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Abstract— A recently introduced latent feature learning
technique for time-varying dynamic phenomena analysis is the
so-called slow feature analysis (SFA). SFA is a deterministic
component analysis technique for multidimensional sequences
that, by minimizing the variance of the first-order time deriv-
ative approximation of the latent variables, finds uncorrelated
projections that extract slowly varying features ordered by
their temporal consistency and constancy. In this paper, we
propose a number of extensions in both the deterministic and
the probabilistic SFA optimization frameworks. In particular, we
derive a novel deterministic SFA algorithm that is able to identify
linear projections that extract the common slowest varying
features of two or more sequences. In addition, we propose an
expectation maximization (EM) algorithm to perform inference
in a probabilistic formulation of SFA and similarly extend it
in order to handle two and more time-varying data sequences.
Moreover, we demonstrate that the probabilistic SFA (EM-SFA)
algorithm that discovers the common slowest varying latent
space of multiple sequences can be combined with dynamic
time warping techniques for robust sequence time-alignment.
The proposed SFA algorithms were applied for facial behavior
analysis, demonstrating their usefulness and appropriateness for
this task.

Index  Terms—Behavior  analysis, linear  dynamical
system (LDS), slow feature analysis (SFA), temporal alignment.

I. INTRODUCTION

LOW feature analysis (SFA) was first proposed in [1]
Sas an unsupervised methodology for finding slowly
varying (invariant) features from rapidly temporal varying
signals. The exploited slowness learning principle in [1] was
motivated by the empirical observation that higher order
meanings of sensory data, such as objects and their attributes,
are often more persistent (i.e., change smoothly) than the
independent activation of any single sensory receptor. For
instance, the position and the identity of an object are visible
for extended periods of time and change with time in a
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continuous fashion. Their change is slower than that of any
primary sensory signal (like the responses of individual retinal
receptors or the gray-scale values of a single pixel in a
video camera), thus being more robust to subtle changes in
the environment.

To identify the most slowly varying features, a trace
optimization problem with generalized orthogonality con-
straints was formulated in [1] that assumes a discrete time
input signal' and the low-dimensional output signal is obtained
as a linear transformation of a nonlinear expansion of the
input. The optimization problem proposed in [1] aims to
minimize the magnitude of the approximated first-order time
derivative of the extracted slowly varying features under the
constraints that these are centered (i.e., have zero mean) and
uncorrelated. Thus, the slowest varying features are identified
by solving a generalized eigenvalue problem (GEP) for the
joint diagonalization of the data covariance matrix and the
covariance matrix of the first-order forward data differences.

Intuitively, SFA imitates the functionality of the receptive
fields of the visual cortex [3], thus being appropriate for
describing the evolution of time-varying visual phenomena.
However, until today limited research has been conducted
regarding its efficacy on computer vision problems [4]-[8].
Recently, SFA and its discriminant extensions have been
successfully applied for human action recognition in [8], while
hierarchical segmentation of video sequences using SFA was
investigated in [7]. In [4], SFA was applied for object and
object-pose recognition on a homogeneous background, while
in [6] SFA for vector-valued functions was studied for blind
source separation. Finally, an incremental SFA algorithm for
change detection was proposed in [5].

Links between SFA and other component analysis
techniques, such as independent component analysis (ICA)
and Laplacian eigenmaps (LE) [9] were extensively studied
in [10] and [11]. In [10], the equivalence between linear
SFA and the second-order ICA algorithm, in the case of
one time delay, is demonstrated. In [11], the relation between
LE and SFA was studied. This paper demonstrated that SFA is
a special case of kernel locality preserving projections [12]
acquired by defining the data neighborhood structure using
their temporal variations. In [13], it was shown that the
projection bases provided by SFA are similar to those yielded
by the maximum likelihood (ML) solution of a probabilistic
generative model in the limit case where the noise variance
tends to zero. The probabilistic generative model comprises a

IContinuous time SFA has been proposed in [2], but because we assume
discrete time signals in this paper, such works are out of our scope.
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Fig. 1. Latent space obtained by EM-SFA, accurately capturing the transition
between temporal phases of AUs. The ground truth is shown as N: neutral,
ON: onset, A: apex, and OF: offset.

linear model for the generation of observations and imposes
a Gaussian linear dynamical system (LDS) with diagonal
covariances over the latent space.

In this paper, we study the application of SFA for
unsupervised facial behavior analysis. Our motivation is
based on the aforementioned theory on the close relationship
between human perception and SFA. The application of SFA
is further motivated in Fig. 1, which shows the resulting latent
space obtained by EM-SFA, applied on a video sequence
where the subject is activating action unit (AU) 22 (lip
funneler). In general, when activating an AU, the follow-
ing temporal phases are present. Neutral, when the face is
expressionless. Onset, when the action initiates. Apex, when
the action reach the peak intensity. Offset, when the muscles
begin to relax. The action finally ends with neutral. It can
be clearly observed in Fig. 1 that the latent space obtained
by EM-SFA accurately captures the transitions between the
temporal phases of the AU, providing an unsupervised method
for detecting the temporal phases of AUs.

Summarizing the contributions of this paper, we propose the
following theoretical novelties.

1) We propose the first expectation maximization (EM)
algorithm for learning the model parameters of a
probabilistic SFA (EM-SFA). In contrast to existing
ML approaches [13], our approach allows for full prob-
abilistic modeling of the latent distributions instead of
mapping the variances to zero, as in ML.

2) We extend both deterministic and probabilistic SFA to
enable us to find the common slowest varying features of
two or more time-varying data sequences, thus allowing
the simultaneous analysis of multiple data streams.

3) We study the relation of SFA to a very common
component analysis technique applied to two sequences,
canonical correlation analysis (CCA). Through this analy-
sis, we highlight the basic variations of the two methods.
In particular, we showed that CCA can be provided by a
fully connected Markov random field (MRF) model that
does not consider time dependence, while the proposed
the probabilistic does that explicitly.

The novelties of this paper in terms of application can be
summarized as follows.

1) We apply the proposed EM-SFA to facial behav-
ior dynamics analysis and in particular for facial
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AUs analysis. More precisely, we demonstrate that it
is possible to discover the dynamics of AUs in an
unsupervised manner using EM-SFA. To the best of our
knowledge, this is the first unsupervised approach that
detects the temporal phases of AUs [other unsupervised
approaches such as [14] focus on detecting facial expres-
sion methodology (i.e., constituting AUs) rather than their
temporal phases].

