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Abstract

Image registration under challenging realistic conditions is a very important area of research. In this paper, we focus on
algorithms that seek to densely align two volumetric images according to a global similarity measure. Despite intensive
research in this area, there is still a need for similarity measures that are robust to outliers common to many different
types of images. For example, medical image data is often corrupted by intensity inhomogeneities and may contain
outliers in the form of pathologies. In this paper we propose a global similarity measure that is robust to both intensity
inhomogeneities and outliers without requiring prior knowledge of the type of outliers. We combine the normalised
gradients of images with the cosine function and show that it is theoretically robust against a very general class of
outliers. Experimentally, we verify the robustness of our measures within two distinct algorithms. Firstly, we embed our
similarity measures within a proof-of-concept extension of the Lucas-Kanade algorithm for volumetric data. Finally, we
embed our measures within a popular non-rigid alignment framework based on free-form deformations and show it to
be robust against both simulated tumours and intensity inhomogeneities.
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1. Introduction

Image registration is an important procedure in many
areas of computer vision for both 2D and volumetric 3D
images. Given its relevance, there is a large body of prior
work concentrating on methodologies for performing accu-
rate registration. In this paper, we are most interested in
techniques that attempt to densely align two images ac-
cording to a global similarity measure. Many global simi-
larity measures have been proposed, yet only a few focus
on being robust to the presence of outliers and systematic
errors. We consider a similarity measure to be robust if
it is not biased by the presence of noise and/or occlusions
within the image to be registered. Generally, if a similarity
measure is biased by noise or occlusions, this will manifest
as a failure to accurately register the images.

In the case of 2D images, systematic errors and outliers
are common in the form of illumination variance and oc-
clusions, which naturally occur in so called “in-the-wild”
images. Although 2D image alignment is a broad field,
much of the existing work focuses on augmenting exist-
ing efficient algorithms with improved robust properties.
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For example, one of the first algorithms to describe a 2D
image alignment approach was the Lucas-Kanade (LK) al-
gorithm [1]. The LK algorithm concentrates on recovering
a warp that best maximises a similarity measure between
two images. Numerous extensions to the LK algorithm
have been proposed [2, 3, 4] and most are based on `2 norm
minimisation [3, 5, 6, 7]. Most notably, the inverse com-
positional framework proposed by Baker and Matthews [5]
provides a computationally efficient framework for solving
the least squares problem.

For volumetric, or 3D images, outliers can occur in the
form of pathologies, and systematic errors are commonly
seen as intensity inhomogeneities caused by image acquisi-
tion artefacts such as bias fields [8]. Several methods have
been proposed for registration of medical images with mis-
matches, focusing on robustness [9], tumour models [10] or
Bayesian models [11]. However, previous methods [12] all
require prior knowledge of what constitutes a mismatch in
order to detect and ignore them. Additionally, a number
of methods based on mutual information have been pro-
posed to reduce the effect of intensity inhomogeneities in
the registration [13, 14, 15].

To the best of our knowledge, no existing similarity
measure provides robustness against both outliers and in-
tensity inhomogeneities for registration of 3D images with-
out prior knowledge of the type of dissimilarity. However,
the 2D similarity measure recently proposed in [16], has
been shown to be robust against both general occlusions
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and illumination variance. This measure is formulated as
the cosine of normalised gradient orientations and is sim-
ple and efficient to compute. For 3D images, we seek to
provide a similarity measure that can utilise the robust
properties of the cosine function. This requires calculat-
ing a similarity between the two images being aligned that
can be represented as an angle. In this work, we provide
two separate methodologies of measuring angular similar-
ity between 3D images.

We clarify that when we state 3D images, we are re-
ferring to volumetric data where it is valid to compute
gradients along all 3 of the principle axes. This may be
in contrast to other usages of the term “3D” when refer-
ring to data sources such as range images or mesh data.
In this case, we would refer to these data sources as 2.5D
data, as the computation of the gradient for the depth
axis is non-trivial. In fact, as mentioned by Baker et al.
[17], the inverse compositional algorithm is no longer valid
when extended to 2.5D data due to the representation of
the data as a surface. Therefore, given that the treatment
of 2.5D data is totally different from the 3D volumetric
images that we use here, we do not further consider it.

It is important to note that there is a large amount of
existing work on using gradient information for image reg-
istration on volumetric data. The concept of normalised
image gradients was introduced to the field of medical im-
age registration by Pluim et al. [18]. In [18], normalised
mutual information (NMI) [19] is weighted voxelwise by
the normalised image gradients in order to incorporate
spatial information. After this initial work, the first sim-
ilarity based solely on normalised gradients was proposed
by Haber and Modersitzki [20]. This similarity measure
is based on the squared cosine of the normalised gradients
and is equivalent to minimising the squared inner product.
In contrast, our proposal is to use the cosine of the nor-
malised gradient orientations and is equivalent to minimis-
ing the inner product. This seemingly small difference, the
squaring of the cosine, causes outliers to bias the similar-
ity measure and thus affects the robustness. Despite these
properties of the squared cosine measure, it has been suc-
cessfully utilised in the literature [21, 22, 23] for registering
images that do not contain outliers.

Preliminary work on the cosine of orientations has been
shown in our previous work [24, 25]. In [24], we gave pre-
liminary results that show that the cosine of normalised
gradient orientations represents a robust similarity mea-
sure in the presence of both occlusions and intensity inho-
mogeneities. We extend this work in two major areas:

Firstly, we note that that there are two separate angu-
lar measures that can be defined in order to compute the
cosine of normalised gradient orientations between two im-
ages. These orientations are based on the spherical coordi-
nates of the gradients and the inner product between the
gradients. As a proof of concept, we directly extend the
methodology of [16] to provide evidence that our similarity
measures are robust to occlusions and intensity inhomo-
geneities. Although the extension of LK-type algorithms
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Figure 1: An illustration of the spherical coordinate system as de-
scribed in this paper.

to 3D is simple and was proposed in [17], no previous in-
vestigation has been done on how similarity measures per-
form when extended to 3D. Since no previous work has
investigated the use of 3D Lucas-Kanade for robust reg-
istration, we chose to extend existing robust 2D methods
into 3D. These extended state-of-the-art 2D methods are
then compared against using a synthetic dataset.

Secondly, in order to show that our similarity measures
compete with state-of-the-art techniques, we embed them
within a widely and successfully used non-rigid registration
framework based on free-form deformations (FFD) [26].
This FFD registration framework differs from our LK ex-
ample as it is a local deformation model and thus con-
tains many thousands of parameters. This large parame-
ter space makes Gauss-Newton optimisation infeasible due
to the memory requirements of inverting the Hessian ma-
trix. For this reason, registration techniques that focus
on local deformations are generally solved using gradient
descent algorithms that incorporate line searches [26]. We
compare against the NMI measure [19], DRAMMS [27]
and the cosine squared measure [20] and confirm the ro-
bustness of the proposed similarity measures on simulated
pathological data from a tumour database. Secondly, we
provide more extensive evaluation into the robust proper-
ties of the cosine of normalised gradient orientations when
applied to volumetric data.

The remainder of the paper is organised as follows. In
Section 2 we discuss relevant related works and consider
the advantages of our proposed measures. In Section 3 we
give a thorough explanation of the theory behind our work
and empirically verify its robustness on our chosen data.
In Section 4 we describe the application of our similarity
measure within the Lucas-Kanade algorithm and in Sec-
tion 5 we show its application within the non-rigid frame-
work of Rueckert et al. [26]. Experimental results within
both rigid and non-rigid alignment are given in Section 6.
Finally, we draw conclusions in Section 7.
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2. Related Work

In this paper we are most interested in similarity mea-
sures that have been proposed for parametric image align-
ment. This is primarily due to the fact that parametric
image alignment methods are often very computationally
efficient. In particular, we are interested in approaches
that show robustness to both intensity inhomogeneities
and occlusions.

