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Automatic facial expression recognition constitutes an active research field due to the latest advances in computing
technology thatmake the user's experience a clear priority. Themajority of work conducted in this area involves 2D
imagery, despite the problems this presents due to inherent pose and illumination variations. In order to deal with
these problems, 3D and 4D (dynamic 3D) recordings are increasingly used in expression analysis research. In this
paper we survey the recent advances in 3D and 4D facial expression recognition. We discuss developments in 3D
facial data acquisition and tracking, and present currently available 3D/4D face databases suitable for 3D/4D facial
expressions analysis as well as the existing facial expression recognition systems that exploit either 3D or 4D data
in detail. Finally, challenges that have to be addressed if 3D facial expression recognition systems are to become a
part of future applications are extensively discussed.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Automatic human behaviour understanding has attracted a great
deal of interest over the past two decades, mainly because of its many
applications spanning variousfields such as psychology, computer tech-
nology, medicine and security. It can be regarded as the essence of
next-generation computing systems as it plays a crucial role in affective
computing technologies (i.e. proactive and affective user interfaces),
learner-adaptive tutoring systems, patient-profiled personal wellbeing
technologies, etc. [1].

Facial expression is the most cogent, naturally preeminent means
for humans to communicate emotions, to clarify and give emphasis, to
signal comprehension disagreement, to express intentions and, more
generally, to regulate interactionswith the environment and other peo-
ple [2]. These facts highlight the importance of automatic facial behav-
iour analysis, including facial expression of emotion and facial action
unit (AU) recognition, and justify the interest this research area has
attracted, in the past twenty years [3,4].

Until recently, most of the available data sets of expressive faces were
of limited size containing only deliberately posed affective displays,main-
ly of the prototypical expressions of six basic emotions (i.e. anger, disgust,
fear, happiness, sadness and surprise), recorded under highly controlled
conditions. Recent efforts focus on the recognition of complex and spon-
taneous emotional phenomena (e.g. boredomor lack of attention, frustra-
tion, stress, etc.) rather than on the recognition of deliberately displayed
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prototypical expressions of emotions [5,4,6,7]. However, most of these
systems are still highly sensitive to the recording conditions such as illu-
mination, occlusions and other changes in facial appearance like makeup
and facial hair. Furthermore, in most cases when 2D facial intensity im-
ages are used, it is necessary to maintain a consistent facial pose (prefer-
ably a frontal one) in order to achieve a good recognition performance, as
even small changes in the facial pose can reduce the system's accuracy.
Moreover, single-view 2D analysis is unable to fully exploit the informa-
tion displayed by the face as 2D video recordings cannot capture
out-of-plane changes of the facial surface, or difficult to see changes.
Hence, many 2D viewsmust be utilised simultaneously if the information
in the face is to be fully captured. Alternatively, in order to tackle this
problem, 3D data can be acquired and analysed. In the case of AU recog-
nition, the subtle changes occurring in the depth of the facial surface are
captured in detail when 3D data are used, with 2D data. For example,
AU18 (Lip Pucker) is not easily distinguished from AU10+AU17+AU24
+AU24 (Upper Lip and Chin Raising and Lip Presser) in a 2D frontal view
video. In a3D capture the action is easily identified, as canbe seen in Fig. 1.
Similarly, AU31 (JawClencher), can be difficult to detect in a 2Dview, but
is easily captured by the full 3D data as can be seen in Fig. 2. Recent ad-
vances in structured light scanning, stereo photogrammetry and photo-
metric stereo have made the acquisition of 3D facial structure and
motion a feasible task.

In this survey we focus on the use of 3D and 4D data capture for au-
tomatic facial expression recognition and analysis.We first study the re-
cent technological solutions that are available for acquiring static and
dynamic 3D faces. We particularly focus on the difficulties encountered
when applying these techniques in order to be able to capture natural-
istic (spontaneous) expressions. We later examine the challenges exis-
ting in 3D face alignment, tracking and finding point correspondences
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Fig. 1. AU 18 (Lip Pucker) captured in both 2D and 3D. (a)–(d) 2D nearly frontal view. (e)–(h) 3D reconstructed data.
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and review existing methods. Furthermore, we survey the databases
that have been created either for 3D and 4D facial expression analysis,
or biometric applications but contain significant number of expressive
examples. Next, we discuss the methods used for static and dynamic
3D facial expression recognition. Here, we mainly focus on feature
extraction as this is what differentiates 3D methods from the
corresponding 2D ones. Finally we examine the challenges that still
remain and discuss the future research needed in tracking and recogni-
tion methodologies beyond the state of the art.

The rest of the paper is organised as follows. Section 2 reviews 3D ac-
quisition, tracking and alignment methods. Section 3 presents in detail
the available databases suitable for 3D facial expression analysis.
Section 4 surveys the recognition systems that have been developed,
both for static and dynamic analysis of 3D facial expressions. Section 5
Fig. 2. AU 31 (Jaw Clencher) captured in both 2D and 3D. (a)–(d) 2D nearly frontal
discusses a number of open issues in the field. Finally, Section 6 con-
cludes the paper.

