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Abstract

We address the problem of modeling intensity levels
of facial actions in video sequences. The intensity se-
quences often exhibit a large variability due to the con-
text factors, such as the person-specific facial expressive-
ness or changes in illumination. Existing methods usually
attempt to normalize this variability in data using differ-
ent feature-selection and/or data pre-processing schemes.
Consequently, they ignore the context in which the target
facial actions occur. We propose a novel Conditional Ran-
dom Field (CRF) based ordinal model for context-sensitive
modeling of the facial action unit intensity, where the W5+
(Who, When, What, Where, Why and How) definition of the
context is used. In particular, we focus on three contextual
questions: Who (the observed person), How (the changes in
facial expressions), and When (the timing of the facial ex-
pression intensity). The contextual questions Who and How
are modeled by means of the newly introduced covariate
effects, while the contextual question When is modeled in
terms of temporal correlation between the intensity levels.
We also introduce a weighted softmax-margin learning of
CRFs from the data with a skewed distribution of the inten-
sity levels, as commonly encountered in spontaneous facial
data. The proposed model is evaluated for intensity esti-
mation of facial action units and facial expressions of pain
from the UNBC Shoulder Pain dataset. Our experimental
results show the effectiveness of the proposed approach.

1. Introduction
Faces hold valuable clues to people’s emotions and in-

tentions. Facial expressions are some of the most direct,

naturally preeminent means for human beings to regulate

interactions with each other [7]. They communicate emo-

tions, clarify and stress what is being said, and signal com-

prehension, disagreement and intentions. Machine under-

standing of facial expressions could revolutionise user in-

terfaces for artifacts such as robots, mobile devices, cars,

and conversational agents [21], and has therefore become a

hot topic in Computer Vision and Machine Learning com-

munity.

(a) AU6C, PSPI=6 (b) AU6C, PSPI=6

Figure 1. Example images of two subjects from the UNBC Shoul-

der Pain dataset [17], whose facial action unit AU6 (cheek raiser

and lid compressor) was coded with intensity C on the A-B-C-D-E

ordinal scale. The intensity of pain was computed from the codes

of the co-occurring AUs in the images shown, using Prkachin and

Solomon Pain Intensity (PSPI) rating. Observe the difference in

the facial appearance of these two subjects whose AU6 and ex-

pressions of pain have the same intensity.

A common task in analyzing video sequences of human

facial actions is to divide the sequence into segments cor-

responding to different phases or intensities of the target

action. For example, the expression of different facial ac-

tions follow an envelope of neutral-increase-peak-decrease.

Modeling such an envelop is critical for faithful representa-

tion of sequences and, consequently, for their accurate auto-

mated tagging or classification. However, in many domains

and, in particular, in analysis of human affect, tagging of

intensities is a burdensome task. For instance, the Facial

Action Coding System (FACS) [9] defines 32 atomic fa-

cial muscle actions named Action Units (AUs), where the

intensity of each AU ranges from being absent to having
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maximal intensity on a six-point ordinal scale. The cod-

ing of an AU intensity is carried out by a trained human

FACS coder. Nevertheless, this process is tedious and er-

ror prone [18]. For that reason, most work on automatic

analysis of facial actions to date has focused on detection of

presence/ absence of facial actions instead of their full range

intensity estimation. This is also true because the intensity

reflects variability in person-specific facial expressiveness

(see Fig.1), head-movements, illumination changes, and, to

some extent, the annotator bias, all of which make the target

problem highly context sensitive.

In this paper, we propose a novel context-sensitive condi-

tional ordinal random field (cs-CORF) model for estimation

of sequences of ordinal intensity of facial actions. We base

our model on the general framework of CRFs [16] because

of its ability to directly predict the labeling given a sequence

of measurement features and the ease with which the arbi-

trary functions of the observed features can be incorporated

into the training process. Specifically, we generalize the or-

dinal CRF models (CORFs) proposed in [15, 25], where the

node features were designed using the homoscedastic ordi-

nal probit model [30]. A key difference in our approach is

that we account for the omnipresent impact of context on

the intensity estimation by modeling the context-sensitive

variability in data. To this end, we adopt the widely ac-

cepted W5+ context model [22], where six questions are

used to summarize the key aspects of the context in which

the target facial action occurs: ‘who’ (observed person,

identity, age and facial expressiveness), ‘where’ (environ-

mental characteristics such as illumination), ‘what’ (task-

specific observations of head tilts, nods, etc.), ‘how’ (the in-

formation is passed on by means of facial expression inten-

sity), ‘when’ (timing of facial expressions and their inten-

sity) and ‘why’ (the context stimulus such as funny videos).

