextualize the visual
clues of the input with non-local dependencies. Our self-
attention module can effectively recognize patterns that are
complementary to those captured in the input and makes the
features map aware of long-range dependencies.

6. Conclusions

In this work, we cast the recently proposed Non-local
block as a 3rd order polynomial in the form of multiplicative
interactions between spatial locations on a grid. Based on
this fact, we propose a novel and fast embodiment of Non-
local layers named Poly-NL that can capture long-range de-
pendencies with a complexity that scales linearly with the
size of the input in both space and time. Poly-NL con-
sistently outperforms other non-local networks on image
recognition, instance segmentation, and face detection.
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