2. Acquisition of 3D and 4D faces, dense correspondences, alignment
and tracking

In the past decade the fields of capturing, reconstruction, alignment
and tracking of static and dynamic 3D faces have witnessed tremendous
development. This section focuses on the state-of-the-art methods in
this field from the perspective of the kind of facial behaviour (posed or
spontaneous) that the surveyed technology is able to capture. For acquisi-
tion, the focus is more on the actual process (i.e. how many cameras are
needed, where they need to be placed, what kind of patterns should be
projected onto the face of the subject, what lighting is required) and the
view. (e)–(h) 3D reconstructed data. The area of motion is shown in the circle.
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quality and time needed for acquisition, rather than on the reconstruction
methodology.We effectively showwhich setup can be used for capturing
deliberately displayed (posed) facial behaviour andwhich can be used for
capturing naturalistic and spontaneous facial behaviour in high resolu-
tion.We then describe the existing techniques for alignment and tracking
of 3D facial surfaces, which is an important preprocessing stage for 3D fa-
cial expression recognition.

2.1. Devices and techniques for 3D face acquisition

The acquisition technique used for capturing 3D data is especially
important when collecting facial expressions, as the equipment used
can affect the level of imposition on the subject, thereby changing their
behaviour significantly. A variety of devices and techniques have been
employed previously for 3D facial expression data acquisition, including
the use of single image reconstruction, structured light technologies, and
twodifferentmethods for stereo reconstruction algorithms: photometric
stereo and multiview stereo.

2.1.1. Single image reconstruction
Automatic 3D face reconstruction from a single facial image of low

resolution is an emerging research topic in computer vision [8,9]. Such
methods have great potential in facial behaviour research since record-
ings can bemade in unconstrained environments with conventional 2D
cameras, so that the subject under investigation hasminimal awareness
of the recording setup. However, these methods still result in errors in
the reconstructed mesh which mean that the accuracy at high resolu-
tions is not adequate for detection of subtle expressions and facial ac-
tion units, and so far there are no extensive experiments on such data
that have been reported.

One of themost prominentmethodologies for reconstructing the 3D
facial surface from 2D facial images captured in unconstrained environ-
ments is the 3Dmorphablemodel (3DMM)methodology [10–17]which
Fig. 3. Example of the morphable model fitted to a single image. (a) Single image of
subject. (b)–(d) The fitted model in frontal, nearly frontal and profile poses.
also constitutes one of themost important recent developments in com-
putational face modelling. Notably, the most well-known publicly avail-
able 3DMM is the one presented in [10,11] and has recently been made
publicly available in [18]. An example of this model fitted to an image
can be seen in Fig. 3. This 3DMM is built from 3D laser scans of human
faces that are put into dense correspondence using their pixel intensities
and 3D shape information. A 3DMM uses a statistical representation of
both the 3D shape and texture of the human face. In order to reconstruct
the 3D facial surface of a 2D intensity image the 3DMM is fitted and a set
of parameters is retrieved which govern both the 3D facial surface and
the shapeless texture. It has been demonstrated that the 3DMM can be
efficiently used for extracting 3D facial surface and texture from static
images. However, even the recently proposed extensions for 3DMM
fitting algorithms require good initialisation of certain parameters (in-
cluding the light directions) and are sensitive to outliers and partial face
occlusion. In addition, since the fitting procedure is time consuming, the
application of 3DMMs for capturing sequences of 3D facial surfaces is lim-
ited. Finally, 3DMMs are capable of capturing the general characteristics
of the 3D surface of a face and hence are well suited for analysis and rec-
ognition of pronounced facial expressions (such as smiles). However, as of
yet, there are no reported experiments demonstrating their capability of
reconstructing subtle facial details such as wrinkles or furrows.

2.1.2. Structured light
Among themost widely used technologies for acquisition of 3D facial

surface are structured light methods [19–27]. The basic principle behind
this technique is to project one or more encoded light patterns onto the
scene and thenmeasure the deformation on the objects' surfaces in order
to extract shape information. An example of a pattern used in structured
light, and this pattern projected onto a face, is depicted in Fig. 4. By
switching rapidly between a coloured pattern and white light it is also
possible to capture a colour image in addition to the depth image, with
both images approximately synchronised. Unfortunately, the acquired
range images can contain holes where points are missing, as well as
small artefacts, mainly in areas that cannot be reached by the projected
light or surfaces that are either highly refractive (e.g. eye-glasses) or
have low reflective (e.g. hair, beard).

Inmost cases real-time structured light 3D face acquisitions systems
use a single pattern, typically a colour pattern [28–30]. These methods
sacrifice accuracy for improved acquisition speeds. The other structured
light approach for real-time shape acquisition is to use multiple
binary-coded patterns but switch them rapidly so that they can be cap-
tured in a short period of time [31–33]. The problemwith this approach
is that for binary-coding methods, the spatial resolution that can be
achieved is relatively low because the stripe width must be larger than
one pixel. Moreover, switching the patterns by repeatedly loading pat-
terns to the projector limits the switching speed of the patterns and
therefore the speed of shape acquisition. Recently, high-speed structure
light based systemswere proposed [24–27,34]which use projected fringe
patterns. These can be either phase-shifted (coloured) sinusoidal, which
allow simultaneous acquisition of the 2D intensity images, or trapezoidal
fringe patterns for faster decoding. Sinusoidal patterns produce unique
features which are easily extracted, which is a useful advantage of the
phase-shiftingmethod. However,whenusing fringe pattern systems, cur-
rent systems are able to record at a higher frame rate of 40 Hz for 3D
shape acquisition, and this rate could theoretically be extended to
120 Hz with the addition of new high speed cameras.