Within 2D image registration there has been a large
body of work that focuses on illumination invariance. Within
the most popular parametric image alignment framework,
the Lucas-Kanade algorithm (LK), one of the the earliest
attempts was by Hager and Belhumeur [28]. In [28], the
authors incorporate a linear appearance basis that mod-
els illumination variance and excelled in the area of object
tracking. However, this requires prior knowledge of the
type of object under consideration so that the appearance
basis can be precomputed. There is a large amount of ex-
isting literature about incorporating prior knowledge via
linear bases within the LK algorithm. However, we do not
consider them here, as we are most interested in modelling
unseen structured variation via robust similarity measures
and thus prior knowledge is generally not available.

Within the LK framework, a number of robust mea-
sures have been proposed. Black and Jepson [29] proposed
incorporating robust statistics into the LK framework and
showed their effectiveness in the presence of illumination
variance. Dowson and Bowden [3] incorporated the mu-
tual information (MI) measure within the LK framework
and found it to be superior to an SSD based measure for
illumination variance. However, using mutual information
as a similarity measure requires updating the Jacobian and
Hessian matrices at each iteration. For this reason, the MI
measure is unable to make use of more computationally
efficient LK algorithms such as the inverse compositional
(IC) method proposed in [5]. Although the authors do give
an ad hoc solution that involves fixing the values of the
Jacobian and Hessian matrices, it is still a more complex
implementation than the original inverse compositional al-
gorithm. Evangelidis and Psarakis [6] provide a correlation
measure between images and a computational framework
that is invariant to illumination differences. This is a great
strength of the algorithm, however, the correlation mea-
sure is still grossly affected by outliers. Lucey et al. [4]
propose a method of weighting the LK fitting with a large
bank of filters in a computationally efficient manner. This
is a very effective technique and is largely illumination in-
variant, however, it gives little benefit when presented with
occlusions.

For 3D images, robust registration is a very active
area of research. The most commonly used techniques for
multi-modal registration are based on mutual information
(MI) [30]. These techniques are highly effective at regis-
tration of objects with inherent structure such as anatomy
but are very sensitive to global corruption such as intensity
inhomogeneities. To overcome this, gradient information

is often utilised and in particular was incorporated into a
MI framework by Pluim et al. [18]. In particular, gradi-
ent information helps capture the local structure within
an image which is not described by general MI-based reg-
istration techniques. Gradient information has also been
successfully used in a number of other works [31, 32, 33].
However, these works focus on capturing local structure
and not on robustness to artefacts such as pathologies
caused by tumours. The most related work is that of
Haber and Modersitzki [20], which proposes a similarity
measure based on the square of the cosine (inner product
squared). We conduct a thorough comparison with this
technique and show that it is biased by the presence of
occlusions.

Finally, the work of Tzimiropoulos et al. [16] intro-
duced the first similarity measure based on the cosine of
normalised gradients. We would stress that although our
work is inspired by [16], the calculation of the orientations
for our proposed similarities is very different. In particu-
lar, it is important to note that calculating an orientation
in 3D is more complex than the 2D case due to the extra
degree of freedom. In this work, we give a detailed ex-
planation of how to calculate these orientations in 3D and
how to optimise them for use in image registration.

3. Cosine of Normalised Gradients

In this section, we describe the concept of the cosine
of normalised gradients and specify how they represent a
robust measure of similarity. In this work, we consider a
similarity measure to be robust if it suppresses the contri-
bution of comparisons between image areas that are un-
related. More specifically, we seek a measure that, when
given two images that are visually dissimilar, will calcu-
late zero correlation between them. For example, consider
Figure 3 which shows cross sections of a brain containing
a tumour. When registering this corrupted image with
an image of a healthy brain, the ideal registration would
not be biased by the presence of the tumour, as it does
not share relevant anatomical structures with the healthy
brain. To this end, Tzimiropoulos et al. [34, 16] proposed
the cosine of orientation differences between two images,
which we describe in detail below.

3.1. Cosine Similarity in 2D

Assuming we are given two 2D images, denoted as
Ii i ∈ {1, 2}, we define Gi,x = Fx ∗ Ii and Gi,y = Fy ∗ Ii
as the gradients obtained by convolving Ii with differen-
tiation approximation filters Fx and Fy respectively. We
denote the lexicographical vectorisation of Gi,x as gi,x and
define an index k into the vector, gi,x(k). We define an
identical vector for Gi,y as gi,y. We also define gi(k) as the
vector formed by concatenating the x and y gradients to-
gether. Trivially, we can define the normalised gradient as

g̃i(k) = gi(k)
‖gi(k)‖ where ‖gi(k)‖ =

√
gi,x(k)

2
+ gi,y(k)

2
. We
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Figure 2: The distributions of cosσ and cos2 σ averaged over 10 subjects from the BraTS simulated images. The images were registered using
a rigid transformation prior to computation and only the tumour areas were sampled. (a) shows the distribution of cosσ in the simulated
tumour region. (b) shows the distribution of cosσ over the entire image. (c) shows the distribution of cos2 σ proposed in [20] in the simulated
tumour region

also define similar vectors for the x and y components sep-
arately, with g̃i,x being the x components concatenated in
lexicographical ordering and g̃i,y being the y components.
Finally, g̃i is the vector of concatenated normalised gradi-
ents for image Ii.

Given the normalised gradients, it is simple to parametrise
them within a polar coordinate system with radius ri(k) =

‖g̃i(k)‖ = 1, orientation φi(k) = arctan
g̃i,y(k)
g̃i,x(k) and pole

at the origin. Given orientations from two dissimilar im-
ages, it is reasonable to assume that difference between
the orientations, ∆φ(k) = φ1(k) − φ2(k), can take any
angle between [0, 2π). Intuitively, this implies that select-
ing two pixels from dissimilar images is unlikely to yield
any correlation between the images. In [16], it was exper-
imentally verified that the orientation differences follow a
uniform distribution, ∆φ(k) ∼ U(0, 2π). The fact that
the orientation differences follows a uniform distribution
is unsurprising under the assumption that the two images
have absolutely no correlation. However, the expectation
of the cosine of the uniform distribution is zero, which is
a powerful property that can be exploited for image regis-
tration. It is powerful because it means that the expected
overall contribution of uncorrelated areas to any cost func-
tion will be zero, meaning the uncorrelated areas do not
affect the result of the registration.

Formally, we assume ∆φ(k) is a stationary random pro-
cess y(t) with index t , k ∈ R2, where ∀t ∼ U(0, 2π). We
define the random process z(t) = cos y(t) and thus ∀t ran-
dom variable Z = z(t) has mean value E{Z} = 0. In fact,
by assuming mean ergodicity, we find that

E{Z} ∝
∫
z(t)dt ≡

∫
R2

cos[∆φ(k)]dk = 0 (1)

This is an important property for a similarity measure to
be robust against occlusions. Since occlusions do not pro-
vide useful information for alignment, ideally they would
be ignored. However, manual segmentation of occluded
areas is time consuming and prone to error. Therefore,
an ideal robust similarity measure would be able to auto-

matically identify regions of the image that are occluding
the true object of interest. Under the previous definition
of robustness, the cosine similarity naturally represents a
robust similarity measure as it automatically suppresses
the contribution of outliers.

Given an image warping function with parameters p,
maximising the sum of the cosine of orientation differences
provides the robust similarity measure:

q =
∑
k

cos (∆φ(k)[p]) (2)

For more details of the specifics of optimising (2) for image
alignment, we refer the reader to [16].