The previously proposed approaches to AU intensity es-

timation (e.g., [18, 24, 26, 15, 25]) focus mainly on an-

swering the context question ‘how’ by means of the covari-

ates obtained, for instance, from expressive images after the

personal texture normalization is applied. Thus, these ap-

proaches are context-free since they do not answer the other

context questions. By contrast, in our approach we model

the context by answering the following context questions:

‘who’, ‘how’ and ‘when’. The context questions ‘who’ and

‘how’ are modeled by introducing separate context covari-

ate effects, named CCE, and context-free covariate effects,

named FCE (which coincide with the covariates used in the

context-free models), respectively. These effects are effi-

ciently embedded in the ordinal probit function, used to de-

fine the node features of the cs-CORF model. Likewise, the

context question ‘when’ is modeled by the state-transition

process used to define the edge features in the model. The

CCE component is of particular importance since it directly

accounts for the person-specific bias in the model’s parame-

ters, which is induced from the subject’s characteristics that

are considered constant across a sequence (e.g., the neutral

face of the target person). We also account for heteroscedas-

ticity in the ordinal model by allowing the model’s variance

to change, depending on both the CCE and FCE compo-

nents. This further enhances the capacity of the model to

adapt to the facial expressiveness of each person. Lastly, to

address the problem of the label imbalance in a principled

manner, we introduce a weighted softmax-margin learning

approach for CRFs, based on a generalization of the slack

and margin rescaling modeling criteria in [29].

2. Related Work
Within the context of facial affect, only a few works ad-

dressed the problem of intensity estimation of facial ac-

tions. Mahoor et al. [18] applied Spectral Regression to

AAM-normalized facial appearance of infants to find the

AU-specific subspaces, where the SVM classification of the

intensities was then performed. In their more recent work

[19], the authors applied the same approach, but to differ-

ent input features, to perform intensity estimation of AUs of

people watching funny videos. For the task of pain intensity

estimation, Hammal and Cohn [10] proposed facial descrip-

tors based on log-linear filters that were classified into four

different levels using SVMs. The other group of methods

treats the intensity levels as continuous variables. For in-

stance, Savran et al. [26] used SVM scores obtained from

the AU detectors trained on various 2D/3D image descrip-

tors to perform continuous AU intensity estimation. Like-

wise, Kaltwang et al. [14] proposed a three-step approach

for pain and AU intensity estimation based on fusion of dif-

ferent shape and appearance features using relevance vector

regression (RVR). Also, Jeni et al. [11] proposed a sparse

representation of facial appearance obtained by applying

personal mean texture normalization to image patches. The

resulting features were then used as input to the SVR model

trained for intensity estimation of AUs.

All the works mentioned above focus on feature extrac-

tion, while the classification/regression is attained by us-

ing SVM/RVR, resulting in mismatch between the ordinal

nature of the data and the modeling framework. In ad-

dition, skewed distribution of the intensity data poses ad-

ditional difficulty to these models when learning minority

classes (i.e., the higher intensities). Most importantly, none

of those works addressed the omnipresent impact of context

on the facial action intensity estimation. Note that context

modeling has been addressed in other domains such as im-

age annotation (e.g., [12, 31]) or activity recognition (e.g.,

[28, 32]). These approaches typically model the context

in terms of co-occurrences of different classes (objects or

activities) using CRFs for nominal data. By contrast, we

perform ordinal modeling of sequences, which is preferred

when dealing with intensity of actions, and employ the more
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general W5+ context model. To the best of our knowledge,

this is the first work that exploits the context in a princi-

pled manner, in addition to addressing the other limitations

of the existing approaches, in order to improve the intensity

estimation of spontaneous facial actions.

3. Ordinal Regression

To deal with ordinal responses, different ordinal regres-

sion models have been proposed (see [5] for an overview).

We restrict our consideration to the threshold model with

the probit link function proposed by McCullagh(1980) [20].

In this model, the cumulative probits λk for k = 1 . . .K or-

dinal responses are defined as:

λk =
γk − βTx

σ
, (1)

where x is the D × 1 covariate vector, β is a vector of re-

gression parameters, and γ0 = −∞ ≤ · · · ≤ γK = ∞ are

the thresholds or cut-off points, enforcing the ordinal con-

straints. The scale of the cumulative probits is usually set

as σ ≡ 1 for identification purpose [30]. The conditional

probability of the ordinal response y is then given by:

Pr (y = k|x) = Φ (λk)− Φ (λk−1) , (2)

where Φ(·) represents the normal cumulative distribution

function (cdf).