Structured light technology has several advantages for capturing 3D
facial surfaces. The cost over normal 2Dvideo capture is inmost cases lim-
ited to a projector, its slides and a high-speed camera, as inmost cases one
camera suffices to capture the 3D facial surface. In addition, it can be used
for real-time (or even high-speed) simultaneous acquisition of sequences
of 3D facial surface and 2D intensity. But the main advantage is that the
visible projected pattern in many systems does not distract the user as
with high-speed systems the projected channels will appear as a full col-
our image, and it is also possible to use infrared light instead of visible
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Fig. 4. Example of structured light. (a) The light structure used. (b) This light structure
projected onto a face.
Images taken from [23].
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light for capturing spontaneous facialmotionswithout distractions for the
subject.

However, there are some disadvantages. This method only allows a
limited amount of movement of the face in the scene as it is restricted
by the area simultaneously covered by the structured pattern and visible
by the camera. The acquired range imagesmay also contain holes and ar-
tefacts due to this restriction. In addition, the acquisition systems that
use patterns within the visible spectrum, such as coloured patterns, can-
not be easily applied for the acquisition of spontaneous facial behaviour,
or for scenarios like interviews and conversations, as the lights will be
visible for the subjects and cause distraction.

Many widely used static 3D acquisition systems are based on struc-
tured light technologies such as the Minolta Vivid 900/910 series [35],
which was used for the capturing many popular face databases as will
be described in Section 3, the InspeckMega Capturor II 3D [36] and no-
tably the most widely used — the Kinect camera [37]. Furthermore, a
custommade structured light systemwas used in one of thefirst studies
of 3D facial expression recognition [21].
2.1.3. Photometric stereo
Another popular family of techniques for acquisition of 3D structure

is photometric stereo. Photometric stereo, first proposed in [38], is a
method for estimating the orientation field (normals) of a 3D surface
of objects by capturing a set of images of the object under different illu-
minations. Fig. 5 shows some reconstructions produced by standard
four lights photometric stereo and the multi-spectral photometric ste-
reo in [39].

Photometric stereo is sensitive to the presence of projected (cast)
shadows, highlights, and non-uniform lighting. Furthermore, the data
computed directly in photometric stereo methods consists of the 3D
normals rather than themesh, and so to retrieve the surface an integra-
tion must then be performed. This procedure adds to the computation
time required, and introduces additional errors [40–44]. A very recently
deployed system for capturing faces in a real life face recognition sce-
nario was presented in [45]. The setup is depicted in Fig. 6a and works
as follows: individuals walk through the archway towards the camera
located on the back panel and exit through the side. The presence of
an individual is detected by an ultrasound proximity sensor placed be-
fore the archway. This can be seen in Fig. 6a on the horizontal beam to-
wards the left-hand side of it. The device captures one image of the face
for each light source in a total time of approximately 20 ms. This time
was regarded as an adequately short period inwhich the inter-framemo-
tion is no greater than a fewpixels. Since the lights burst in only 20 ms
the subject experiences only one total light source. An implementation
of the booth with infrared lights was recently presented in [46]. One of
the difficulties when capturing 3D sequences using photometric stereo
is that the method requires visible/infrared lights to burst continually
which can be quite unpleasant for the subject.

One way to overcome the distraction caused by bursting lights is to
use continuously projectedmultispectral photometric stereo as proposed
in [39]. This method uses red, green and blue lights at different positions
to simultaneously capture different illuminations of the same scene,
hence not requiring the flashing lights needed for traditional photo-
metric stereo. However, thismethodology also has disadvantages. First-
ly it requires the subject to have their eyes closed for the duration of the
expression capture as the visible coloured lights can be distracting for the
subject, and also because this helps to avoid deformation artefacts in the
data. This puts severe limitations on the ability to capture the natural be-
haviour of the subject. The second disadvantage is that the setupmust be
calibrated for every subject by first moving the head around with the
same expression before expression capture can be performed.

2.1.4. Multi-view stereo
Multi-view stereo acquisition is another widely used technique for 3D

facial reconstruction [47]. This family of methods employ multiple cam-
eras placed at various known viewpoints from the subject. The different
images of the scene then allow corresponding points to be found, subject
to various constraints, and these can then be used for reconstruction. One
recent method for high quality 3D face acquisition based on multi-view
stereo was proposed in [48]. Here 3D capturing is performed both with
high-quality equipment in order to provide very detailed face geometries,
and alsowith consumer stereo cameras. Examples of commercial systems
available that employmulti-view stereo techniques are theDI3D (Dimen-
sional Imaging [49]) dynamic face capturing system, and the 3DMD
dynamic 3D stereo system [50], each of which have been used for
3D database acquisition ([51] and [52,53] respectively). An example of
the setup required for the DI3D system as employed in [51] can be
seen in Fig. 6b. Here two stereo cameras can be seen along with an ad-
ditional texture camera which captures the 2D image sequence. Each
pair of stereo images is then processed using a passive stereo photo-
grammetrymethod to produce a rangemap. The advantage of thismeth-
od is that it does not require flashing lights, as all cameras can record the
same scene simultaneously, with constant light sources. This can allow
more natural behaviour from the subjects being recorded. However,
multiple cameras are requiredwhichmaymake the equipmentmore ex-
pensive than photometric stereo. In addition, accurate reconstruction of
smooth surfaces such as faces can be difficult with this method, and the
range of headmovement that can be captured is very limited. Finally, 3D
reconstruction is performed offline due to the computational complexity
that this process can involve. This means that real-time systems using
this method would currently be unfeasible. Some algorithms in use,
such as that employed in [48] can take around 20 min to construct the
3Dmodel from the input image, though there are other algorithms avail-
able, for example as used in the DI4D system, that take only around 15 s/
frame.