3.2. Cosine Similarity in 3D

We make very similar assumptions for 3D images as
we did in Section 3.1 for 2D images. We simply extend
the previous notation by including the gradient of the z-
axis, denoted as Gi,z = Fz ∗ Ii. We also redefine the

normalised gradient as g̃i(k) = gi(k)
‖gi(k)‖ where ‖gi(k)‖ =√

gi,x(k)
2

+ gi,y(k)
2

+ gi,z(k)
2

and gi(k) is defined as the

vector formed by concatenating the x, y and z gradients
together.

Measuring the angular distance between vectors in 3D
is more complex than in 2D, due to the extra degree of
freedom. In the following sections, we describe two differ-
ent measures that can be used to calculate similarities be-
tween vectors within 3D images, the spherical coordinates
and the inner product. In the previous section, we de-
scribed in detail how properties of the cosine of a uniform
distribution can be exploited to form a robust measure
of similarity. The most important property was that un-
correlated areas such as occlusions should have no impact
registration. This was formalised as the expectation of the
sum of the uncorrelated elements should be zero. In the
case of input to the cosine function, a given distribution
must simply be symmetric over the positive and negative
span of outputs of the cosine. When symmetric over the
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positive and negative outputs, the expectation of the co-
sine function is zero. In fact, we can relax the definition
of a measure being robust to outliers by stating that we
desire a measure whereby the expectation of the measure
over image areas that are uncorrelated is zero.

In practise, when comparing two images where one
image contains occlusions, there will be regions that are
correlated and then the occluded region that is uncorre-
lated. In this case, the total distribution of all pixels will
be described by a mixture model of the occluded and non-
occluded regions. We desire that the distribution of the
uncorrelated areas has an expectation of zero and thus
will not affect the optimisation of the similarity measure.

In Section 3.2.1 and Section 3.2.2 we describe two mea-
sures of angular difference between 3D images. We investi-
gate the distribution of these angular measures when com-
bined with the cosine function and motivate that they are
both suitable for use as a similarity measure between real
3D images.

3.2.1. Spherical Coordinates

In 2D, a natural parametrisation of the angle between
the two gradient vectors is the polar coordinate system.
In 3D, we have three gradient vectors and thus require
two angles to describe their orientation. Unlike in 2D,
where the vectors lie on the unit circle, in 3D the vectors
lie on the surface of a unit sphere. Therefore, it is pos-
sible to parametrise the vectors in terms of the spherical
coordinate system, which is described by two angles: the
azimuth angle φ with range [0, 2π) and the elevation an-
gle θ with range [0, π]. Given the normalised gradients as
vectors with Cartesian coordinates, we can calculate the
spherical angles as follows:

ri(k) = ‖g̃i(k)‖ = 1

φi(k) = arctan
g̃i,y(k)

g̃i,x(k)

θi(k) = arccos g̃i,z(k)

(3)

An illustration of the spherical coordinate system, as used
in this paper, is given in Figure 1.

Our proposal is to combine the spherical coordinates
with the cosine function in order to provide a robust sim-
ilarity measure. Similar to the 2D case,, we propose the
cosine of azimuth differences, ∆φ = φ1−φ2, and the cosine
of elevation differences, ∆θ = θ1− θ2, as a combined simi-
larity measures. Given a 3D image warping function with
parameters p, the spherical coordinates form a similarity
measure as follows:

q =
∑
k

cos (∆φ(k)[p]) +
∑
k

cos (∆θ(k)[p]) (4)

Optimisation of (2) is described in detail in Section 4.
Experimentally, we verified that ∆φ approximates a

symmetric distribution for simulated tumour data taken
from the Multimodal Brain Tumor Image Segmentation

Figure 3: Example images of a T1-weighted brain containing a tu-
mour area. The tumour areas are outlined in yellow in each image.
Left: Axial View. Middle: Coronal View. Right: Sagital View.

(BraTS) challenge, as shown in Figure 4. Figure 4a shows
the distribution of ∆φ between the tumour area circled
in yellow in Figure 3 and a healthy brain. The images
were registered using a rigid transformation before ∆φ was
computed. The azimuth angle is analogous to the angle
studied in [34] and follows the same uniform distribution,
∆φ ∼ U(0, 2π).

When the entire region of the rigidly registered brain
images is considered, we find that the distribution of ∆φ
is clearly a mixture of two separate models, one for the
occluded area and one for the rigidly registered area. Fig-
ure 4b shows the distribution of ∆φ calculated over the
entire image region of each image and a Laplacian distri-
bution that best fits the data. Thus, our experimental
evidence suggests that the total distribution of ∆φ over
the entire image region is a mixture model between a uni-
form distribution and a Laplacian distribution with ap-
proximately zero mean.

3.2.2. Inner Product

A more general angular measure between two vectors is
the inner product. Unlike in [16] or Section 3.2.1, the inner
product is a single angle and not the difference between
two angles. Practically, the inner product measures the
projection error between two vectors and is defined as:

cosσ = g̃>1 g̃2 (5)

In [34], the authors reasonably propose that the angle be-
tween the gradients of dissimilar images can take any value
in [0, 2π) with equal probability. Similarly, the relationship
between the gradient vectors of two dissimilar 3D images
could feasibly be in any direction with equal probability.
Therefore, the distribution of inner products between two
unrelated vectors can take the values [−1, 1] with equal
probability. Due to the expected range of inner product
values, we would expect that cosσ follows a uniform dis-
tribution, cosσ ∼ U(−1, 1). Note that this is a different
assumption to that made in [34], which assumes that the
azimuth angle itself, ∆φ, follows a uniform distribution.
However, it is merely sufficient that the total sum of val-
ues from the dissimilar vectors is zero. Therefore, since
E{U(−1, 1)} = 0, the inner product of normalised gra-
dients satisfies our definition of being robust to outliers.
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Figure 4: The mean distribution of ∆φ of the BraTS simulated im-
ages. The images were registered using a rigid transformation and
only the tumour areas were sampled. (a) the distribution of ∆φ in
the simulated tumour region. (b) the distribution of ∆φ over the
entire image. It also shows the Laplacian distribution that best fits
the data.

In Figure 2a, we show that this assumption holds for the
simulated tumour data taken from the BraTS challenge.

When the entire region of the rigidly registered brain
images is considered, we find that the distribution of cosσ
is clearly a mixture of two separate models, one for the
occluded area and one for the rigidly registered area. Fig-
ure 2b shows the distribution of cosσ calculated over the
entire image region. In this case, the distribution of the
inner product appears to be a mixture model between a
uniform distribution and a zero mean Laplacian distribu-
tion. However, due to the ambiguity in the inner product
in terms of orientation, the angle of the inner product is
only defined in the range [0, π] and thus only the positive
tail of the Laplacian appears.

In Figure 2c we also show the distribution of the sim-
ilarity measure proposed by Haber and Modersitzki [20].
In [20], the authors propose the inner product as a sim-
ilarity measure, which looks very similar to the measure
we proposed in Equation (5). However, Haber and Moder-
sitzki [20] maximise the square of the inner product using
a least squares Gauss-Newton optimisation. As we have
shown, the inner product is related to the cosine between
the vectors. Haber and Modersitzki [20] proposed the in-
ner product squared as a similarity, which is equivalent to
the square of the cosine. As we can see in Figure 2c, the
cosine squared does not represent a symmetric distribu-
tion and therefore is not a robust similarity measure by
our definition.

4. Robust Lucas-Kanade

Little work has been published on the applications of
3D Lucas-Kanade (LK), despite the extension of LK into
3D being trivial [17]. Given the relative efficiency of Lucas-
Kanade and other similar algorithms, and their potential
accuracy under challenging conditions, we propose to in-
vestigate using LK for robust affine alignment in voxel
images. To the best of our knowledge, this is the first such
comparison of using state-of-the-art LK fitting algorithms
for voxel data. Given the similarity measures defined in

Section 3, we propose novel LK algorithms that directly
maximise the measures.