The most critical aspect that differentiates the ordinal re-

gression from the multi-class classification is the modeling

strategy: while the former learns a single projection (β),

thus, having the same effect on the covariates across all or-

dinal responses, the latter learns separate hyper-planes for

each class (βk, k = 1, ...,K) [30]. To separate K ordi-

nal categories, the ordinal model uses the single projection

β and the cut-off points γk. If the responses are indeed of

ordinal nature, this model is more parsimonious and often

more robust than its nominal counterpart [30].

4. Context-sensitive Conditional Ordinal Ran-
dom Fields (cs-CORF)

In this section, we first introduce the concept of con-

text sensitive modeling of intensity levels. We then extend

this model by allowing its variance to be a function of the

context-sensitive covariates. The resulting model is then in-

tegrated into the framework of CRFs to account for tem-

poral dependence between the outputs. We also introduce

a weighted softmax-margin learning approach that enables

the proposed model to handle skewed distribution of the in-

tensity levels. Lastly, we describe the regularizers used and

the inference procedure.

4.1. Context-sensitive modeling

The context-sensitive modeling of the data is attained by

allowing different effects, corresponding to different con-

text questions, to influence the output responses y via the

cumulative probit function defined in (1). We demonstrate

this on the context questions ‘who’ and ‘how’, however,

addressing the other context questions can be done in a

similar manner. To this end, we introduce separate con-

text covariate effects (CCE) and context-free covariate ef-

fects (FCE), which relate to the context questions ‘who’

and ‘how’, respectively. In this work, the latter are re-

ferred to as the context-free covariates as they coincide

with the covariates used in traditional context-free mod-

els (e.g.,[15]). For the target task, i.e., AU intensity es-

timation, we define the CCE and FCE as follows. Given

a sequence, yi = {yi1, . . . , yiTi
}, with covariates xi =

{xi1, . . . , xiTi
}, we decompose the covariate xij into CCE

(xu
i = C−1

∑C
c=1 xic) and FCE (xr

ij = xij − xu
i ) com-

ponents. The CCE component is ascribed to person identity

(e.g., age and gender), and is computed from the first C neu-

tral frames in an image sequence1. On the other hand, the

FCE component accounts for variability in the facial action

intensity within a particular sequence. We use these newly

introduced effects to define the context-sensitive cumulative

probits as

λijk = γk − βT
u x

u
i − βT

r x
r
ij , k = 1, . . .K, (3)

where σ = 1. From (3), we can distinguish between (i)

an overall effect of the CCE component on K responses, as

measured by the association of xu
i with the responses across

the whole sequence, and (ii) the effects of the FCE compo-

nent on each particular response within the sequence. In

other words, the CCE component is constant across the se-

quence, while the FCE component is time-varying. The role

of the CCE component in the model can easily be seen from

(3): it adjusts the locations of the thresholds γk in the cu-

mulative probits depending on the target person. Thus, the

simultaneous interaction of the CCE and FCE components

with the other parameters of the model is what constitutes

the context here.

4.2. Variance modeling

In Sec.4.3, the homoscedastic ordinal probit model is

used, i.e., its variance σ2 is assumed constant. However,

since the CCE component has an additive effect on the lo-

cations of the model’s thresholds γk within a sequence, it

accounts only for the mean level of the subject’s expres-

siveness. For the model to be able to fully adapt to expres-

siveness levels of different persons, we also need to allow

the scale of the thresholds to change. This can be attained

1We average the first five neutral frames in a sequence to obtain a more

robust estimate of the target effects, however, a single frame should suffice.
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by relaxing the assumption of constant σ, i.e., by allow-

ing the noise level to vary as a function of the covariates.

The ordinal models with varying noise levels are usually

termed heteroscedastic ordinal models [30]. Formally, we

define independent Gaussian noise terms for the CCE and

FCE components, resulting in the distribution of the over-

all noise in the model being a zero-mean Gaussian with the

variance

σ2(xij) = σ2
u(x

u
i ) + σ2

r(x
r
ij) + σ2

o , (4)

The first two terms on the right represent the CCE and

FCE variance, respectively, and are defined as the log-

linear function of their covariates, i.e., log σu = υT
u x

u
i and

log σr = υT
r x

r
ij . The parameters υu and υr indicate the

degree of influence of the CCE and FCE variances, respec-

tively, and log function ensures that the standard deviation

is positive. We also keep the constant noise term (σ2
o) to

account for sources of variation that are not included in

the model (e.g., the effects of the other context questions).