2.2. 3D face tracking, 3D dense correspondence and alignment

Accurate alignment and trackingmethods are very important for fa-
cial expression systems, as the features extracted can often rely on areas
of the face falling in the same location between subjects, or finding the
movement of particular points on the face. Dense correspondence be-
tween facemeshes can also be required in order to track the full motion
of the face mesh between subjects or frames. Many approaches have
been proposed in order to tackle these problems. Rigid alignment be-
tween two similarmesheswithout large transformation can be achieved
with algorithms based on the traditional iterative close point (ICP) algo-
rithm [64]. However, non-rigid alignment is required to allow full align-
ment, dense correspondence and tracking, and this requires the use of
more complex algorithms. The methods applied to this problem include
the use of non-rigid ICP-based algorithms [54], free-form deformations
(FFDs) [55–57], harmonic maps [55], conformal mappings [65,59,66],
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Fig. 5. Comparison of the photometric stereo and multispectral photometric stereo. (a) Photometric stereo illumination method. (b) 3D facial data captured by photometric stereo.
(c) Multispectral photometric stereo capturing the subject with different coloured light in different direction.
Image (c) is taken from [39].
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covariancematrix pyramids [58], active shapemodels (ASMs) [60], mor-
phable models [62], and the annotated deformable model (ADM) [63].

Iterative close point (ICP) [64] is an algorithm that has been wide-
ly used for 3D rigid alignment problems in 3D facial expression anal-
ysis [67–69]. The algorithm takes a source and target mesh, and then
works by selecting either a subset, or all, of the points in each mesh.
Then for each point in the target, it finds the closest point in the source,
and aims tominimise the error between these points by applying a rigid
transformation between the two meshes. This process is repeated until
a threshold error is reached. Many variants of ICP have also been pro-
posed, and the interested reader may refer to the following [70–72].

However, this form of ICP only allows a rigid transformation, which
does not find full correspondence of points betweenmeshes of different
individuals or when expression changes occur. Additional methods are
therefore required to performamapping or non-rigid transformation that
produce full dense correspondence. In [54], a non-rigid version of ICPwas
proposed. This algorithm worked by introducing a stiffness value which
controlled the rigidity of the transformation that could be applied at
each iteration. At the start this stiffness is given a high value, to force near-
ly rigid transformations, and then it is gradually reduced in order to allow
progressively more non-rigid transformations to be applied as the itera-
tions progress.

FFDs are another family of techniques used for non-rigid registration,
first proposed in [73]. The idea is to deform an object bymanipulating an
underlying lattice of control points. The lattice is regular in the source
mesh, and then deformed through an optimisation process in order to
allow registration in the target mesh. B-spline interpolation of the defor-
mation then models the motion of corresponding points between the
two3Dmeshes. Thismethodwas employed in [55] in order tofit a coarse
facemeshmodel to thefirst frame in the sequence and in [56,57] in order
to track the motion of the face meshes through 3D expression image
sequences.

Themethod employed in [58] uses a simple 2D representation, purely
the interpolated depth value, alongwith texture values at each x,y coordi-
nate as input to a correspondence algorithm. This algorithm then exploits
a pyramidal approachbasedon the covariancematrix of a region,with the
Particle Swarm Optimisation (PSO) algorithm at each level to search for
the corresponding point in the neighbourhood.

In [55], in order to find dense correspondences, harmonic mapswere
applied. Themethod embeds amesh from amanifold with disc topology
into a planar graph through minimisation of the harmonic energy. This
method is beneficial as it does not suffer from local minima, folding or
clustering of themesh, and is not affected by the resolution, smoothness
or pose of the original 3D data. The full tracking methodology uses FFDs
in order to prepare meshes by fitting a generic face mesh model to the
first frame. Harmonic maps are then used to fit the 3D point data onto
a 2D disc. Feature point correspondence constraints are introduced
by detecting specific features through corner detection and similar tech-
niques, and these constraints are applied to the harmonic maps. The
maps are then iteratively refined by using optical flow methods to up-
date the feature correspondences.

Conformalmappings is a technique that has beenwidely exploited in
3D alignment and tracking. A conformalmapping is a function thatmaps
points in themesh into a newdomain, whilst preserving angles between
edges in the mesh. This idea is used in order to produce 2D representa-
tions of the 3D data in [65,74]. Circle pattern conformal mappings are
employed to convert the data into a 2D planar mesh. A generic model,
also mapped to 2D using the same algorithm, is used for first coarse,
and then fine, alignment and vertex correspondence. An alternative con-
formal mapping, least squares conformal mapping (LSCM), is applied in
[66] for a similar purpose. Here active appearance models (AAMs) are
exploited tofind featureswhich allowa rough correspondence to be com-
puted. LSCM is then applied to produce 2D planar meshes which were
employed for dense correspondence. Harmonic maps, conformal map-
ping and LSCM are also used in [59].