When referring to the operations performed by the
LK algorithm we will use the following notations. Warp
functionsW(xi;p) = [Wx(xi;p),Wy(xi;p),Wz(xi;p)] ex-
press the warping of the ith 3D coordinate vector xi =
[xi, yi, zi]

>
by a set of parameters p = [p1, . . . , pn]

>
, where

n is the number of warp parameters. We extend the pre-
viously defined linear index k in to a coordinate vector,
x = [x1, y1, z1, . . . , xD, yD, zD] that represents the con-
catenated vector of coordinates, of length D, which al-
lows the definition of a single warp for an entire image,
W(x;p) = [Wx(x1;p),Wy(x1;p),Wz(x1;p),
. . . , Wx(xD;p),Wy(xD;p),Wz(xD;p) ]. We assume that
the identity warp is found when p = 0, which implies that
W(x;0) = x. We abuse notation and define the warping of
an image I by parameter vector p as I(p) = I(W(x;p)),
where I(p) is a single column vector of concatenated pix-
els.

In the following sections we describe the details of rel-
evant LK algorithms. We begin with the original forward
additive LK algorithm [1, 5]. We then describe the en-
hanced correlation coefficient (ECC) algorithm [6] which
was shown to be robust to intensity inhomogeneities. We
conclude the existing algorithms with a description of the
efficient inverse compositional algorithms for both the orig-
inal LK method [35] and the ECC method [6]. Following
the existing literature, we present our proposed LK al-
gorithms. The first of which is a variation of the ECC
method for normalised gradients and the second involves
a traditional inverse compositional method. Both of the
proposed algorithms take the inverse compositional form
due to its computational efficiency.

4.1. Forward Additive LK Fitting

The original forward additive `2 LK algorithm [1, 5]
seeks to minimise the sum of squared differences (SSD)
between a given template image and an input image by
minimising the sum of the squared pixel differences:

argmin
p

‖I(p)− T (0)‖2 (6)

where T (0) is the unwarped reference template image.
Due to the non-linear nature of (6) with respect to p, (6)
is linearised by taking the first order Taylor series expan-
sion. By iteratively solving for some small ∆p update to
p, the objective function becomes

argmin
p

‖I(p) +∇I ∂W
∂p

∆p− T (0)‖2 (7)

where ∇I is the gradient over each dimension of I(p)
warped into the frame of T by the current warp estimate
W(x;p). ∂W

∂p is the Jacobian of the warp and represents
the first order partial derivatives of the warp with respect
to each parameter. ∇I ∂W∂p is commonly referred to as the
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steepest descent images. We will express the steepest de-

scent images as ∂I(p)
∂p . Equation (7) is now solvable by as-

suming the Gauss-Newton approximation to the Hessian,

H =
[
∂I(p)
∂p

> ∂I(p)
∂p

]
:

∆p = H−1 ∂I(p)

∂p

>
[T (0)− I(p)] (8)

Equation (8) can then be solved by iteratively updating
p← p + ∆p until convergence.

4.2. ECC LK Fitting

The enhanced correlation coefficient (ECC) measure,
proposed by Evangelidis and Psarakis [6], seeks to be in-
variant to illumination differences between the input and
template image. This is done by suppressing the mag-
nitude of each pixel through normalisation. In [6], they
provide the following cost function

argmax
p

I(p)
>
T (0)

‖I(p)‖‖T (0)‖
(9)

Assuming a delta update as before and linearising in a
similar manner to (7) results in

argmax
p

T̂
I(p) + ∂I(p)

∂p ∆p

‖I(p) + ∂I(p)
∂p ∆p‖

(10)

where T̂ = T (0)
‖T (0)‖ . Evangelidis and Psarakis [6] give a very

comprehensive proof of the upper bound of Equation (10),
which yields the following solution for ∆p

∆p = H−1 ∂I(p)

∂p

>
[
‖I(p)‖2 − I(p)

>
QI(p)

T̂>I(p)− T̂>QI(p)
T̂ − I(p)

]
(11)

where Q is an orthogonal projection operator on the Ja-

cobian, J = ∂I(p)
∂p , defined as Q = J(J>J)

−1
J>.

In fact, the ∆p update given in [6] is more complex than
(11), as it seeks to find an upper bound on the correlation
between the two images. However, in the case where (11)
does not apply, it is unlikely that the algorithm is able
to converge. For this reason, we only consider the update
equation presented in (11).

4.3. Inverse Compositional LK

The inverse compositional algorithm, proposed by Baker
and Matthews [35], performs a compositional update of the
warp and linearises over the template rather than the input
image. Linearisation of the template image causes the gra-
dient in the steepest descent images term to become fixed.
The compositional update of the warp assumes linearisa-

tion of the term ∂W(x;0)
∂p , which is also fixed. Therefore,

the entire Jacobian term, and by extension the Hessian
matrix, are also fixed. Similar to the `2 SSD algorithm

described in Section 4.1, we pose the objective function
as:

argmin
p
‖T (∆p)− I(p)‖2 (12)

where we notice that the roles of the template and input
image have been swapped. Assuming an inverse composi-
tional update to the warp,W(x;p)←W(x;p)◦W(x; ∆p)

−1

and linearisation around the template, (12) can be ex-
panded as:

argmin
p

‖I(p)− ∂T (0)

∂p
∆p− T (0)‖2 (13)

Solving for ∆p is identical to (8), except the Jacobian and
Hessian have been pre-computed

∆p = H−1 ∂T (0)

∂p

>
[I(p)− T (0)] (14)

The ECC can also be described as an inverse compositional
algorithm, by performing the same update to the warp and
simply swapping the roles of the template and reference
image. In short, solving ECC in the inverse compositional
case becomes

∆p = H−1 ∂T̂

∂p

> [
‖T̂‖2 − T̂>QT̂

I(p)
>
T̂ − I(p)

>
QT̂

I(p)− T̂

]
(15)

where Q is as before, except J = ∂T̂
∂p . Any term involving

T̂ is fixed and pre-computable, so the reduction of calcu-
lations per-iteration is substantial.

It is worth noting that not every family of warps is
suitable for the inverse compositional approach. The warp
must belong to a family that forms a group, and the iden-
tity warp must exist in the set of possible warps. For
more complex warps, such as piecewise affine and thin
plate spline warping, approximations to the inverse com-
positional updates have been proposed [36, 37].

4.4. Inner Product ECC LK

Given the inner product similarity measure as described
in Section 3.2.2, we seek to embed it within the LK frame-
work in order to present a robust parametric alignment
algorithm. Therefore, we begin by restating our cost func-
tion:

argmax
p

∑
k

cos (σ(p)) (16)

with an abuse of notation for the parameters which are
hidden within the cosine function. Expanding (16) reveals
the parameters and makes the relationship between our
inner product similarity and the ECC framework clear:

argmax
p

g̃I(p)
>
g̃T (0) (17)

which yields our forward additive algorithm.
However, unlike in ECC where the vectors represent

concatenated normalised intensities, we are considering
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normalised gradients. Since gradients have three separate
components we must consider the derivatives when lin-
earising gI . Since gI is composed of multiple components,
there will be extra derivatives to calculate via the chain
rule. Formally, linearising (17) with respect to gI yields

argmax
p

g̃T
g̃I(p) + Jg∆p

‖g̃I(p) + Jg∆p‖
(18)

where Jg is the matrix formed by correctly computing the
derivative of gI with respect to each component of gI . For
example, given that gI,x(p) is a vector formed of the x-
components of the gradients and g̃I,x(p) is a vector formed

of g̃I,x(p)[k] =
gI,x(p)[k]

‖gI(p)[k]‖ , the true derivative of g̃I,x(p) is

∂g̃I,x(p)

∂p
=
∂g̃I,x(p)

∂gI,x(p)

∂gI,x(p)

∂p

∂g̃I,x(p)

∂gI,x(p)
=

gI,y(p)
2

+ gI,z(p)
2(

gI,x(p)
2

+ gI,y(p)
2

+ gI,z(p)
2
)3/2

(19)

where
∂gI,x(p)

∂p is equivalent to ∂I(p)
∂p in the original ECC

equations. The y and z derivatives are given in a similar
fashion as

∂g̃I,y(p)

∂gI,y(p)
=

gI,x(p)
2

+ gI,z(p)
2(

gI,x(p)
2

+ gI,y(p)
2

+ gI,z(p)
2
)3/2

∂g̃I,z(p)

∂gI,z(p)
=

gI,x(p)
2

+ gI,y(p)
2(

gI,x(p)
2

+ gI,y(p)
2

+ gI,z(p)
2
)3/2

(20)

However, ∇gI,x, formally the image gradient, represents
the gradient over only the x-component, and is equivalent
to the second order derivative of the gradients with respect
to x.