2) We combine the common latent space derived
by EM-SFA with dynamic time warping (DTW) [15]
for the temporal alignment of dynamic facial behavior.
We claim that using the slowest varying features for
sequence alignment is well motivated by the principle of
slowness, i.e., that slowly varying features correspond to
target changes rather than rapidly varying ones, which
most likely corresponds to noise [1]).

The rest of this paper is organized as follows. In Section II,
we describe the deterministic SFA model, while in Section 111,
we introduce the probabilistic interpretation of SFA. Our
proposed EM-SFA is presented in Section IV, both for
one (Section IV-A) and multiple sequences (Section IV-E),
while the Ilatter method is incremented with warpings
in Section VI-C. In Section V, we discuss the relationship
between SFA and CCA. Finally, we evaluate the proposed
models in Section VI, by a set of experiments with both
synthetic (Section VI-A) and real (Sections VI-B and VI-C)
data.

II. DETERMINISTIC SLOW FEATURE ANALYSIS

In order to identify the slowest varying features
deterministic SFA considers the following optimization
problem. Given an M-dimensional time-varying input
sequence X = [x;,¢ € [1,T]], where t denotes time and
x; € WM is the sample of observations at time ¢, SFA seeks to
determine appropriate projection bases stored in the columns
of matrix V = [vy,va,...,vy] € RM*N (N « M), that in
the low-dimensional space minimize the variance of the
approximated first-order time derivative of the latent variables
Y = [y1,y2,...,¥7] € RNXT subject to zero mean, unit
covariance, and decorrelation constraints

min tr[YYT]
A%
st. YI=0, YY =1 (D

where tr[.] is the matrix trace operator, 1 is a 7 x 1 vector with
all its elements equal to (1/7), I is a N x N identity matrix
and matrix Y approximates the first-order time derivative
of Y, evaluated using the forward latent variable differences
as follows:

Y=[y2-Y1,¥3— Y2, -, ¥ — Yr—1]- (2)

Considering the linear case where the latent space can be
derived by projecting the input samples on a set of basis V
where Y = V7X and assuming that input data have been
normalized such as to have zero mean, problem (1) can be
reformulated to the following trace optimization problem:

mvin tr[VTAV] s.t. VIBV =1 3)
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where B is the input data covariance matrix and A is an
M x M covariance matrix evaluated using the forward temporal
differences of the input data, contained in matrix X

1 o7 1 T
A=—XX', B==XX". 4)
T -1 T
The solution of (3) can be found from the GEP [1]
AV = BVL 5)

where the columns of the projection matrix V are the gener-
alized eigenvectors associated with the N-lower generalized
eigenvalues contained sorted in the diagonal matrix L.

III. PROBABILISTIC INTERPRETATION OF SFA

In this section, we discuss a probabilistic approach to SFA
latent variable extraction. Let us assume the following linear
generative model that relates the latent variable y, with the
observed samples x; as:

=V 7Ty, +e, e ~N(0,0) (©6)

where e; is the noise which is assumed to be an isotropic
Gaussian model. Hence the conditional probability is
Px/|V,y:, x) =NV Ty,o XZI) Let us also assume that
the linear Gaussian dynamical system priors over the latent
space Y are

N
(YI|Yt laj‘lNao-]N H Ynt|Ynt l’j'l’lao- )
(ynt|ynt 1 An, 0, )= ( n¥Yn,t—1,0, )
P()’n,l|0n,1) = N(0, Unjl)o (7
Defining the model parameters 8 = {0,060y}, where

0 = {V,02}, 0y = {A, X, 1} with matrices A = [ ; 1n],
E:[,ja] anle—[é,]a
space can be evaluated as

] the prior over the latent

P(Y|0y)

(e

=7 exp 252 Yn,1 + 202 [Yn,t = AnYn,i—1
n=1 n’l no=2

1 ..
— XD [ - «[YYTA@+YYTAD 4 (y1y1 +yryr)A®]]
(8)

where  Z Jy P(Y)dY, AW [6i,; G Ja D)1,
AD = [6,((1 = 22 /o)], A = [6,4x(1 — 4], and
6i,j =1fori=jand O fori # j.

In [13], it was shown that the conditional probability in (8)
for the deterministic case (i.e., taking the limit axz — 0) is
simplified to

©)

Thus, the ML solution for the basis matrix V of the above
model is evaluated as

V =arg max log P(X|6)

0'*)

1 .
P(Y|0y) ~ Z exp[—t[YYTA® + YYTAD]].

= arg max log/ P(X|Y,0,)P(Y|0,)dY. (10)

Vo‘—)()

Completing the integrals and assuming a sufficient large
number of data samples, the optimization problem in (10)
results to the following optimization problem:

T
V = argmax Tlog|V| - Etr[VBVTA(z) +VAVI AD] 4 ¢
(1)

where all terms independent of V are summarized by the
constant c. Differentiating (11) with respect to V yields the
same solution as (3) up to a scale factor.

In the ML solution the direction of V does not depend
on a,% and 4,. If 0 < 4, < 1, Vn, then larger values of 4,
correspond to slower latent variables. This directly induces an
ordering to the derived SFA slowly varying features. In order
to recover the exact equivalent of the deterministic SFA algo-
rithm, another limit is required to correct the scales. A natural
approach is to set 62 = 1 — A2 [13], which constraints the
prior covariance of the latent variables to be one.

IV. EM APPROACH FOR PROBABILISTIC SFA

The ML approach for probabilistic SFA bears many
disadvantages. First, the mapping of axz — 0 essentially
reduces the model to a deterministic one, and serves mostly
as a theoretical proof of the connection of the probabilistic
interpretation and the deterministic model. Furthermore, the
ML method approximates the latent Markov chain by employ-
ing first-order derivatives. In this section, we present a fully
probabilistic treatment to SFA, which includes modeling full
distributions along with both observation and latent variance
(EM-SFA, Section IV-A). Furthermore, we extend EM-SFA
to handle two distinct sequences (Section IV-E), while the
extension for handling any number of multiple sequences is
straight-forward.

A. EM-SFA for Single Sequence

In this section, we propose a complete probabilistic
SFA algorithm using EM, while following the constraints
discussed in Section Il (0 < A, < 1,V¥n and 62 = 1 — 12).2
First, let us slightly modify the considered linear generative
model such as x; = Vy; + e;,e; ~ N(O,ale).3 Let us also
define the new model parameters § = {6y, X1, A} (since X is
a function of A).