An active shape model (ASM) was employed in [60,61] in order to
perform tracking of facial features. The shape of the face is represented
as a sequence of 81 points which correspond to salient facial features.
These points are formed from basis shapes computed from the principal
components of a set of training faces, added to the mean of this training
data. The local appearance model for each landmark is computed from
the image gradient information along a line, perpendicular to the facial
contour which the landmark lies on, in the 2D training images. A local
model of the gradient changes associated with each landmark is then
built using a Gaussian distribution. The landmark positions in a new
pair of images (2D+3D) can then be estimated via an optimisation algo-
rithm that aims to minimise the fitting error of the images onto the
model. This global method is combined with two local detectors, that
focus specifically on difficult areas — the eyebrows and the mouth. The
landmarks around these features are found separately using ASMs that
are constrained to these shapes, and in the case of the mouth have been
predetermined to be one of two possible shapes — open or closed. The
estimates from these local methods replace those generated by the
global method in the optimisation algorithm in each iteration.

Morphable models, as described in the previous section, is an alter-
nativemethod that is used in [62] to track 3D objects through image se-
quences. The model allows rigid motion in the form of translation and
rotation away from the original mesh, plus non-rigid motion which is
defined as a linear combination of basis vectors. The difference between
one frame and the next was thus defined as being dependant on the
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Fig. 6. The different setups for two types of stero acquisition. (a) Photometric stereo ac-
quisition setup. (b) Multi-view stereo acquisition setup.
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change in motion parameters that allowed the target to be aligned with
the current image. Amatrix factorisationwas found, allowing a large con-
stant structure matrix to be precomputed off-line. A small time-varying
motion matrix can be efficiently computed online and then used to up-
date the motion parameters.

Finally, an alignmentmethodwhich can be applied for finding dense
correspondences is the annotated deformablemodel (ADM) fitting pro-
posed in [63]. Themethod fits the generic ADM in a novel 3D image and
has been used for face recognition in the presence of facial expressions.
As a preprocessing step an alignmentmethod that uses spin imageswas
applied in order to extract an initial correspondence between the data
and the ADM. ICP is then employed, followed by refinement through
the comparison of the z-buffer images for the model and data. Finally
fitting is completed through iteratively deforming the generic model.

The advantages and disadvantages of all of the methods described
in this section are summarised in Table 1.

3. Databases

During the past two decades a number of 3D face databases have
been created in order to be used for face modelling and recognition. In
this Section we review the existing 3D databases, including not only
those that have been especially created for expression recognition, but
also those that contain expressive faces despite having been recorded
for other purposes (e.g. face recognition), as long as they contain enough
available samples for training and testing 3D static and dynamic facial ex-
pression or action unit recognition systems.

The first 3D facial expression dataset created [21] consists of six sub-
jects expressing the six basic facial expressions. It was collected using
of-the-shelf NTSC video equipment and a custom-built systemconsisting
of a camera/projector pair and active stereo using structured light projec-
tions, as described in Section 2. The database is not publicly available.

The first systematic effort to collect 3D facial data for facial expres-
sion recognition resulted in the creation of BU-3DFE dataset [75], exam-
ples of which can be seen in Fig. 7a. Static 3D expressive faces of 100
subjects, displaying the six prototypical expressions at four different in-
tensity levels, were captured using the 3DMD acquisition setup [87].
The models created were of resolution in the range of 20,000 to
35,000 polygons, depending on the size of the subject's face. The data-
base was accompanied by a set of metadata including the position of
83 facial feature points on each facial model, as depicted in Fig. 8.

The same institution continued the effort and recorded BU-4DFE
[51], the first database consisting of 4D faces (sequences of 3D faces).
The database includes 101 subjects andwas created using the DI3D (Di-
mensional Imaging [49]) dynamic face capturing system. It contains se-
quences of the six prototypical facial expressions with their temporal
segments (onset, apex and offset) with each sequence lasting approxi-
mately 4 s (examples can be seen in Fig. 7b). The temporal and spatial
resolution are 25 frames/s and 35,000 vertices, respectively. Unfortu-
nately, the database provides no AU annotation.

Another publicly available dataset consisting of static 3D facial models
is the Bosphorus database [76]. The database was captured using Inspeck
Mega Capturor II 3D [36], which is a commercial structured-light based
3D digitiser device. The database consists of 105 subjects (60 men and
45 women, with the majority of the subjects being Caucasian), 27 of
whom were professional actors, in various poses, expressions and occlu-
sion conditions. The subjects expressed the 6 six prototypical facial ex-
pressions (examples can be seen in Fig. 7c), and up to 24 AUs. The
database is fully annotated with regards to 25 AUs, split as lower (18)
AUs and upper (7) AUs. The texture images are of resolution
1600×1200 pixels while the 3D faces consist of approximately 35,000
vertices. The database is accompanied by a set of availablemetadata con-
sisting of 24 manually labelled facial landmarks such as nose tip, inner
eye corners, etc.