Since
∂gI,x(p)

∂p is a matrix and
∂g̃I,x(p)

∂gI,x(p) is a vector, we

multiply the two using a Hadamard product, denoted by

the � operator. However,
∂g̃I,x(p)

∂gI,x(p) must first form a ma-

trix, Jx, of size D × p by repeating the vector p times
to form columns within the matrix. Finally the total x-

component Jacobian is given by Jg,x = Jx �
∂gI,x(p)

∂p .

Given that Jg,i∀i ∈ {x, y, z} have been calculated, the

total derivative term is given by Jg = [Jg,x,Jg,y,Jg,z]
>

.
Solving for ∆p is now identical to the ECC formulation:

∆p = H−1Jg

[
‖gI(p)‖2 − gI(p)

>
QgI(p)

g̃>T gI(p)− g̃>TQgI(p)
g̃T − gI(p)

]
(21)

Since the update step is identical to the one given in (15)
it is simple to reformulate the inner product ECC in an in-
verse compositional form by following a derivation identi-
cal to Section 4.3. In the experimental section, we consider
the inverse compositional form of the algorithm.

4.5. Spherical SSD LK

In contrast to the inner product derivation in the pre-
vious section, the spherical representation requires the op-
timisation of the summation of two cosine correlations. In
theory, it would be possible to solve for each correlation
separately in a manner similar to that proposed by Tz-
imiropoulos et al. [16]. This would be suboptimal as it
would require an alternating optimisation scheme. There-
fore, in the interest of solving a single objective, we note
the following relationship between the two summations:

argmax
p

∑
k

cos (∆φ(p)) +
∑
k

cos (∆θ(p)) (22)

is equivalent to the minimisation of

argmin
p

∥∥∥∥∥∥∥∥


cosφI(p)
sinφI(p)
cos θI(p)
sin θI(p)

−


cosφT (0)
sinφT (0)
cos θT (0)
sin θT (0)


∥∥∥∥∥∥∥∥

2

,

argmin
p

∥∥∥∥∥∥∥∥∥


g̃I,x(p)
g̃I,y(p)
g̃I,z(p)√

1− g̃2
I,z(p)

−


g̃T,x(0)
g̃T,y(0)
g̃T,z(0)√

1− g̃2
T,z(0)


∥∥∥∥∥∥∥∥∥

2 (23)

where sin θ∗(·) =
√

1− g̃2
∗,z(·) where ∗ denotes either the

template or the input image. For notational simplicity, let

s̃z(·) =
√

1− g̃2
z(·).

We define the forward additive objective function as

argmin
p
‖ĝI(p)− ĝT (0)‖2 (24)

where ĝI(p) =
[
g̃I,x(p), g̃I,y(p), g̃I,z(p), g̃I,sz(p)

]>
and

ĝT (0) =
[
g̃T,x(0), g̃T,y(0), g̃T,z(0), g̃T,sz(0)

]>
, the con-

catenated vectors of each normalised component.
Similar to the derivation in Section 4.4, the Jacobian

must be taken over each component and thus linearising
around ĝI(p) yields

argmin
p
‖ĝI(p) + Ĵg∆p− ĝT (0)‖2 (25)

where Ĵg =
[
Ĵg,x, Ĵg,y, Ĵg,z, Ĵg,sz

]>
. Unlike in Section 4.4,

the calculation of each Jacobian is not identical due to
the different normalisation procedure taken for each com-
ponent. Given that we can split the partial derivative

Jg,x = Jx �
∂gI,x(p)

∂p , we define the component specific
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Jacobian, Ji∀i ∈ {x, y, z, sz} as:

Jx =
gI,y(p)

2(
gI,x(p)

2
+ gI,y(p)

2
+ gI,z(p)

2
)3/2

Jy =
gI,x(p)

2(
gI,x(p)

2
+ gI,y(p)

2
+ gI,z(p)

2
)3/2

Jz =
gI,x(p)

2
+ gI,y(p)

2(
gI,x(p)

2
+ gI,y(p)

2
+ gI,z(p)

2
)3/2

Jsz = −
gI,z(p)

(
gI,x(p)2+gI,y(p)2

gI,x(p)2+gI,y(p)2+gI,z(p)2

)3/2

gI,x(p)
2

+ gI,y(p)
2

(26)

Now, given the definitions of the correct Jacobians per
component, we can solve (25) as:

∆p = H−1Ĵ
>
g [ĝT (0)− ĝI(p)] (27)

Given that the update in (27) is identical to that of (8),
it would be trivial to formulate an inverse compositional
form of this residual by following the steps described in
Section 4.3.

5. Robust Nonrigid Alignment

Non-rigid registration is the term generally used to
describe an alignment algorithm that utilises a non-rigid
warp. A non-rigid warp is generally achieved via a mo-
tion model that allows for smaller scale local deformations
than can be achieved under models such as affine or sim-
ilarity. For example, Rueckert et al. [26] proposed free-
form deformations (FFD) as a motion model that gives a
smooth spline-based transition between neighbouring con-
trol points. However, due to the local nature of non-rigid
alignment algorithms, they require many more parame-
ters. In the case of FFDs there may be many thousands of
parameters depending on the resolution of the FFD cho-
sen. Unfortunately, due to the complexity of the param-
eter space, this causes Gauss- Newton algorithms such as
those described in Section 4 to be infeasible. This is pri-
marily due to the fact that the size of the Hessian matrix is
defined by the number of parameters and a large Hessian
matrix may be non-invertible under reasonable memory
requirements.

Therefore, we augment the FFD algorithm given in [26]
to use our similarity measure. The local transformation
described by a FFD consists of a mesh of control points,
φi,j,k, separated by a uniform spacing. The FFD is then
given as in [26], as a 3-D tensor product of 1-D cubic B-
splines

W(x;p)local =

3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n

(28)

where Bl describes the lth basis function of the B-spline,
B0(u) = (1− u)

3
/6, B1(u) = (3u3 − 6u2 + 4)/6, B2(u) =

(−3u3 + 3u2 + 3u + 1)/6, B3(u) = u3/6 and i, j and k
are control point indices over the x, y and z axis respec-
tively. We then perform a simple gradient descent algo-
rithm, which terminates when a local minima is reached.

Typically, the total cost function for the FFD algo-
rithm consists of a similarity term that depends in the data
and a regularisation term that enforces smoothness on the
local transformation. In this work we seek to improve the
performance of the similarity term in the presence of sys-
tematic errors.

Let us assume that the parameters of the FFD are Φ =
{φi,j,k}. We replace the normalised mutual information
similarity measure C(Φ)Similarity from the original FFD
algorithm with our new robust similarity. For example, for
the inner product similarity as described in Section 3.2.2
we define C(Φ)IP as

C(Φ)IP = g̃I(Φ)
>
g̃T (0) (29)

The parameters, Φ, can then be updated in gradient de-
scent form as follows:

Φ = Φ + µ
∇ΦC(Φ)IP

‖∇ΦC(Φ)IP‖
(30)

where ∇ΦC(Φ)IP is the gradient of the similarity measure.