To derive the probabilistic EM-SFA algorithm, we consider
a linear generative model according to which each latent
variable y, is associated with an observation sample x; and
connected with a first-order Markov chain. Thus, the proba-
bility distribution P (y;|y;—1) for each latent variable y, is only
conditioned by the previous variable y,_j. Fig. 2(a) presents
graphically the considered linear generative model for a single
sequence. In addition, we considered that both the observed
and the latent variables are continuous and Gaussian described

2The EM algorithm presented shares some similarities with the EM for LDS
(see [16, Ch. 13], [17, Ch. 13], [18, Ch. 13], [19, Ch. 13]).

3In the ML problem V~! was used instead in order to facilitate the
computations in the case of 03 — 0.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

(a)

(b)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Linear generative models considered by EM-SFA where latent variables y; are connected by a first-order Markov chain. (a) For a single sequence each
variable y; is associated with a single observation sample. (b) For two sequences, each common latent variable is associated with two observation samples.
(c) Undirected graphical model that considers fully connectivity among latent variables for deriving the probabilistic approach for CCA.

by the following generative models, respectively:

x; = Vy; +e, e, ~N(0,021) (12)
yr = Ayi—1 +wi, W NN(O, %) (13)
yi=u, llNN(O,Z]) (14)

with the special property that the covariance and the transition
matrices are related as A> = I — X. The special properties of
the above LDS are (1) in the limit case where the variance is
sent to zero axz — 0, the ML solution is the same as the one
produced by SFA, and (2) most importantly there is a ranking
of the latent features according to the value of the elements in
the main diagonal of A or X (i.e., the larger the value of 4, the
slower the feature). This is a major advantage, since standard
LDS does not have this property.
The joint distribution of such a model is given by

T T
PX,Y) =Py [[ Py [ ] Pxilys)
t=2 t=1
where the initial latent variable, the transition, and emission
distributions are given by

15)

P(y1) = N(y110, 1) (16)

P(yilyr—1) = N(yi|Ayi-1, Z) (17)

P(xlyr) = N'(x|Vyr, o). (18)

Therefore, our objective is to determine the model

parameters 6§ = {0y, X1, A} (since X is a function of A)
that maximize the joint likelihood, which is equivalent to
maximizing the complete log likelihood defined by

T
log P(X, Y|0) = > log P(xy:, 0x) + log P(y1|X1)
=1
T
+ Z log P(y:ly:—1, A).
t=2
The EM procedure requires the sufficient statistics of the
posterior distributions E[y,|X], E[y,y!|X], and E[y,y! ,IX]
to be determined in order to become available for the
maximization step.

19)

B. Learning the Sufficient Statistics E[z;], E[z,z,T],
and E[ZzZ,T_l]

The sufficient statistics in EM-SFA (known as the E-step)
are obtained similarly as for LDSs. In more detail, the estima-
tion consists of the forward and backward steps, known as the
Kalman filter [20] and Rauch-Tung-Streibel (RTS) [21], [22]
equations, respectively. The algorithm of the inference step
is described in Algorithm 1, where we consider the set of
parameters (8 = V, o0, 1, A) as known. The forward step,
which is the first part of the algorithm, recovers the latent
marginal P(y;|X1,...,%) ~ N(y:|p;, Us). Notice how the
Kalman gain matrix K, update differs from the traditional
LDS via P;_;, where P,_; is the variance of the resulting
distribution obtained from the following integral:

/ Nl U DN (e[ AYs -1, E)dy, 1

=N@Ap, -1, Pio) - (20)

which needs to be evaluated in order to obtain the posterior
marginal [16]. Since we have forced ¥ =1 — AZ, in our case
P; is given by

P =AU —DA" +L @1

Furthermore, we note that the initial parameters of EM-SFA
are similar to the traditional LDS

np = Kixg (22)
U =0-K V)X, (23)
c1 = Nx1]0, VZ VT 4 621) (24)
where
K =X, VI(vE V! +62D)7! (25)

and c; is the normalization coefficient.

The backward step aims to recover the posterior marginal
for y, given all observations. The updates can be found in the
second part of Algorithm 1 and are derived similarly to
the updates for the traditional LDS [16]. Having recovered
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Algorithm 1: Inference In SFA

Data: A, V, axz, X

Result: Ely;], ﬁ,, ﬁ,,,_l
1 % (forward step)
2fort=11t T do
3| Py < AU —DAT +Tift> 1
4 | K <P VI(VP,_ VT 4+ 62D)7!
5| < Apo T Ke(x — VAR, ) if t > 1
6 | U <« A-K/ V)P,
7 initialize Uz 7_; < (I — K7 V)AP,_
8 % (backward step)
gfort=T 70 2 do

10 Ji-1 < Ui IAT(Pt 1)_1

| Byl < gy + Jio 1 (Bly] — Apgy)

12 Ut 1< U+ Ji- 1(Ut P, 1)Jt 1

13 Ut,t—l <« Uth,l +Jt(Ut+1,t AUt)Jt,l ift<T

the statistics from Algorithm 1, the sufficient statistics of our
model are given by

Ely] = &, (26)
E[yy!] = U+ ity 27)
Elyy! ] = J-10 + i i), (28)

where J; = U, A(P,) L.

C. Learning the Parameters

So far, we have considered that the model parameters
0 {V,0(,X1,A} are known in order to evaluate the
sufficient statistics. In this section, we provide the detailed
derivation of the model parameters by assuming that the
sufficient statistics are fixed. Therefore, considering the
complete likelihood given by (19) we wish to determine those
parameters by optimizing

0, = arg max P(%X) [log P(X, Y|<9)]

T
= 1) log P 0
argmeaxP(Y‘ |:§ og P(x/|y:, x)]
T
P log P A
+ B POIEN] + B [Z 0g P(y:lyi_1, )]

(29)

which can be split into three parts. Expanding the first part
EP(Y\X)[Z;T:1 log P (x;|y:, 0x)], which involves parameters V
and o7, we derive

{Vnew, (o_;leW)2}

arg max
V,02 P(Y\X)

[Z log P(x;|yr. O >}

arg ?ix —g In (27r0 )

~

1

)
20¢ P

(tr(x,x! ) —2x! V Ely, X]+tr(Ely,y/ XV V)).