The context-sensitive cumulative probits, that also have the

changing variance, are now defined as

λijk = γkσ
−1(xij)− (βT

u x
u
i + βT

r x
r
ij)σ

−1(xij), (5)

which are used to obtain the probability of the ordinal out-

puts as P (yij = k|xi) = Φ(λij,k)−Φ(λij,k−1). From (5),

we see that both the constant CCE and time-varying FCE

covariates influence the scale of the model’s thresholds as

well as its location, thus, allowing it to adapt to the context

above and beyond the contribution of the CCE effects.

4.3. Temporal modeling of ordinal data

In this section, we address the context question ‘when’

by encoding temporal relations between the responses. For

this, we employ the linear-chain CRF [16] model that rep-

resents the conditional distribution P (yi|xi), i = 1, . . . , N ,

as the Gibbs form clamped on the observations xi:

P (yi|xi; θ) =
exp(

∑Ti

j=1 Ψ(yi,j−1, yij , xi; θ))
∑

ȳ∈Y|Ti|
exp(

∑Ti

j=1 Ψ(ȳi,j−1, ȳij , xi; θ))
,

(6)

where Ti is the duration of the i-th sequence, and Y |Ti|

is the set of all possible output configurations of an out-

put graph G = (V,E). θ are the parameters of the score

function Ψ(yi,j−1, yij , xi;θ) ≡ Ψij(y)
2 defined on node

cliques (r ∈ V ) and edge cliques (e = (s, r) ∈ E) of the

graph as

Ψij(y) = fn(yij , xi) + fe(yi,j−1, yij). (7)

The choice of the node fn(yij , xi) and edge fe(yi,j−1, yij)
features depends on the target task, and plays a crucial role

2For notational simplicity, we drop dependence on j − 1, xi and θ.

in the definition of CRFs. We use the introduced context-

sensitive cumulative probits to set the node features as

fn(yij ,xi) =

K∑

k=1

I(yij = k) · logP (yij = k|xi), (8)

where P (yij = k|xi) = Φ(λij,k) − Φ(λij,k−1), and I(·)
is the indicator function that returns 1 (0) if the argument is

true (false). The edge features model the first order Markov

dependence between the ordinal responses as

fe(yi,j−1, yij) =
K∑

m,k=1

I(yi,j−1 = m ∧ yij = k) · umk,

(9)

where m, k=1 . . .K, and umk measures the temporal asso-

ciation between the responses. Note that the denominator

of (6) guarantees that the distribution sums to one, and is

computed using (8, 9), but without the indicator function.

Now, given the iid training data {yi,xi}Ni=1, the parameters

θ = {{γk}K−1
k=1 , σo, βu, βr, vu, vr, {umk}Km,k=1} are found

by minimizing the penalized log-likelihood

min
θ

R(θ)−
∑N

i=1
logP (yi|xi; θ), (10)

where R(θ) is the regularization term that prevents the

model from overfitting.

We term this model the Context-sensitive Conditional

Ordinal Random Field (cs-CORF) model since it uses the

newly proposed context-sensitive cumulative probits in its

design of the node features. Note that the model in [15]

is a special case of the cs-CORF model, and it can be ob-

tained by removing the context from the cumulative probits

in (5), and by setting its variance constant. However, as we

show in our experiments, these effects play a crucial role in

raising the estimation performance.

4.4. Weighted Softmax-margin Learning

To deal with skewed distribution of ordinal responses,

we relate the large-margin learning approach for sequence

classification in [27] to the CRF model in (6). However, in

contrast to [27], we introduce scaling of the slack variables,

which incurs a higher penalty when making errors on mi-

nority classes during learning. We start from the standard

primal learning approach for max-margin models [29, 13]:

min
ζij ,θ

R(θ) +
∑N

i=1

∑Ti

j=1 ζij

s.t.Ψij(y)−Ψij(ȳ) ≥ Δij(y, ȳ)− ζij
wij(y,ȳ)

,

∀ȳij ∈ Y, ζij > 0, i = 1 . . . N , j = 1 . . . Ti,

(11)

where the large-margin set of constraints are applied to

the score function defined in (7). These constraints en-

force the difference between the scores of the correctly
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labeled cliques (Ψij(y)) and incorrectly labeled cliques

(Ψij(ȳ), y 	= ȳ) to be greater than the loss Δij(y, ȳ).
This loss is defined on temporally neighboring pairs of

labels as the weighted Hamming loss, i.e., Δij(y, ȳ) =
1 − [αI(yij , ȳij) + (1 − α)I(yij−1, ȳij−1)], for j>1 and