5.1. Numerical Stability

As discussed in [20], it is not possible to use normalised
gradient fields directly due to discontinuities in differenti-
ation. We thus regularise the normalised gradient fields
using the technique presented in [23].

C(Φ)IP =
∑
k∈Ω

gI(Φ)[k]
>
gT (0)[k] + %τ

‖gI(Φ)[k]‖%‖gT (0)[k]‖τ
(31)

where ‖·‖∗ =
√
〈·, ·〉+ ∗2 and Ω is the set of indices corre-

sponding to the target image support. In this work % and
τ require only a single parameter, as opposed to the user
specified regularisation values chosen in [23]. Explicitly, %
and τ are computed following an automatic choice based
on total variation

% =
η

VI

∑
k∈ΩI

gI(Φ)[k], τ =
η

VT

∑
k∈ΩT

gT (0)[k] (32)

where η > 0 is a parameter for noise filtering and V∗ is the
volume of interest in the image domain Ω∗.

5.2. Robustness Against Bias Fields

In this section we provide a formal proof of the robust-
ness of our cost functions to bias field corruption. Con-
sider an image signal M with no intensity inhomogeneities
and a smooth signal Q, representing a multiplicative bias
field [38, 39]. We assume Q to be constant within a small
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Figure 5: Axial view of a T1-weighted brain images utilised for in-
tensity inhomogeneity simulation. Left: Original. Middle: With
simulated bias field applied. Right: Bias field

neighbourhood, N(k) = (∆kx∆ky∆kz). Therefore, for
∆kx, we have

I(k) = M(k)Q(k) + ε

I(k + ∆kx) = M(k + ∆kx)Q(k + ∆kx) + ε
(33)

where ε is an additive error term. Given that Q is constant
within N

∂I(k)

∂x
≈ lim

∆kx→0

I(k + ∆kx)− I(k)

∆k

≈ lim
∆kx→0

Q(k)(M(k + ∆kx)−M(k))

∆k

= Q(k)
∂M(k)

∂x

(34)

Using (34), we show our proposed cost function to be ro-
bust to locally constant bias fields, since

∂I(k)
∂x√(

∂I(k)
∂x

)2

+
(
∂I(k)
∂y

)2

+
(
∂I(k)
∂z

)2

≈
Q(k)∂M(k)

∂x√(
Q(k)∂M(k)

∂x

)2

+
(
Q(k)∂M(k)

∂y

)2

+
(
Q(k)∂M(k)

∂z

)2

≈
∂M(k)
∂x√(

∂M(k)
∂x

)2

+
(
∂M(k)
∂y

)2

+
(
∂M(k)
∂z

)2

(35)
Equations (33) — (35) are analogous for ∆ky and ∆kz.
Therefore,

∇I(k)

‖∇I(k)‖
≈ ∇M(k)

‖∇M(k)‖
(36)

which demonstrates the invariance of our cost functions
with respect to Q.

6. Experiments

We assessed the performance of our similarity measures
within two separate experimental frameworks. For the
LK experiments, we used data from the Visible Human
project [40] and demonstrate the robustness of our pro-
posed measures to both a simulated bias field and artificial
occlusions.

For the non-rigid registration experiments, we demon-
strate the robustness of our similarity measures to inten-
sity inhomogeneities in the form of a bias field as well
as simulated pathologies. The pathologies are introduced
in the form of simulated brain tumours provided by the
BraTS MICCAI 2012 challenge1 image database. We also
used MR brain images from the OASIS dataset [41] and
traumatic brain injury MR images from Turku University
Hospital.

6.1. Intensity Inhomogeneity Implementation

Robustness to intensity inhomogeneities relaxes the ne-
cessity of an explicit intensity correction step in the regis-
tration pipeline, which can be time consuming and a po-
tential source of errors, especially for non-brain images.
Any similarity measure that can accurately align images
containing intensity inhomogeneities is of great benefit for
data sources such as MRI data where bias field corruption
is very common. Bias field corruption is a low-frequency
and very smooth signal that corrupts MRI images, espe-
cially those produced by older MRI machines.

To introduce intensity inhomogeneities into the images,
we simulate several two- dimensional complex-valued MRI
sensitivity maps using a MATLAB tool2. For each image,
we simulate the effect of 8 coils uniformly placed accord-
ing to the software implementation. Then, we randomly
select one of the 8 generated sensitivity maps as the final
map S for the image. Since the sensitivity maps are two-
dimensional, we apply them to every 2D slice of the image
along the Z-axis in a weighted fashion. Hence, if we denote
the original image as M , then the simulated image with
intensity inhomogeneities I is constructed according to

I(·, ·, z) = R (w(z)⊗ ‖S(·, ·, z)‖ ⊗M(·, ·, z)) ,

z ∈ [1, NZ ],

where Nz corresponds to the number of image slices in the
Z direction, R(·) is the function that rounds the argument
to the nearest integer, ⊗ is the voxelwise multiplication
and w(z) is given by

w(z) = 1 +
10√
2πσ2

e−
(z−Nz−1

2 )
2σ2 .

For all the simulations we use σ = 0.15 · (Nz − 1). Fig-
ure 5 shows an example image with and without intensity
inhomogeneities.

6.2. 3D Affine Registration Using LK

For the LK experiments, the data used was from the
Visible Human project [40]. This data has an image struc-
ture that differs from other common 3D image sources such
as MR images. Each voxel in an image is formed from

1http://www2.imm.dtu.dk/projects/BRATS2012/
2bigwww.epfl.ch/algorithms/mri-reconstruction

10

http://www2.imm.dtu.dk/projects/BRATS2012/
bigwww.epfl.ch/algorithms/mri-reconstruction


(a) (b)

(c) (d)

Figure 6: Average frequency of convergence vs Point standard deviation for the Visible Human data set. (a) Simulated Bias Field (b) Occlusions
(c) Occlusions + Bias Field. CosineSquared: black-�. ECC: black-�. GaborFourier: black-x. IC: blue-x. IRLS: blue-+. InnerProduct: red-*.
Spherical: red-o
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(a) (b)

Figure 7: Examples of images from the Visible Human project [40]
used in the LK experiments. (a) Artificially occluded image. The
occlusion appears as the white square in the top right. (b) Image
with simulated bias field.

physical slices that were taken from the body of a cadaver.
Therefore, the gradient information across the x, y plane is
incredibly rich as it represents a true 2D-image. However,
the 3D nature of the data is still maintained as each image
along the z-axis represents another slice acquired from the
body.

In all experiments an affine motion model was used
and performance was measured within an extension of the
evaluation framework proposed in [5]. We used the Oral
section from the Visible Human data set [40] as the tar-
get image. We selected 10 different regions of interest and
parametrised the regions as a set of points representing
the bounding cube of the region. These points were then
perturbed using Gaussian noise of standard deviation σ.
Using the affine warp defined between the original and per-
turbed points, we generate a distorted image. Then, given
a warp estimate, we compute the new template points and
calculate the root mean square error (RMSE) between the
estimated and correct locations. The performance metric
used to assess the algorithms is the average convergence
rate for each fixed σ = [1, 10], over each of the 10 re-
gions of interest. An algorithm was considered to have
converged if it had a final RMSE of less than 2.0 pixels af-
ter 30 iterations. For each template, 100 convergence tests
were performed. Each image was smoothed using Gaus-
sian smoothing with σ = 2.0 and kernel size 5 × 5 × 5,
before the calculation of derivatives. All algorithms were
implemented using the inverse compositional form.