Setting the derivatives with respect to V"% and (0}3‘“’“’)2 equal
to zero, we obtain the updates

1

T T B
VY = (Z x E[y/ IY])(Z Ely:y/ IY]) (30
P =1
1 T
(1) = NT 2 (r(xex/) = 2x{ V'V E [y Y]
+ tr(E [yey! Y]V V™). (31)

By maximizing the second part Epyx)[P(y1|%1)], we find
the updates for the observed variance, X; as

Y9 = E [P(y1]|Z 32
1 = argmax (Y‘X)[ 11Z1)] (32)

from which we derive X = E[ylleIX].
Finally, for parameters A, by applying the

constraint g2 1 — 22 we maximize the third part

]EP(Y\X)[ZLz log P(y/ly/—1, A)]

A A
arg max (YX)|: gZP(MYt P )]

argmax——z |:Zln 1—/1

=2
< (E[ya,IX]

N
— 2y E[)’n,t)’n,tfl 1X]

+ 4 Evr, |X])} +const  (33)

where by computing the first-order derivative with respect
to A,, we derive the following cubic equation:

T
ST ((A8) — Elyn.yne—1 X1(20)?
t=2

+ (B [ X] + B [y X] = )25

—E [yniyn—11X]) = (34)

The discriminant of the above cubic equation is given as
follows:

T

-3

=2
— 4yt XT + (E[V2,IX] + E[y2,_1X] - 1)°
Elyn oyt |XP — 4(E[y2,X] + E[2,_,1X] - 1)°

— 27 Elyn Vni—11X1%). 35)

E [y,zl,,|X] +E [yr%,tfl IX]-1) Elyn.ryni—11X1?

According to the discriminant value, we can consider the
following cases.
1) If A > 0, then the equation has three distinct real roots.
2) If A = 0, then the equation has a multiple root and all
its roots are real.
3) If A < 0, then the equation has one real root and
two nonreal complex conjugate roots.
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The three solutions of (34)

T
Elyn, yn—11X] 1 4/1 2
—__~_ b
;( 3\/2 ar ++a? + b,
1.1
—§di[“f‘vafz”’})

(E[yntymnX] 1+zf\/

(36)
ag + \/ atz + bti|

1—l\/_\/ at—i—bz-)

T -
Z(E[yn,yn, 11X] 1—zf/ at+m}

=2
1+ V3,
1 \/ at+bt )

where the constants a; and b, are given by

Dony =

M~

~
||
S}

(37

(38)

ar = —2E[ynYn—11X1 + 9 E[yn s vni—11X]
(E[y2,IX] +E[y2,_1X] — 1) = 27 E[yn¥n,—11X]
(39)
by = —4(E[yn,iyn,i—11X]?
—3(E [ya,X] +E[ys,11X] = ).

From the above solutions, we retain for each feature the one
that satisfies the condition 0 < 4, < 1.

(40)

D. Inference and Learning in SFA

Next, we briefly describe the algorithm’s implementation for
computing the posterior means and covariances. In particular,
this algorithm has been divided into two parts: 1) it uses the
observations from y; to y; (forward recursion) known as the
Kalman filter [23] and 2) it exploits the observations from
y:+1 to yr (backward recursion) [24].

The EM step for learning the SFA algorithm is given
in Algorithm 2 and concerning a single sequence of
observations.

E. EM-SFA for Two Sequences

In the following, we propose a generative probabilistic
model for finding the common higher order, slowest varying
feature between the two sequences. The corresponding graph-
ical model is shown in Fig. 2(b). To do so, let us assume the
following generative model for the samples of the following
time-varying input sequences X| = [X,l,t € [1,T]] € WMixT
and Xp = [x2, 1 € [1, T]] € RM2xT

x{ =Viyi+ef, e ~N©O,07,D, k=12 (@D
where each sequence has different loads Vi and V; and
noise, while both sequences share a common latent space Y

with P(Y|6y) given by (8). The complete joint likelihood
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Algorithm 2: LEARNING IN SFA

Data: X, iter, q
Result: A,V, ‘Tx»
1 initialize A, V, ax .
2seta < >, xx!
3 SFAlInference(A,V, o x,El) % E step
4 while log likelihood > g or maxiter < iter do

5 | initialize 0 < 0,01 < 0,y <0

2,2
2,2

6 | fort=117 T do

7 0 (—5+X;E[yt]T

8 51 < 61 +x! VE[y/]

9 y <7 +Ely/] E[}’t]T +U;

10 if 1+ > 1 then

1 for n =1 70 N do

12 update 1,1, 4,2 and 4,3 (Egs. (36), (37)
L and (38))

13 % M step

1| Veoy !

15 | 02 « F(tr(a) — 26 +tw(y VIV))
16 f0r1—1t03d0

17 if 0> 4,; > 1 then

18 \; | An < Ani

19 A < [6;jn]
0 | T < I—AZ2

distribution P (X1, X3, Y) is of the form
log P(X1, X2, Y[0)

= log P(y110, Z1) + D log P(yily:—1, A)
t=2

T T
+ > log P(x{lyr, Vi, 07,) + D log P(x71yr, V2, 075)
t=1 t=1

(42)

where now 6 = {0},602,
={Va2,07,}.

For the two-sequence SFA,
we need to compute E[y,|Xi,Xzl, Ely:y!|Xi,Xz], and
]E[y,yff1 |X1,X2] which can be also performed using
RTS smoothing, as in Section IV-A. Applying the maximiza-
tion step on the joint log likelihood (42), we obtain the updates
for Vi, Vo, and ‘7;(2,1’ axz,z as

X1, A} with 6! = {Vi,02,} and

in the expectation step

-1

view — (ZT: xFE [y7 X" )(ZE yey! X ) (43)
T
oI = g 2 (e )) 20 VI B[l
+ (B[] XNV V),
k=1,2. (44)

Regarding A and X the updates are given by (32) and (33),
applied using the derived El[y;|Xi, Xz], E[y,y,T|X1, X1,
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Algorithm 3: EMSFA With DTW

Data: Xy, ..., Xk, iter,q
Result: Ay, ..., Ag,E[YXS, ... X2]
1 while not converged do
2 | if iter =1 then
3| | (A1,...,Ag) < DTW(Xy, ..., Xk)
4 | else
5 L (Aq,...,Ag) < DTW(E[Y|X], ..., E[Y|Xk])
6 | XP XA, X2 <« XgAg
7 | while not converged do
8 Update 6 (Egs. (43), (44), (33) and (32))
9 Update ¥ acc. to 62 = 1 — 12
10 E[YIX8, ..., X2] <
RTS(X%, A, 2, V,02,,,, Z1)
11 03,1»""03,1( «— o'y =
iy 0 ... 0
0 0 . O'x KIMK
Vi
12| Vi,...,.Vg < V=] ...
Vk
13 | E[Y|Xk] < RTS(Xg, A, X, Vg, o—f’k, %1),
k=1,2,...,K

and E[y,yIT_IIXl,Xz]. Using the above expositions the
K -sequence case can be trivially derived.