0 ≤α≤1, while for the first example in the sequence (j=1),

we set α=1. The weighting of the slack variables ζij is

attained using the information about prior distribution of

the intensity levels as p(y) = Ny/
∑K

k=1 Nk, leading to

wij(y, ȳ) = wij(y) = 1/(p(y) + ε). The parameter ε is

chosen from the range [0, 1], and it ensures that the overall

loss is not dominated by minority classes. The constraint in

(11) can be written as

wij(y)Ψij(y)−wij(y)(Ψij(ȳ)+Δij(y, ȳ)) ≥ −ζij , (12)

Note that when the weight wij(y) is set to one, the con-

straint in (12) is equivalent to that used in the conventional

n-Slack large-margin learning with margin-rescaling (e.g.,

[29]). If this constraint is satisfied for each clique, then it

will be satisfied for the whole graph in the CRF. So, instead,

we will require that:

min
ζi,θ

R(θ) +
∑N

i=1 ζi

s.t.
∑Ti

j=1

[
Ψw

ij(y)− (Ψw
ij(ȳ) + Δw

ij(y, ȳ))
] ≥ −ζi,

∀ȳij ∈ Y |Ti|, i = 1 . . . N , ζi > 0,
(13)

where we simplify notation by defining Ψw
ij(y) ≡

wij(y)Ψij(y), Ψ
w
ij(ȳ) ≡ wij(y)Ψij(ȳ) and Δw

ij(y, ȳ) ≡
wij(y)Δij(y, ȳ).

Next, for given θ, each ζi in the optimization problem

(OP) in (13) can be optimized individually [13], and the

smallest feasible ζi, given θ, is achieved for:

ζi = max
ȳi∈Y|Ti|

∑Ti

j=1
(Ψw

ij(ȳ) + Δw
ij(y, ȳ))−

∑Ti

j=1
Ψw

ij(y)

(14)

We now obtain a more workable constraint by replacing the

max term with the softmax upper bound using the in-

equality maxigi ≤ log
∑
i

egi , which leads to

ζi = log
∑

ȳi∈Y|Ti|
e
∑Ti

j=1 Ψw
ij(ȳ)+Δw

ij(y,ȳ) −
∑Ti

j=1
Ψw

ij(y)

(15)

The constraint in (15) is more restrictive than that in (14)

since it uses an upper bound on the gap between the scores

of the true and model labeling of the sequence. More im-

portantly, in contrast to the max constraint, the softmax
large-margin constraint is a differentiable function of the

model parameters. We use this to cast the OP in (13) as an

unconstrained OP. Specifically, since the constraint in (15)

has a form similar to that of the negative log of the condi-

tional probability of CRFs defined in (6), we can formulate

the weighted softmax-margin learning of the CRF/cs-CORF

model as the following (unconstrained) OP:

min
ζi,θ

R(θ)+
∑N

i=1
ζi ≡ min

θ
R(θ)−

∑N

i=1
logPw(yi|xi; θ),

(16)

where the conditional likelihood-like term Pw is defined as

Pw(yi|xi; θ) =
exp(

∑Ti

j=1 Ψ
w
ij(y))∑

ȳ∈Y|Ti|
exp(

∑Ti

j=1 Ψ
w
ij(ȳ) + Δw

ij(y, ȳ))

(17)

The introduced formulation of the weighted softmax large-

margin learning allows us to compute the model param-

eters θ efficiently by using the gradient optimization and

dynamic programming techniques (e.g., Viterbi algorithm),

commonly employed for learning of CRFs. Thus, the im-

plementation is straightforward as it only requires applying

the weights to the score function Ψ(·) penalized with the

loss Δ(·). On the other hand, inference is performed by

using the unweighted/unpenalized likelihood in (6).

4.5. Regulizers

To deal with the order constraints in the parameters γ,

we introduce the displacement variables δk, where γj =

γ1 +
∑j−1

k=1 δ
2
k for j = 2, . . . ,K − 1. So, γ is replaced by

the unconstrained parameters {γ1, δ1, . . . , δK−2}. Another

important issue is the regularization of the parameters of the

cs-CORF model. We use the L2 regularizer for the standard

CRF parameters, resulting in the regularization term R(θ)
defined as:

R(θ) = ρ1(‖βu‖2+‖vu‖2)+ρ2(‖βr‖2+‖vr‖2)+ρ3‖u‖2,
(18)

where (ρ1, ρ2, ρ3) are the constants controlling the penalty

of the node and edge potentials, respectively. Furthermore,

with ρ1 and ρ2 we allow the model to adequately balance

the impact of the CCE and FCE effects. With R(θ), as de-

fined in (18), the objective in (16) can be minimized by ap-

plying any unconstrained optimizer. Here we use the quasi-

Newton LBFGS method. The regularization parameters are

found using a validation procedure on the training set. Once

the model parameters are estimated, the inference of test se-

quences is carried out by applying Viterbi decoding to the

‘unweighted’ conditional likelihood in (6).