To provide a competitive assessment of our similar-
ity measures, we extended recent state-of-the-art 2D algo-
rithms for use with 3D images. We concentrated on algo-
rithms that aim to provide robustness against outliers, par-
ticularly in the form of intensity inhomogeneities. There-
fore, we provide comparisons against the enhanced corre-
lation coefficient (ECC) [6] and the Fourier LK algorithm
with Gabor filter banks (GaborFourier) [7]. As a baseline,
we also compare against the standard LK algorithm and
the iteratively re-weighted least squares algorithm (IRLS)
also proposed by Baker et al. [2].

We also compare against the most related technique
that utilises the cosine squared measure (CosineSquared) [20].
Our implementation of CosineSquared is equivalent to the

Gauss-Newton methodology described within [20].

6.2.1. Experiments Without Corruption

In this subsection, we present our performance eval-
uation results obtained without applying any corruption
to the 3D images. We compared the performance of the
inverse-compositional LK algorithm (IC) with both forms
of our algorithm, InnerProduct and Spherical and the re-
lated method CosineSquared. This experiment is designed
as a baseline that presents the performance of robust mea-
sures in data that is known to contain no outliers.

As Figure 6a shows, the IC algorithm outperforms the
other methods for this experiment. This result is unsur-
prising, as the distorted image is generated directly from
the original image without any outliers. Since both of our
proposed methods discard information in the form of the
gradient magnitude, they inevitably perform worse than
the LK algorithm. However, the difference between our
two algorithms is negligible, which is expected given that
they both discard the same amount of information. The
larger deformations significantly decrease the performance
of the CosineSquared algorithm. This is likely due to the
bias created by squaring the inner product of the images.

6.2.2. Experiments With Corruption

In this subsection, we present three separate experi-
ments: images with a simulated bias field, with an occlu-
sion and with an occlusion and a simulated bias field. The
bias field was generated as described in Section 6.1 and
an example is shown in Figure 7b. Occluded sections were
created synthetically by randomly placing image sections
taken from another random area of the body, and putting
them into every slice of the 3D image, as shown in Fig-
ure 7a.

Figure 6b shows that our proposed techniques are com-
petitive with the state-of-the-art for bias field corruption.
The LK and IRLS algorithms are not able to cope with the
intensity variation caused by the bias field. GaborFourier
copes reasonably well with this type of corruption due to
the illumination invariant properties described in [7]. ECC
performs very well, which is unsurprising as the enhanced
correlation coefficient performs a normalisation of the im-
age pixels, which reduces the effect of the bias field. The
CosineSquared algorithm performs well for smaller devia-
tions, but quickly diminishes in performance.

Figure 6c shows that our proposed similarity measures
are also the most robust to occlusions. IRLS performs
better under these situations as it is able to discard some
of the outliers that bias the alignment. The normalisa-
tion step in ECC has no benefit in suppressing this sort of
bias, and so it performs very similarly to the non-robust
IC algorithm. GaborFourier still performs well as the Ga-
bor filter banks suppress the contribution of the outliers.
The CosineSquared performs well under smaller deforma-
tions but is heavily biased under large deformations as the
squaring of the cosine fails to suppress the contribution of
the occlusions.
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REF NMI PROPOSED COS2 DRAMMS

Figure 8: Reference and propagated labels using η = 0.1. REF denotes the reference labels, NMI is normalised mutual information,
PROPOSED is the proposed similarity, COS2 is Haber and Modersitzki [20], DRAMMS is the method of [27]. The first row is the axial view,
second row is the coronal view and final row is the sagital view. Boundaries of the tumours and image are provided for visualisation.

Finally, in Figure 6d we see that even under occlusion
and global illumination variation, our proposed measures
perform with relatively high accuracy. This is a challeng-
ing experiment which demonstrates the power of our pro-
posed similarity measure. Despite the large amount of
outliers, our proposed measures are still able to perform
accurate alignment with a higher success rate than any of
the other algorithms considered.

6.3. 3D Non-Rigid Registration Using FFDs

As previously mentioned, we incorporate the proposed
inner product measure into a B-Spline FFD algorithm [26].
For comparison, we also incorporate the cosine squared
similarity [20] and normalised mutual information (NMI) [19]
into our framework. We also compared our FFD-based
non-rigid registration on images containing pathologies with
a recent work, DRAMMS [27]. DRAMMS attempts to
reduce matching ambiguities through a multi-scale and
multi- orientation Gabor filters. These extracted filters are
then weighted during registration using a function dubbed
“mutual-saliency” designed to improve matching unique-
ness. DRAMMS has been shown to be effective on a
wide range of data sources. However we show that whilst
not failing completely on images containing pathologies,

our FFD-based similarity measure yields superior perfor-
mance.

We concentrate on two separate experiments, images
with intensity inhomogeneities and images with patholo-
gies. In all the conducted experiments within the FFD
framework, we utilise the thin-plate bending energy of the
deformation field with a weight of α = 0.002 as a regulari-
sation term and optimise using conjugate gradient descent.
We use the same regularisation weight for every similarity
since the empirical range of values that they take using
our experimental image datasets are of very similar width
for all of them.

6.3.1. MR Images with Intensity Inhomogeneities

Here we evaluate the performance of our proposed sim-
ilarity measure against intensity inhomogeneities. This re-
laxes the necessity of an explicit intensity correction step in
the registration pipeline (e.g. [42]), which can be time con-
suming and a potential source of errors, especially for non-
brain images. To evaluate the proposed similarity measure
for non-rigid registration, we perform the 30 × 29 = 870
pairwise registrations with control point spacings of 20,
10, 5 and 2.5mm, using the 35 original preprocessed T1-
weighted MR brain images from the OASIS dataset [41].
We subsequently introduce different smooth intensity in-
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Figure 9: Examples images of a BraTS subject in axial and coronal view. First and second columns depict subjects with high-grade gliomas.
Third and fourth columns depict subjects with low-grade gliomas.
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Figure 10: Mean pairwise similarity index per image per label for the OASIS data [41].
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WM GM CSF Overall

NMI [19] 78.1(78.1)± 0.03 79.0(78.0)± 0.03 88.4(88.9)± 0.02 81.8(81.3)± 0.02

DRAMMS [27] 73.7(74.2)± 0.02 79.0(79.5)± 0.03 78.4(81.2)± 0.11 77.1(78.6)± 0.05

Proposed similarity (η = 0.1) 78.1(78.1)± 0.00 76.4(76.6)± 0.01 83.4(84.5)± 0.03 79.3(79.9)± 0.01
Haber and Modersitzki [20] (η = 0.1) 74.2(74.4)± 0.01 75.1(75.0)± 0.01 80.9(82.2)± 0.03 76.8(77.2)± 0.02

Proposed similarity (η = 1) 80.9(80.8)± 0.00 79.1(79.3)± 0.01 88.1(89.1)± 0.03 82.7(83.3)± 0.01
Haber and Modersitzki [20] (η = 1) 81.2(81.2)± 0.00 79.6(79.7)± 0.01 88.4(89.0)± 0.03 83.1(83.7)± 0.01

Table 1: Images with pathology: Mean (Median) overlap measures and standard deviation for white matter (WM), grey matter (GM)
and ventricular cerebrospinal fluid (CSF) labels propagated using on-rigid registration.
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(a) η = 0.1

0 45 90 135 180
φ

−1 −0.5 0 0.5 1
cos(φ)

0 0.2 0.4 0.6 0.8 1

cos
2
(φ)

(b) η = 1

Figure 11: Angle φ and histograms of cosφ and cos2 φ using (a)
η = 0.1 and (b) η = 1 between a healthy subject and the BraTS
simulated images in the tumour areas. The means are 0.031 and
0.296 respectively for η = 0.1 and 0.548 and 0.410 respectively forη =
0.1 η = 1.

homogeneities individually to all the images according to
the procedure described in Section 6.1 and repeat the reg-
istrations again using the original images as target and the
affected ones as source.