F. Aligning Observed Sequences

In this section, we propose an algorithm that uses the latent
spaces provided by the two-sequence EM-SFA for time series
alignment. We claim that since the two-sequence EM-SFA
provides the slowest varying common features, these fea-
tures would be well-suited for time series alignment.
In essence, this translates to aligning the slowest varying
features from two sequences which means that we disregard
high-frequency features that are likely to be noisy. We note
that recently, time series alignment was performed on a
space recovered by the application of CCA [25]. A simple,
commonly used [25], and optimal method for finding the
warpings is DTW,* which we employ in our case. Given

K sequences X € RMixTh Xp e WM&xTx of different
lengths 71 # ... # Tk, our aim is to find the warpings
Ay e WIXT 0 Ak e WT&XT guch that the common latent

space will have common length of size 7. The alignment
algorithm is presented in Algorithm 3.

V. CCA AND SFA: WHAT IS THE DIFFERENCE?

In this section, we will shed further light on the relation
of the proposed two-sequence EM-SFA and CCA, and show
that CCA can be derived from a generative probabilistic model
having as a fully connected MRF prior over the latent space.

4Other methods that can be used include, for example, [26], while for related
work from functional data analysis, please see [27]-[29].

Fig. 2(c) shows graphically such model. First, it is important
to note that both techniques follow the same generative model

Xk =Vily +ek, e ~NO, 62D, k=1,2
€;
2

w3
! th ' €;

Based on the above generative model, we derive a ML solution
for SFA (Section V-A) as well as for CCA (Section V-B).
Finally, we attempt to determine the relationship of
SFA and CCA by studying the resulting optimization problem.

(45)

A. Deterministic SFA for Two Sequences

We consider the generative model formulated in (45).
By computing the marginal log P(Xy, X2|0) (i.e., mar-
ginalizing out the latent space) and taking the limits

hm{ax,l, Ux,z} — 0, T — o0, we obtain

log P(X1, X210) (46)

T
= log /Y [TPX "y, 0. 00,) P(YI0,)dY
t=1

= log / L I(XI — V™ ly,) P(Y|0y)dY
lim{ax’l, O'X’Z}HO

= ¢+ T(log|Vi| + log|V2])

T vil . vil" @ , | Vi Tovil” (1
L[ s e P A
where
).$). (D €. ¢4 X, X7 X X7
B=|_ 0L M2l anda= |00 D2 @)
XX, XoX) XX, XoX)

By taking the derivatives and solving for the loadings
Vi and V;, we arrive at the condition

T T
Vi Vil @ |V Vil _
|:V2:| B [V2:| AY + Vs A Vs AV =1 (48
since A® and AWM are diagonal, then the projection
bases V1, V, are given by joint diagonalization of B and A.

Hence, the ML solution of the above probabilistic model gives
the same (up to a scale) projection bases as the following trace
Vi Vi

optimization problem:
T
] 2 [0]]

st [VITB[VI] 1

V2 V2
which can be solved by keeping the smallest eigenvalues of

the following GEP:
sl )
It is straightforward to extend the above methodology such as

to identify the common slowest varying features of multiple
sequences.

min
\%

(49)

Vi
V2

Vv
V2

L,
0

0

L, (50)
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B. CCA for Finding the Common Latent Space

Next, we show that CCA can be given as a limit case
of a probabilistic generative model with a fully connected
MREF prior. To the best of our knowledge, this is the first time
that CCA is described by such a model. Let us consider again
the generative model in (45) and assume a fully connected
MREF prior P(Y) over our samples, i.e., each latent node y; is
connected to all other latent nodes y;, j # i

P(Y|6,)
N T

1 1 1 1 2
:Eexp _Ezﬁ z F(yn,i_/lnyn,j)

n=1 i=1,j=1 "

1 1
= exp [—5 (u[A&2\ YY" ]+ tr[A(ngAYMYT])] (51)
where M 2 —(1/T)117, A%, 2
AGp 2 [0un 22 o))

Following similar steps as in Section III by taking the
lim2 .2 o Jy log P(X|Y)P(Y|0,)dY we arrive at:

[5mn(j«;% + 1/03)]7

Ng

L(V1,V2) = ¢+ T (log|Vi| + log|V3])
R ] e
Forcing (0L£/6V1) = 0 and (60L£/6V3) = 0, we obtain
BT ][5
V2 0 XoXI || Vy] CcA

T T
Vi 0 XiX5 [[Vi]l.o0 _
L] [y M [t

hence, the solution is given by joint diagonalization of

X x 0 and | © X, XT
0 XoXJ XX o

which is equivalent to the CCA problem [30]. As we men-
tioned above, deterministic CCA is a methodology that is
often used for feature extraction combined with alignment
of time series (such as with DTW [25]). We claim that the
proposed EM-SFA is more suitable for aligning time series,
since it incorporates temporal constraints (via the first-order
Markov prior), while CCA incorporates a fully connected
MREF prior over the latent space, as seen in (51).

——tr
2

1

VI. EXPERIMENTAL RESULTS

For demonstrating the effectiveness of our proposed
methods, experiments were conducted both on synthetic
(Section VI-A) and real (Sections VI-B and VI-C) data.

A. Synthetic Data

In this section, we demonstrate the experimental results
of our proposed algorithms on synthetic data. We use the
dimensionality reduction toolbox [31] in order to generate
randomly scaled synthetic examples of 1000 data points each.
In Fig. 3, we visualize a comparison between the resulting

5The probabilistic approach for CCA in [30] is radically different than ours,
since it models only individual random variables; in our case we consider the
whole set of variables at once.
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Data Sequences

Common Latent Space
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Fig. 3. (a) and (b) Application of deterministic SFA and EM-SFA on
two synthetic data sequences X1, X». (c) and (d) Resulting common latent
space.

latent space of the two-sequence EM-SFA and deterministic
two-sequence SFA, when applying the algorithms on the
two sequences presented in Fig. 3(a) and (b). It is
easy to observe that the latent spaces derived by both
two-sequence EM-SFA [Fig. 3(d)] and deterministic
two-sequence SFA [Fig. 3(c)] follow the same shape,
but because the EM-SFA employs an iterative smoothing
procedure, the result is much smoother than the deterministic
projections.