One of the most recently created facial expression databases is the
ICT-3DRFE database [77]. The database consists of 3D data of very high
resolution recorded under varying illumination conditions, in order to
test the performance of automatic 2D facial expression recognition sys-
tems. The database contains 3Dmodels for 23 subjects (17male and 6 fe-
male) and 15 expressions: the six prototypical expressions, two neutral
states (eyes closed and open), two eyebrow expressions, scrunched face
expression, and four eye gaze expressions. Eachmodel in the dataset con-
tains up to 1,200,000 vertices with reflectance maps of 1296×1944
pixels, resolution that corresponds to a detail level of sub-millimetre
skin pores. The ability to relight the data is ensured by the reflectance
information provided with every 3D model. This information allows the
faces to be rendered realistically under any given illumination. The
database also includes photometric information that allows
photorealistic rendering. The database is fully annotated with
regards to AUs. AUs are also assigned scores between 0 and 1
depending on the degree of muscle activity.

Another available facial expression database that is not widely avail-
able is the one presented in [61]. The invisible near infrared spectrum is
capable of quasi-synchronous acquisition of 3D and grayscale images.
The database consists of 832 sequences of 52 participants, 12 female
and 40 male. In each sequence, the human subject displays a single AU
(11 in total) or mimics a facial expression (happy, sad, disgust, surprise,
neutral) 2–4 times. Facial action periods are of approximate duration of
5–10 s.

A database created in order to assess the individuality of facial mo-
tion for person verification was presented in [52]. This dataset was col-
lected using the 3DMD Face Dynamic System [50], and consists of 94
participants uttering a word. Smiles were recorded from about 50 sub-
jects. Even though the authors started collecting data of various AUs the
attempt was not continued, as the authors found during the recording
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Table 1
Comparative review of the tracking and alignment methods employed in facial expression recognition systems.

Method Advantages Disadvantages

Non-rigid ICP [54] Able to handle variations in initial pose and occlusions well and
gives dense correspondence.

Vulnerable to noisy data as will fit to all points.

FFDs [55–57] Fast and efficient to compute, and gives dense correspondence
between meshes.

Vulnerable to errors in noisy data and variations in pose.

Covariance Pyramids [58] Able to handle varying pose and provides correspondence
between individuals.

Performed on a point-by-point basis, so difficult to scale to
dense correspondence.

Harmonic maps [55] Robust to noisy data, does not suffer from local minima and gives
dense correspondence.

Large differences between data and model may result in ambiguities
in the correspondences.

Conformal maps [59] Able to handle occlusions and noisy data, and gives dense
correspondence.

Computationally expensive.

ASMs [60,61] Very fast fitting process and robustness to noise. Cannot give dense correspondence of mesh as restricted only to
salient facial features.

Morphable Models [62] Fitting process is robust to noise in the raw input and dense
correspondence achieved.

Variations allowed by model are restricted by range of data used to
create it.

ADMs [63] Robust model fitting that achieves good dense correspondence. Fitting process is computationally expensive.

Fig. 7. Examples from the main 3D facial expression databases currently publicly available. (a) The BU-3DFE database. (b) The BU-4DFE database. (c) The Bosphorus database
(d) The ICT-3DRFE database.
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Fig. 8. The 83 facial points given in the BU-3DFE database.
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sessions that the procedure of producing accurate AUs, let alone of re-
peating exactly the same performance several times, was of increased
difficulty for the non-experienced users.

The first database to contain coded examples of dynamic 3D AUs,
namely the D3DFACS, was presented in [53]. It contains 10 subjects, in-
cluding 4 FACS experts, performing posed examples of up to 38 AUs in
various combinations. In total, 519 AUs sequences were captured at
60 frames/s, consisting of approximately 90 frames each. The peak of
each sequence has been coded by a FACS expert. The database was cap-
tured using the 3DMD Face Dynamic System [50]. It is the first database
that will allow research into dynamic 3D AU recognition and analysis.

One of the earliest large publicly available 3D face databases for face
verification was presented in [88,89]. The database was published in its
first form in [10]. The database consists of more than 100 people and
was collected using structured light technology [20]. More precisely, it
contains 100 men and 100 women aged between 18 and 45 years, all
of whomwere Caucasians. 3D faces of the database were used for build-
ing themorphablemodels, after applying careful alignment [10]. The da-
tabase was recorded using a CyberwareTM 3030PS laser scanner [90].
The same database in the form of a statistical morphable model was re-
cently made publicly available [18]. This dataset was mainly used for
3D facial expression analysis and synthesis.

There exist other databases that were designed for testing the effect
of expression in 3D face recognition, consisting of expressive faces.
These are the extension of the FRGC dataset, the ND-2006 database
[78,79], the CASIA 3D Face dataset [80,81], the Gavadb database [82],
the York 3D dataset [83,84] and the Texas 3D face recognition database
Table 2
3D face databases containing expression data. S/D: Static or dynamic data. Size: Number of subject
Landmarks: Available landmarks. Annotation: Available annotation. P: Publicly available.