5. Experiments
Evaluation of the proposed model is performed using

the UNBC-MacMaster Shoulder Pain Expression Archive

(Shoulder-Pain) dataset [17] containing video recordings

of patients suffering from shoulder pain while perform-

ing range-of-motion tests of their arms. 200 sequences
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SVM GPOR SVORIM RVM SR+SVM CRF(ml) CRF(w) CORF(ml) CORF(w) CORF(ml+h) CORF(w+h)

F-1
CCE+FCE 23.1 (18.2) 24.7 (17.6) 28.5 (14.2) 27.9 (17.2) 32.1 (13.5) 34.2 (11.2) 36.5 (8.0) 38.3 (5.8) 40.3 (4.1) 40.5 (4.0) 43.5 (1.6)

FCE 23.5 (17.7) 23.2 (18.5) 25.2 (16.1) 29.9 (15.9) 34.4 (10.2) 33.5 (11.5) 35.0 (9.7) 34.3 (11.1) 36.6 (8.0) 36.4 (8.7) 39.1 (5.1)

MAE
CCE+FCE 1.13 (18.9) 1.03 (17.7) 0.95 (14.7) 0.99 (16.3) 1.00 (15.3) 0.89 (11.7) 0.86 (9.3) 0.80 (6.4) 0.75 (3.2) 0.75 (3.3) 0.69 (1.0)

FCE 1.16 (19.5) 1.10 (18.2) 0.99 (15.1) 1.02 (17.6) 0.88 (11.4) 0.91 (12.6) 0.88 (11.9) 0.84 (9.1) 0.81 (7.1) 0.82 (8.0) 0.78 (4.9)

ICC
CCE+FCE 32.8 (17.8) 36.7 (16.2) 38.4 (13.5) 16.9 (21.1) 29.4 (17.5) 46.0 (11.5) 51.1 (7.9) 55.1 (5.2) 57.7 (3.5) 58.2 (3.0) 61.9 (1.2)

FCE 34.5 (17.1) 35.5 (16.8) 36.3 (16.5) 26.5 (19.2) 39.0 (15.1) 46.8 (11.3) 49.5 (9.3) 50.5 (8.7) 51.6 (8.1) 52.4 (7.4) 55.3 (5.2)

Table 1. The average performance of the models tested on 11 intensity estimation problems (expression of pain + 10 AUs from the Shoulder-

pain dataset). The numbers in brackets are the average ranks of the models, where the ranking is performed on 22 (=11×2) tasks, as each

model is tested using two sets of covariates: the context (CCE+FCE) and context-free (FCE) covariates. Note that for all three evaluation

scores, the top ranked model is the proposed context-sensitive CORF(w+h) (i.e., CORF(w+h) with the CCE+FCE covariates).

Figure 2. Distribution of the intensity levels in pre-segmented se-

quences of pain and AUs from the Shoulder-pain dataset.

of 25 subjects were recorded. For each frame, the

FACS coding of the intensity on a 6 level ordinal scale

(neutral<A<B<C<D<E) for 11 AUs is provided by the

database creators. In our experiments, we model intensity

of AUs 4, 6, 7, 9, 10, 12, 20, 25. Also, we used discrete

pain intensities (0-15) defined according to the Prkachin and

Solomon [23] measure. However, since the higher pain in-

tensity contains only a few examples, we discretized it into

6 levels as: 0, 1, 2 ,3, 4-5, 6-15. We further pre-segmented

all the image sequences containing intensity of the target

AUs/pain > 0, so that the number of neutral frames was

balanced with the second most frequent intensity. Still, the

resulting intensity distribution remained skewed toward low

levels (see Fig. 2). As input features, we used the locations

of 66 facial landmark points extracted by the database cre-

ators using an Active Appearance Model (AAM) [17]. To

reduce the effect of head movements, these points were reg-

istered to a reference face using an affine transform. Lastly,

to reduce the feature dimensionality, we applied PCA to

data of each AU, resulting in 18-D feature vectors, on av-

erage, where 97% of energy was preserved. The CCE and

FCE covariates were then obtained as explained in Sec.4.3.

We compare the performance of the context-sensitive

and context-free CORF model, as well as their variants.

Specifically, we compare the maximum-likelihood and the

proposed weighted softmax-margin learning of the mod-

els, denoted by ‘ml’ and ‘w’, respectively. Next, we com-

pare the CORFs with the homoscedastic (σ = 1) and het-

eroscedastic noise models (σ(x)), with the latter denoted

by ‘h’. We also show the performance of the standard

linear-chain CRF model [16], trained using both ‘ml’ and

‘w’ learning. As the baseline model, we use one-vs-all

SVM [4]. We also perform comparisons with the state-of-

the-art static ordinal regression models, Support Vector Or-

dinal Regression with implicit constraints (SVORIM) [6]

and Gaussian Process Ordinal Regression [5]. In the kernel

methods (SVM/SVOR/GPOR), we used the linear kernel.