Next, we examine the ability of the deterministic
two-sequence  SFA, two-sequence ~ EM-SFA, and
CCA algorithms to identify the common latent space of
two synthetic sequences contaminated by noise. To derive
our synthetic example, we added Gaussian noise on the two
randomly scaled helix sequences shown in Fig. 4(a) and (b),
while subsequently we applied the examined algorithms
on the noisy sequences shown in Fig. 4(c). As it can be
observed, two-sequence EM-SFA was able to accurately
extract the common latent space of the two sequences shown
in Fig. 4(e), while the common latent spaces identified by both
the deterministic two-sequence SFA and the CCA algorithms
are noisy as can be observed in Fig. 4(d) and (f). This can be
attributed to the fact that the extracted common latent space
by two-sequence EM-SFA is smoothed and filtered by the
RTS algorithm.

B. Real Data 1: Unsupervised AU Temporal
Phase Segmentation

Regarding real data, we employ the publicly available
MMI database [32] and the UvA-Nemo Smile (UNS) [33] that
display both posed and spontaneous expressions. The MMI
consists of around 400 videos of 19 subjects annotated in
terms of FAUs and their temporal phases, i.e., neutral, onset,
apex, and offset. The UNS is a large-scale database having
>1000 smile videos (597 spontaneous and 643 posed) from
400 subjects. Throughout this section, we use trackings of
facial expressions for each subject, resulting in 68 landmark
points. The employed tracker is a person-independent imple-
mentation of active appearance models, using the normalized
gradient features proposed in [34] and is presented in [35].

1) Experiments in MMI Database: For the first experi-
ment, our goal is to measure how effectively EM-SFA can
detect the temporal phases of AUs in comparison with a
deterministic SFA, the traditional LDSs, and more complex
non-LDSs such as dynamic Gaussian process latent variable
models (GPLVMs) [36]. In this experiment, for each
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(a) Original X,

(d) Common latent space of 2S SFA

(c) Noisy X; and X,

PANPY

+Noise

(b) Original X, Noisy X,

(e) Common latent space of 2S EMSFA

(f) Common latent space of CCA

Fig. 4. Synthetic data sequences contaminated by Gaussian noise. (a) and (b) Initial randomly scaled helix sequences. (c) Two noisy sequences. The common
latent space derived by (d) deterministic two-sequence SFA, (e) two-sequence EM-SFA, and (f) CCA algorithms.

AU present in the data, we apply the compared algorithms
based on the corresponding region of the face (mouth, eyes,
brows). We subsequently evaluate the latent space obtained by
all methods, and compare with the annotated ground truth.
The temporal dynamics of posed expressions are typically
described by the following temporal segments.
1) Neutral: Where there is no facial motion.
2) Onset: The facial motion starts until it reaches an apex.
3) Apex: The point of the strongest possible facial defor-
mation. The person who displays the expression usually
stands still for some moments.
4) Offset: The reverse path from the apex to the relaxed
neutral position.
For more details regarding the temporal segments of posed
behavior, please refer to [37] and [38]. The MMI database
contains videos that have been annotated with regard to
the above-mentioned categories of temporal segments.
In more detail, the annotations are as follows: O for neutral,
1 for onset, 2 for apex, and 3 for onset. In order to facilitate
the description of dynamics, we consider the fact that there is
a monotonic increase of facial deformation in the onset region
and monotonic decrease of facial deformation in the offset
region. Put simply, the intensity of the activated facial muscles
monotonically increases until it reaches the apex, and subse-
quently monotonically decreases. As understandable, the apex
of the expression can be discovered by locating zero-crossings
of the first derivative. In conclusion, the zero-crossings of the
first derivative represent changing points during the activation
and relaxation of human facial muscles during posed
expressions. An example of the annotations is shown in Fig. 7
along with the gradient of the annotation. As can be seen, the
zero-crossings of the derivative indeed represent the changing
points between the different temporal phases.
To facilitate the comparison with the ground truth, which
is annotated in terms of the temporal phases of facial AUs,

we map the recovered latent space to the temporal phases
of AUs. This is accomplished using a subset of the critical
points of the obtained latent space (the most slowly varying
feature). In particular, we are interested in a specific set of
zero-crossings of the first-derivative. In more detail, we
obtain four points, xi,...,xs4, which correspond to a par-
ticular frame in the video [the points are clearly indicated
in Fig. 5(a) with circles]. x; is the first point where there is a
zero-crossing in the first-order derivative, transitioning to
positive (signifying an increase in the expression intensity).
This point corresponds to the beginning of the onset phase,
thus ending the neutral phase of the expression. The x, point
is obtained by taking the next zero-crossing, which indicates
the beginning of the apex phase, i.e., the intensity of the
expression has stopped increasing. The zero-crossing of the
first-derivative where the value switches to negative is x3
(signifying the intensity decrease) marks the beginning of the
offset phase, while x4, which is the next zero-crossing of
the first-derivative indicates the end of the offset phase and
the beginning of the neutral phase. Summarizing, the neutral
phase spans from the first frame to x; and from x4 to the end
of the video, the onset phase from x; to x», the apex phase
from x, to x3, and finally, the offset phase from x3 to x4.
The overall results for the applied methods are summa-
rized in Table I. The presented results show that EM-SFA
outperforms deterministic SFA, LDS,® and GPLVM on the
unsupervised detection of the temporal phases of AUs, for
all temporal phases and for all relevant regions of the face.
The relevant AUs used for each region of the face are as
follows.
1) Mouth: Upper lip raiser, nasolabial deepener, lip corner
puller, cheek puffer, dimpler, lip corner depressor, lower

6In the reported results for the general LDS, we used a diagonal transition
matrix. Results with full transition matrix were even worse.
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Comparing the derived latent space (i.e., slowest varying feature) for SFA and EM-SFA, obtained when applying the algorithms on two different

videos depicting a subject performing (a) AU 1-2 (Outer Brow Raiser) and (b) AU 22 (Lip Funneler).