We compare the gradient-based similarity measures with
noise parameter η set to 0.1 against NMI in their ability to
produce a deformation field able to accurately propagate
the manual segmentation labels. We measure the registra-
tion accuracy using the similarity index (SI), both for the
original images and the images with bias field applied. We
compute the mean and standard deviation of the SI values
calculated on the propagated and reference labels for all
870 propagations. We differentiate between the 98 cortical
and 36 subcortical labels. The results are shown in Figure
13. We observe that NMI performs well when there are
no intensity inhomogeneities in the images. On the con-
trary, it is severely affected by the presence of intensity
inhomogeneities. Conversely, both gradient-based similar-
ity measures show similar performance for registrations
with and without intensity inhomogeneities, demonstrat-
ing their robustness. Nevertheless, the proposed similarity
measure performs slightly better that cosine squared, and

the differences are statistically significant according to a
paired Wilcoxon signed rank test (p < 10−5). To comple-
ment the analysis, we show the same results for each of
the images and each label in Figure 10. It is important to
note that in the case where no intensity inhomogeneities
are present, the proposed method has a lower performance
than NMI. The conducted analyses suggest that, when us-
ing normalised gradient fields, the registration of MR im-
ages is more difficult than the alignment of scans from
other imaging modalities as in [21, 22, 23]. We observe
that in the particular case of MR brain images, the dis-
crimination between noise and structure related gradients
is very challenging, especially in cortical areas.

6.3.2. MR Images with Pathologies

Registration of images depicting pathology is a chal-
lenging procedure, since the images may exhibit strong
structural differences that cannot be matched. Here, we
show that our similarity measure is capable of handling
images with areas of mismatches, e.g., areas of pathology,
without any prior knowledge nor any subsequent correc-
tion step.

We use a dataset of 10 simulated MR images of the
brain depicting tumours. These images are taken from
the BraTS MICCAI 2012 challenge3. Half of these images
show high grade gliomas and the other half has low grade
ones. The images are labelled into white matter (WM),
gray matter (GM), cerebrospinal fluid (CSF) and 2 fur-
ther labels for the tumour areas. All the images are skull
stripped, and have 256×181×256 voxels with an isotropic
resolution of 1mm. A visualisation of all the subjects from
this dataset is provided in Figure 9. For a quantitative
evaluation, a labelled image of a healthy subject is regis-
tered to all 10 images in our BraTS dataset using NMI and
both normalised gradient field based similarity measures.
The registrations using either the cosine or cosine squared
similarity measure were run in two settings. In the first
setting, the noise parameter η is set to 0.1. In the second,
we set the value of η to 1. We measure registration ac-
curacy using SI over three labels, namely WM, GM and
CSF. We ignore the two available tumour labels as there is

3http://www2.imm.dtu.dk/projects/BRATS2012/
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no equivalent in the healthy scan. A good overlap for non-
tumour labels is an indicator that the similarity measure
is not biased by the presence of pathology. We also include
the registration result of DRAMMS [27], which shows that
FFD registration is still highly competitive with more re-
cent state-of-the-art works. Overlap results for non-rigid
registration are shown in Table 1. It can be observed that
for the case where η = 0.1, the proposed similarity mea-
sure yields a worse alignment than NMI (p = 0.0098).
However, when compared to the cosine squared similarity,
a much better result is obtained for the proposed similar-
ity measure (p = 0.002). Further visual results for this
comparison are shown in Figure 8. The main areas where
the registration using cosine squared similarity measure
is affected by the tumour presence are highlighted by a
red ellipse. Although Table 1 suggests that higher val-
ues of the parameter η provide superior overlap measures
this is not necessarily the case. Given Equation (31) and
Equation (32), we can clearly see that η has the effect
of suppressing the contribution of the gradients within the
similarity measure. Therefore, η can be thought of as a fil-
tering parameter that will benefit any normalised gradient
field similarity measures by decreasing the effect of noise.
However, as demonstrated in Figure 11, larger values of η
also effect the distribution of φ in the occluded areas. As
η is increased, the gradient values are suppressed towards
0 and thus the distribution of cosφ ceases to approximate
a uniform distribution. Therefore, although η = 1 pro-
vides superior results for the experiment in Table 1, we
focus our results on η = 0.1 whereby our assumption of
the uniform distribution of outliers is not violated. This
is clearly demonstrated by Figure 11 for the BraTS simu-
lated images in the tumour areas when η = 0.1. Figure 11
differs from Figure 2 in its application of the noise filter-
ing as no filtering is applied in Figure 2. This can be seen
as equivalent to η = 0 which was used to validate that
the difference between two visually dissimilar areas does
indeed approximate a uniform distribution for the cosine.

In addition to the BraTS experiments, we perform reg-
istrations using NMI, the proposed similarity measure and
cosine squared similarity measure on traumatic brain in-
jury (TBI) data. The imaging data was acquired at Turku
University Hospital, Finland in the course of the TBIcare
project4. One image corresponds to a baseline scan and
the other is the follow-up scan taken after 4 months and
19 days at Turku University Hospital. Both images have
176×240×256 voxels with an isotropic resolution of 1mm.

We utilise the baseline image as target and the follow-
up image as source. For the gradient-based similarity mea-
sures we set η to 0.1. Visual results are given in Figure 12.
The main observation is that, in contrast to NMI and the
cosine squared similarity measure, the proposed measure
is able to recover most of the underlying changes in shape
within the pathology area (as pointed out with a red ar-
row). This is because the registration inside the area of

4http://www.tbicare.eu

Baseline Follow-up

NMI PROPOSED COS2

Figure 12: Visual comparison of the proposed similarity (PRO-
POSED), normalised mutual information (NMI) [18] and cosine
squared (COS2) [20] for TBI data. Top row: Baseline and follow-up
images. Second row: Transformed follow-up isolines of the registra-
tion results overlaid on the baseline image.
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Figure 13: Mean similarity index and standard deviation over corti-
cal and subcortical labels for all 30 × 29 = 870 registrations in the
OASIS dataset [41].

pathology affect the value of both NMI and cosine squared
similarity measure significantly, causing the optimisation
to converge very quickly. On the other hand, the pro-
posed similarity is almost unaffected by the forces in the
area of pathology, allowing the optimisation to continue
until good alignment is achieved.

7. Conclusion

In this work, we have provided a set of novel global
similarity measures based on the cosine of the orientation
between normalised gradients. We have shown that these
measures are theoretically robust to a very general class of
outliers that includes intensity inhomogeneities and sys-
tematic errors such as occlusions. We have empirically
verified that our measures are robust for various sources
of brain MRI data.
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We have provided a proof-of-concept investigation as
to the effectiveness of our similarity measures within the
popular Lucas-Kanade algorithm. Despite the popular-
ity of Lucas-Kanade algorithms for 2D images, little work
has been done on its performance for voxel data. In fact,
to the best of our knowledge, no previous work exists
that extends the current state-of-the-art Lucas-Kanade al-
gorithms in to 3D. We provide a thorough experimental
analysis on both our proposed measures and extensions of
state-of-the-art 2D methods in Section 6.

We also embedded our similarity measures within a
popular non-rigid alignment framework based on free-form
deformations. We demonstrated the effectiveness and ro-
bustness of our similarity measure on images with simu-
lated bias fields and on simulated pathological images. We
showed superior robustness in these scenarios compared to
NMI and the cosine squared measure of Haber and Mod-
ersitzki [20]. We also demonstrate superior performance
on images containing pathologies when compared against
DRAMMS [27].

The main contribution of this paper is that our similar-
ity measures relax the need for bias field correction, which
can be time consuming and prone to errors. They can also
register images in the presence of pathologies, since they do
not rely on any particular deformation model and do not
require segmentation of outliers. Our similarity measures
are very efficient and simple to compute and compare very
favourably with current state-of-the-art methodologies.
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