Finally, we include the comparisons with the state-of-the-

art models for AU intensity estimation: the RVM approach

[14] for continuous estimation of AU intensity, and Spectral

Regression [2] combined with one-vs-one SVM (SR+SVM)

[18, 19]. The continuous predictions by the RVM-based ap-

proach were rounded to the nearest intensity level. For the

SR+SVM approach, AU-specific subspaces were selected

by running a validation procedure on the training set. In

both the methods we used the RBF kernel, as in [14, 19].

The hyper/regularization-parameters of all methods were

selected by a validation on the training set. For testing, we

applied a 5-fold cross validation procedure, with each fold

containing intensity sequences of different persons. We re-

port the accuracy of the models using: the average of F-

1 scores computed for each intensity level, the weighted

mean absolute error (MAE) [1], and Intra-Class Correlation

(ICC), commonly used in behavioral sciences to quantify

agreement between (human) coders (see [18] for details).

Table 1 shows the average results obtained by differ-

ent models on 11 intensity estimation problems (pain + 10

AUs). The models were trained/tested using two sets of co-

variates: context (CCE+FCE) and context-free (FCE). To

ensure that the models’ performance is consistent across

most of the tasks, we computed average rankings of the

models across all 22 tasks (11 problems × 2 sets of co-

variates). The models are ranked for each task separately,

the best performing model getting the rank of 1, the sec-

ond best rank 2, etc. In the case of ties, average ranks were

assigned. The final ranks were obtained by averaging the

rankings over all tasks, as in [8] c.f. Sec.3.2.2.

We see from Table 1 that inclusion of the CCE com-

ponent in traditional static approaches does not necessar-

ily improve their performance. We found that these models

were very sensitive to overfitting of the CCE component, re-

gardless of the regularization employed. This is especially

pronounced in the SR+SVM model, where the SR-learned

subspaces were biased towards the training subjects. The
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Shoulder-Pain P AU4 AU6 AU7 AU9 AU10 AU12 AU20 AU25 AU26 AU43

F-1

cs-CORF(w+h) 41.0 35.0 41.0 38.0 45.0 50.0 39.0 36.0 34.0 30.0 89.0
CORF(w+h) 35.0 32.0 36.0 30.0 41.0 49.0 35.0 34.0 33.0 27.0 78.0

CRF(w) 30.0 27.0 29.0 29.0 33.0 42.0 32.0 32.0 29.0 26.0 76.0
RVM 22.8 26.7 22.2 22.1 23.5 43.0 27.8 25.5 22.1 22.0 70.7

SR+SVM 29.4 24.3 23.9 22.3 32.6 43.4 26.7 29.6 36.0 32.4 78.3

MAE

cs-CORF(w+h) 0.82 0.79 0.71 0.76 0.70 0.36 0.68 0.74 0.81 1.19 0.05
CORF(w+h) 0.93 0.88 0.79 0.90 0.75 0.41 0.81 0.83 0.95 1.23 0.11

CRF(w) 1.16 0.99 0.98 1.00 0.82 0.53 0.94 0.93 0.99 1.23 0.13
RVM 1.00 1.05 1.16 1.25 1.30 0.64 0.98 0.99 1.16 1.50 0.18

SR+SVM 1.00 0.93 0.97 1.13 0.85 0.63 0.81 0.85 0.97 1.39 0.11

ICC

cs-CORF(w+h) 64.0 75.0 67.0 68.0 63.0 66.0 62.0 47.0 58.0 38.0 73.0
CORF(w+h) 59.0 72.0 60.0 59.0 61.0 65.0 57.0 39.0 50.0 25.0 61.0

CRF(w) 58.0 66.0 52.0 54.0 52.0 49.0 51.0 37.0 43.0 29.0 54.0
RVM 43.1 33.9 18.8 28.9 -0.5 39.1 27.7 16.3 21.7 16.8 46.0

SR+SVM 44.4 54.6 36.0 27.2 43.4 37.8 34.0 35.2 38.8 18.2 59.1

Table 2. The performance of the models on intensity estimation of expression of pain (P) and 10 AUs from the Shoulder-pain dataset. The

numbers in bold indicate that the proposed cs-CORF(w+h) performs significantly better than the rest of the models, based on the paired

t-test with p = 0.05.