TABLE I
PERFORMANCE OF SFA, EMSFA, LDS, AND GPLVM IN TERMS OF EXTRACTING THE GROUND TRUTH FROM AUS RELATED TO MOUTH,
EYES, AND BROWS, EVALUATED ON ALL AU TEMPORAL PHASES AND THE EXPRESSION PEAK IN MMI DATABASE

Accuracy (%)

| Neutral | Onset | Apex | Offset | Expr. Peak
Method | Mouth Eyes Brows | Mouth  Eyes  Brows | Mouth  Eyes  Brows | Mouth Eyes Brows | Mouth Eyes Brows
EMSFA 88.15 83.59 78.68 93.78 85 100 67.76 26.67 54.59 90.05 3148 95.52 87.5 50 100
SFA 69.48 58.77 69.97 90.67 60 87.5 51.97 2 42.35 87.06 22.22 83.58 41.67 7.14 36.36
LDS 67.37 53.16 67.57 91.19 50 81.25 47.86 6.67 45.41 87.56 18.52 77.61 79.17 2 63.64
GPLVM 73.79 68.92 68.49 87.5 65.57 87.68 59.23 13.67 48.82 88.10 18.04 81.07 71.76 25.71 59.08

lip depressor, chin raiser, lip puckerer, lip stretcher,
lip funneler, lip tightener, lip pressor, lips part, jaw drop,
mouth stretch, and lip suck.

2) Eyes: Upper lid raiser, cheek raiser, lid tightener,
nose wrinkler, eyes closed, blink, wink, eyes turn left,
and eyes turn right.

3) Brows: Inner brow raiser,
brow lowerer.

Furthermore, in Table I, we show the results for detecting
the peak of the expression, i.e., when the intensity of the
expression is maximal. This corresponds to the maximum
of the derived latent space, and in theory correspond to a
frame which is annotated as an apex frame. In this scenario,
EM-SFA outperforms all compared methods. We note that the
low performance in terms of apex and expression peak for
eyes, is due to the fact that most eye-related AUs in the data
were blinks, which have a very short apex (most of the times
just 1 frame). Therefore, it is very challenging to capture it
with slow varying features. Nevertheless, EM-SFA appears to
capture the blink apex much better than the compared methods.
In Fig. 5, we can visually evaluate the performance of EM-SFA
and deterministic SFA on the given problem. Two examples
are shown, in Fig. 5(a) and (b), both methods manage to
capture the apex of the expression as well as to segment the
temporal phases according to the ground truth, with EM-SFA

outer brow raiser, and

performing better. In Fig. 5(b), deterministic SFA fails to
capture the dynamics of the AU, while EM-SFA accurately
captures the transition.

A second set of experiments were conducted in order to
show how accurately the latent space can capture the dynamics
of the behavior. In this set of experiment, we measure
the similarity between the ground truth and the extracted
latent space by monitoring the alignment cost using the
DTW algorithm. Fig. 8(a)—(c) plots the percentage of videos
versus the DTW-error for mouth, eyes, and eye-brows
related AUs. It is obvious that EM-SFA latent space largely
outperforms the other latent space in terms of characterization
of the dynamics.

2) Experiments in UNS Database: Next, we test the perfor-
mance of the examined methods in UNS database. Specifically,
we applied all the tested methods for the recognition
of temporal segments of 100 videos with posed smiles.
An example of the best feature that describes the dynamics
of a posed smile of the UNS database can be seen in Fig. 6.
The performance was measured similar to the experiments
performed on the MMI database. Table II summarizes the per-
formance of the compared methods in terms of the extraction
of the temporal segments, while Fig. 10 plots the DTW-error
versus the percentage of videos. As can be seen the latent
space, produced by the proposed EM-SFA largely outperforms
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Fig. 6. Extracted features by applying the EMSFA, LDS, SFA, and GPLVM on a video sequence from the UNS database on a subject performing posed

smile. Rectangle markers: annotated ground truth where the AU temporal phase changes.
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Fig. 7. Ground truth of the various temporal segments of the facial behaviour:
(a) of posed AU 12 and (b) of a spontaneous blink (AU 45).

TABLE 11
PERFORMANCE OF SFA, EMSFA, LDS, AND GPLVM IN TERMS OF
EXTRACTING THE GROUND TRUTH FROM DELIBERATE
AND SPONTANEOUS SMILES, EVALUATED ON ALL
AU TEMPORAL PHASES IN UNS DATABASE

Accuracy (%)

Method | Neutral | Onset | Apex | Offset | Overall

EMSFA 7291 56.78 | 57.82 39.23 56.68
SFA 61.04 4299 | 60.06 35.84 47.98
LDS 39.52 19.33 16.11 23.32 24.57

GPLVM 63.87 4220 | 43.65 36.88 49.98

all the other methods in the characterization of the dynamics
of posed smiles.

Characterization and analysis of human behavior in terms
of temporal dynamics is a crucial and understudied problem
which is particularly important for the analysis of multiple
behavioral events, e.g., it has been argued that temporal
dynamics of facial behavior represent a critical factor

for distinction between spontaneous and posed facial
behavior [39]. In particular, posed behavior, as described
above, typically has an onset-apex-offset curve as can be
seen in Fig. 9, while the spontaneous behavior may have
multiple apexes. This is evidently shown in Fig. 11. As can
be seen by the visualizations, the slowest varying feature from
EMSFA can accurately describes the dynamics of the complex
behavioral phenomenon.

In order to show the usefulness of EMSFA for discrimina-
tion of posed versus spontaneous behavior, we have conducted
an experiment using the UNS database. We have randomly
selected 200 videos of posed and spontaneous smiles, and
subsequently we utilized half for training and the remaining
half for testing. The training videos were used to train an SVM
using a DTW kernel [40] on the slowest varying feature from
EMSFA, SFA, and from a LDS. The SVMs exploiting the
EMSFA features achieve the highest recognition rate ~73%,
while the SVM with features derived via SFA and LDS
achieves 64% and 59%, respectively.

C. Real Data 2: Temporal Alignment

In this section, we present results on aligning 50 pairs
of videos from the MMI database, where the same AU is
activated. The goal of this experiment is to evaluate the space
obtained by EM-SFA to that obtained by CCA. Our claim
is that the space derived by SFA (essentially recovering the
slowest varying feature) will enable better alignment (when
combined with DTW) than CCA (when combined with DTW,
ie., CTW [25]). Of major importance to this claim is the
modeling of dynamics in EM-SFA, which contrary to the
traditional CCA, accounts for temporal dependencies. Results
are presented in Fig. 12. The error we used is the percentage
of misaligned frames for each pair of videos, normalized
per frame (i.e., divided by the aligned video length). We
present results on average (for the entire video) and results
per temporal phase: neutral, onset, and offset. As can be seen
from our results that the derived space of SFA 4+ DTW is
better suited for the alignment of temporal sequences than the
other compared space obtained by applying CTW.