Name S/D Size Content

Chang et al. [21] D 6 adults 6 basic expressions
BU-3DFE [75] S 100 adults 6 basic expressions at 4
BU-4DFE [51] D 101 adults 6 basic expressions
Bosphorus [76] S 105 adults inc. 27 actors 24 AUs, neutral, 6 basic
ICT-3DRFE [77] S 23 adults 15 exps: 6 basic, 2 neut

1 scrunched face, 4 eye
Tsalakanidou et al. [61] S 52 adults 11 AUs and 6 basic expr
Benedikt et al. [52] S 94 adults Smiles and word utteran
D3DFACS [53] D 10 adults inc. 4 FACS experts Up to 38 AUs per subjec
Blanz Vetter [10,18] S 200 adults Neutral faces
ND-2006 [78,79] S 888 adults Neutral and 5 exps: H, D
CASIA [80,81] S 123 adults Neutral and 5 exps: smi

eyes closed
Gavdb [82] S 61 adults 3 exps: open/closed smi
York 3D [83,84] S 350 adults Neutral and 4 exps: H, A

eyebrows raised
Texas [85,86] S 105 adults Neutral and smiling, or

open/closed eyes
[85,86]. The ND-2006 contains 888 subjects with multiple images per
subject displaying posed happiness, disgust, sadness and surprise. The
images were acquired with a Minolta Vivid 910 range scanner [35]. The
resolution of the 3D faces provided is up to 112,000 vertices. The CASIA
3D Face database contains 123 people with 10 images per person
with different expressions (smile, laugh, anger and surprise) and closed
eyes. It was captured using aMinolta Vivid 910. The University of York 3D
face database contains 350 faces which display smiles and anger and also
includes images with closed eyes and raised eyebrows. Acquisition was
performed using structured light. The Texas database consists of 105 sub-
jects performing smiles or talking, and includes 25 facial fiducial points.
Finally, GavabDB is a database of 61 individuals (all Caucasian)
which contains smiles (open/closed mouth) and random expres-
sions chosen by the individuals. The database was captured by the
Minolta VI-700 digitizer. Details of all these databases are summarised
in Table 2.

4. Static and dynamic 3D facial expression recognition

A wide range of 3D facial expression recognition methodologies
have been developed in order to perform analysis on static faces and,
more recently, dynamic facial image sequences. Methods for 3D facial
expression recognition generally consist of twomain stages: feature ex-
traction, and selection and classification of features. Dynamic systems
may also employ temporal modelling of the expression as a further
step. Here, we focus more on the techniques employed for 3D feature
extraction. This is in contrast to the later stages of feature selection, clas-
sification and temporal modelling, which can be conducted using ap-
proaches similar to those used in 2D systems.

4.1. 3D feature extraction and representation

The majority of systems developed have attempted recognition of
expressions from static 3D facial expression data [91–97,68,98,69,99–
101,67]. However, more recent works employ dynamic 3D facial ex-
pression data for this purpose [21,74,102–104,56,57]. The features
extracted for static and dynamic systems can differ greatly, due to
the nature of data. We examine both kinds of systems in detail. Un-
less otherwise stated, quoted performance measures concern cases
in which testing was performed on all available expressions or AUs
in the database examined.

4.1.1. Static analysis
Several methods have been developed for the analysis of static 3D

facial expressions. They use a range of different features for distinguishing
s. Content: Expressions or AUs available (H/Sa/A/D/Su—Happy/Sad/Angry/Disgust/Surprise).

Landmarks Annotation P

N/A N/A N
intensity levels 83 facial points N/A Y

83 facial points for every frame N/A Y
exps, occlusions 24 facial points 25 AUs Y
ral, 2 eyebrow,
gaze

N/A AUS with intensity levels Y

essions N/A N/A N
ce N/A N/A N
t N/A AU peaks Y

N/A N/A Y
, Sa, Su, random N/A N/A Y
le, laugh, A, Su, N/A N/A Y

ling and random N/A N/A Y
, eyes closed, N/A N/A Y

talking with 25 facial points N/A Y
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between expressions or AUs, including characteristic distances, features
from statistical models such as morphable model and active shape
model parameters, analysis of 2D representations and motion-based
feature methods.

4.1.1.1. Distance-based features. One of the most popular methods for
feature extraction in 3D static faces is the use of characteristic distances
between certain facial landmarks, and the calculated changes that occur
in these due to facial deformations. This is comparable to the common
geometric 2D methods that track fiducial points on the face. The
BU-3DFE database provides the coordinates of 83 facial points in each
mesh (as depicted in Fig. 8). These points, as well as their distances,
have been widely employed for static facial expression analysis
[91,105,92,93,106–108,94–96].

The method developed in [91] uses six characteristic distances that
are extracted from the distribution of 11 facial feature points from the
given points in the BU-3DFE, thus achieving an average expression rec-
ognition rate of 91.3%. In the method proposed in [105] a larger number
of distances are extracted, corresponding to how open the eyes are, the
height of the eyebrows, and several features that describe the position
of the mouth. This approach achieves a mean rate of 87.8%. The work
in [92] is another example of the use of facial points in the BU-3DFE.
The distances between these points are normalised by Facial Animation
Parameter Units (FAPUs). In addition, the authors use the slope of the
lines joining these points, divided by their norms in order to produce
unit vectors, as an additional set of features, thus achieving an average
rate of 95.1%. Similarly, [93] uses six distances that are related to the
movement of particular parts of the face, plus the angles of some slopes
that relate to the shape of the eyes andmouth, thus achieving an average
rate of 90.2%. In [106] a wider range of distances are calculated based on
the given points in the BU-3DFE, achieving an average rate of 87.1%. The
distances among all pairs of available 83 facial points were also used as
features in [107,108,94]. The average expression recognition rates
achieved on the BU-3DFE database with these methods were equal to
93.7% [107,108], and 88.2% [94].