static ordinal models, GPOR and SVOR, showed a small

improvement in their performance when the context covari-

ates are used. Furthermore, SVOR performed better than

the static nominal models in terms of MAE and ICC, both of

which are better suited for measuring ordinal performance

than F-1. On the other hand, the temporal models (CRFs

and CORFs) significantly increase the performance of the

static methods. This is even more pronounced when the

proposed weighted soft-max learning is used. Moreover,

we see that the parameter tying in the CORF models, es-

pecially in the presence of the context covariates, results in

their overall better performance over CRFs, with each intro-

duced effect enhancing the evaluation scores. Based on the

ranking of the models, the proposed cs-CORF(w+h) consis-

tently outperforms the other models in most of the tasks.

Table 2 shows the performance of different models in

each task. Here we compare cs-CORF(w+h) with context-

free CORF(w+h) and CRF(w). We also include the results

obtained by the context-free SR+SVM[19] and RVM[14]

models, which have previously been used for the target

task. The numbers in bold in Table 2 indicate that the dif-

ferences in the scores by the proposed cs-CORF(w+h) and

the rest of the models are significant, based on the paired

t-test (p=0.05). Again, the proposed cs-CORF(w+h) model

performs similarly or better than the context-free models in

most tasks. Note, for instance, that since AU10 involves

activation of vertically set muscles above the upper lip, no

strong personal characterization is expected. Thus, mod-

eling of the context question ‘who’ in cs-CORF does not

much improve the performance of the context-free CORF

model. This is in contrast to AU12, which involves activa-

tion of an oblique muscle, resulting in curved facial motion

that varies considerably across persons.

Fig.3 shows the intensity estimation at the sequence level

of two example AUs, namely AU6 and AU25. The scores

shown in the title of each graph are computed from the de-

picted sequences. Here we also include the Ordinal Clas-

sification Index (OCI) [3] score, whose lower values indi-

cate less confusion among the neighboring levels. We see

that the RVM model estimates well the slope of the true

signal, but it misses its scale, which is a consequence of

assuming an equal interval scale for the outputs. On the

other hand, SR+SVM underestimates the true intensity lev-

els possibly because of its bias toward the majority classes

in the learned subspace. Based on the obtained scores,

CRF(w) performs better than CORF(w+h) in terms of F-1,

while the latter model achieves better MAE and ICC, which

are better suited for ordinal data. However, cs-CORF(w+h)

outperforms the other models in all aspects, especially in

the case of higher intensity levels. We attribute this to its

ability to answer the context question ‘who’, in addition to

‘how’ and ‘when’, and, therefore, properly adapt to the fa-

cial expressiveness of different persons.

6. Discussion and Conclusions
The results obtained indicate the benefits of each pro-

posed improvement. We show that the inclusion of the con-

text question ‘who’ is critical for substantially raising the

performance of standard CORF(ml) across all three scoring

measures. Traditional static models do not account for im-

pact of the context on output responses in a principled man-

ner, which evidently limits their estimation performance.

As we show in the experiments, because of lack of param-

eter tying as well as sequential modeling these models fail

to fully exploit the context component (CCE). While the

CRF nominal model performs well (with the inclusion of

CCE + FCE), it fails to reach the full performance level of

cs-CORF. This is because of the lack of the ordering con-

straints and, possibly, because of the increased parameter

dimensionality. Finally, due to the unbalanced nature of

our data, a proper scaling of the loss during training is cru-

cial. The most frequent low intensity levels that would oth-

erwise dominate performance scores are properly balanced

using the proposed margin balancing. This is reflected in

improvements of the weighted models (w) over their un-

weighted counterparts (ml).
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(a) AU6, cs-CORF(w+h) (b) AU6, CORF(w+h) (c) AU6, CRF(w) (d) AU6, RVM (e) AU6, SR+SVM

(f) AU25, cs-CORF(w+h) (g) AU25, CORF(w+h) (h) AU25, CRF(w) (i) AU25, RVM (j) AU25, SR+SVM

Figure 3. The ground-truth (dashed blue) and estimation (solid red) of intensity of several exemplary sequences of AUs 6 and 25. For

RVM, we also include the continuous estimation of intensities (dashed black).

To conclude, in this paper we have proposed a simple

but principled approach for context-sensitive intensity esti-

mation of facial action units and expressions of pain. We in-

corporated the context in our model by answering the ques-

tions ‘who’, ‘how’ and ‘when’ from the W5+ context de-

sign. As shown by our experiments, the proposed model

outperforms traditional models for nominal/ordinal classifi-

cation, and the state-of-the-art models for intensity estima-

tion of facial actions.
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