D. Real Data 3: Conflict Detection

In this section, we aim to show that the latent space obtained
by EM-SFA can detect when conflict arises in spontaneous,
naturalistic scenarios, where two persons are debating. For
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Fig. 9. Ground truth of a posed smile from the UNS database,
the slowest varying feature from EMSFA.
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Fig. 10. Error versus the percentage of used videos in UNS posed smiles.

this experiment, we used segments, taken from a Greek TV
political debate shown in 2011-2012, while the financial crisis
was taking place (see Fig. 13 for relevant stills from the
videos). Conflict episodes can be defined as situations where
people interrupt each other or attempt to speak out of their
turn; cases where people speak politely waiting for their turn
are considered to be nonconflict episodes. In general, conflict
has been associated to behavioral cues, such as nodes, frowns,
and blinks [41]. Regarding the experimental setting, we first
tracked 68 facial features of each of the persons participat-
ing in the recorded discussion (the tracking is the same as
that described in Section VI-B). The frames of the utilized
videos have been annotated in terms of conflict (one) and
nonconflict (zero). In total, we have annotated 15003 frames
(5274 conflict frames and 9729 nonconflict frames).

In order to evaluate the performance of EM-SFA in detect-
ing conflict and nonconflict episodes, we apply EM-SFA for
two-sequences on the features extracted from both partici-
pants of each video. Subsequently, we extract the common,
most slowly varying feature from both speakers, which we

|5 H 113 171 98 103 134 152 f168 180
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0 25 50 75 100 125 150 175 200
Frames

Fig. 11. Ground truth of a spontaneous smile from the UNS database, along
with the slowest varying feature from EMSFA.
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Fig. 12. Results obtained when comparing EM-SFA with DTW to CTW,

for all temporal phases of AUs.

compare with the given ground-truth annotation. We expect
this common, slowly varying feature to express the occur-
rence of conflict in the video. This is motivated by the fact
that EM-SFA, as shown in Section VI-B, can detect the apex
of the expression simply by examining the obtained latent
space (slowest varying feature). Therefore, when applied on
two subjects, EM-SFA can similarly detect the cooccurrence of
the apex of both expressions, which in our scenario translates
to a conflict episode.

In the example shown in Fig. 13, the left speaker (female) is
speaking intensively throughout the video. The corresponding
most slowly varying feature for the left speaker [Fig. 13(a)] is
able to capture this. On the other hand, the right speaker (male)
is trying to speak over the left speaker only for a partic-
ular set of frames, approximately from frame 60 to 200,
while he remains a listener for the rest of the video. The
corresponding most slowly varying feature for the speaker
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Fig. 13. Most slowly varying feature for (a) left speaker, (b) both speakers, and (c) right speaker. The slowest varying feature extracted via EM-SFA applied

on both speakers can clearly detect the conflict occurrences in the video.
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Fig. 14.  Common most slowly varying feature applied on two speakers.
The conflict episode is clearly detected by simply examining the latent
space.

on the right is shown in Fig. 13(c). It is interesting to
observe that in Fig. 13(b), where the common slowest varying
feature is depicted, the conflict episode is clearly detected
by EM-SFA, while also correctly identifying the nonconflict
areas.

Another example of detecting conflict and nonconflict
areas is shown in Fig. 14. In this video, the speakers are
initially engaging in conflict trying to interrupt one another.
This happens approximately up to frame 400. In what follows,
the speaker on the right listens patiently while the speaker
on the right speaks with less tension. In the same figure, we
show the slowest varying feature extracted from both videos.
It is clear from examining the common slowest varying feature
obtained from EM-SFA that the conflict is clearly detected in
the first part of the video, while the rest of the video contains
only nonconflict episodes.

TABLE III
AVERAGE ACCURACY OF SFA, EMSFA, CCA FrROM
VIDEOS WHERE TWO PEOPLE ARE DEBATING

Accuracy (%)

Method | Conflict region | Non-conflict region | Overall

EMSFA 69.95 56.42 63.19
SFA 64.82 46.80 55.81
CCA 61.24 40.08 50.66

In order to provide quantitative results below, we pro-
vide two set of experiments. In the first one, we measure
the reconstruction error and in the second one we measure
the classification accuracy. The results clearly indicate that
EMSFA outperforms compared methods in the most chal-
lenging scenarios, where human interactions are analyzed
in an entirely uncontrolled scenario, without providing any
supervision (i.e., label information) to the method.

1) Reconstruction Experiments: First, we examine the abil-
ity of the applied methods to reconstruct the input videos.
To this end, we extracted three features for each of the applied
methods and we measured to what extend can reconstruct
the input signals. More precisely, we measured the mean
reconstruction error (using the €2 norm) between the extracted
original and the reconstructed sequence. Fig. 15(a) and (b)
plots the mean reconstruction error versus the percentage
of videos for each of the applied method on both conflict
[Fig. 15(a)] and nonconflict [Fig. 15(b)] videos. As can be
seen in both cases, the EM-SFA latent space not only captures
the dynamics of the phenomenon but the extracted features are
more expressive as well.

2) Detection Experiments: Finally, we evaluate the per-
formance of the examined methods to identify conflict and
nonconflict regions in 20 videos where two people are debat-
ing. The videos were manually annotated in terms of conflict
and nonconflict regions. The normalized accuracy for each
region (conflict, nonconflict) is measured as a percentage of
the number of correctly identified frames for each region
(e.g., correctly identified conflict frames), divided by the total
number of frames corresponding to the region in the ground
truth (e.g., the true number of conflict frames in video). This
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can be formulated as

In" Ng'|

lg"|

where n” is the quantized feature containing the frames which
correspond to a specific region (r) and g" is the ground
truth for this region. To facilitate the comparison between
the resulting latent features and the ground truth, we first
normalized them to lie between 0 and 1 and then we quantized
them by rounding. The results for each region and the overall
results for the whole video are presented in Table III.

(54)

VII. CONCLUSION

In this paper, we presented a novel probabilistic approach
to SFA. Specifically, we extended SFA to a fully probabilistic
EM model (EM-SFA), while we augmented both deterministic
and EM-SFA to handle multiple sequences. Furthermore,
we combined EM-SFA algorithm with DTW techniques
in order to align in time sequences of different lengths.
We provide insights on the relationship between SFA and
CCA. In particular we show that probabilistic CCA is a static
model while the proposed one takes explicitly into account
the time dependence. With an extended set of experiments we
have shown the applicability of these novel models on both
synthetic and real data. Our results show that the EM-SFA is a
flexible component analysis model, in which an unsupervised
manner can accurately capture the dynamics of sequences,
such as facial expressions.
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