Moreover, in [95] featureswere extracted by calculating the distances
among all pairs of available face points. In addition, the surface curvature
at each point in the mesh was classified as belonging to one of eight cat-
egories. The facewas divided into triangles using a subset of the given fa-
cial points, and histograms were formed for each triangle of the surface
curvature types. This approach resulted in an average expression recog-
nition rate of 83.5%. In [96] the authors used residues, which give both
the magnitude and direction of the displacement of the given points in
the BU-3DFE database, as features. A feature matrix was then formed
by concatenating the different matrices in each of the three spatial direc-
tions in order to form one 2Dmatrix. The average rate achievedwith this
method was 91.7%.

Fig. 9a and b show some of the distance based features used in the
literature.

4.1.1.2. Patch-based features. Patches are another method that is wide-
ly employed for feature extraction in expression recognition systems.
They are used to capture information about the shape of the face over
a small local region around either every point in the mesh [110], or
around landmarks or feature points [101,109].

The authors in [110] computed a set of parameters for a smooth poly-
nomial patch fitted to the local surface at each point in the mesh, which
were subsequently used as inputs to rules that allowed the labelling of
the surface at each point with primitives defining the type of curvature
feature. An average expression recognition rate of 83.6% was achieved
on a custom built database containing the six basic expressions.

Alternatively, patches were found around landmarks in the 3Dmesh
in [101,109]. These patcheswere used to define curves circling the points
which show the level of the patch at those points, and the
square-root velocity function (SRVF), that captures the shape of a
curve, was then calculated. The extracted values of the function
were used to compute the necessary deformations between curves
and hence find a geodesic distance that represents the dissimilarity.
The dissimilarity values were then summed for all curves in a particular
patch, in order to find one distance that represents the differences
among patches. This method achieved average expression recogni-
tion rates of 96.1% [101] and 98.8% [109] when tested on the
BU-3DFE database.

Finally, [111] also found patches around landmarks in the face
through fitting of the Statistical Facial Feature Model (SFAM), which is
expressed as linear combinations of components of three different var-
iations: shape, intensity and range value. These patches were then com-
pared to the equivalent region from the six prototypical facial expressions
through attempting to align themwith ICP, and the distance between the
patches after this process was used as features for classification. This ap-
proach achieved an average recognition rate of 75.8% on the BU-3DFE
database.

Fig. 9c shows some of the patch based features used in the literature.

4.1.1.3. Morphable models. An alternative approach followed for feature
extraction is the use of morphable models. Different implementations
of morphable models, as well as of their general case, deformable
models, have been used in the literature, in order to model identity, ex-
pressions, or both kinds of variations.

The Morphable Expression Model (MEM) was used in [97], and was
able to model a range of different expressions for a particular individual.
First the corresponding points in the expressive faces of a given subject
were identified by reducing an energy function between points. Then
the MEMwas created by taking the principal components of the expres-
sive faces of a person along with the average face, and performing a
weighted summation of these eigen-expressions to reconstruct a new
face. Subsequently, the weights formed the representation of a new ex-
pression to be recognised. This method achieved an average expression
recognition rate of 97.0% over a custom database containing neutral
faces and three expressions: happy, sad and angry.

Another alternative was the Basic Facial Shape Component (BFSC)
model, that was able to model different identities with neutral expres-
sions [68]. It was created as a linear combination of neutral faces. After
mesh alignment using (Iterative Closest Point (ICP), the BFSC was fitted
to eachmesh. Due to its nature BFSC is capable of modelling only neutral
faces, therefore the subtraction of the depthmap of BFSC from the depth
map of the original alignedmesh provides the Expression Shape Compo-
nent (ESC), that contains the expression information. This differencewas
then used to form the expression feature vector. This method resulted in
an average expression recognition rate of 76.2% on the BU-3DFE database.

The SFAMwas employed as an alternative type of morphable model
in [98]. The model was fitted to the meshes under examination, and the
parameters of the fitting were used to extract features. The intensity and
range valueswere directly used,while themean of the shape parameters
was subtracted from this vector to extract a set of displacement features.
In addition, the shape index was calculated from these parameters, and
they were subsequently encoded via multi-scale local binary patterns
(LBPs) to provide further descriptors. This approach achieved average
expression recognition rates of 87.2% and 82.3%, on the BU-3DFE
database using manually and automatically selected landmarks, respec-
tively. In [112], the SFAM was also used to extract features. Landmarks
in the facewere selected from the SFAM, eithermanually or automatical-
ly and features were extracted. The features consisted of the coordinates
of the landmarks, as well as the morphology, texture and range parame-
ters from local grids centred at the landmarks. LBP operators were ap-
plied to both texture and range parameters in order to encode the local
properties around the landmarks. The changes in distances between
some pairs of the landmarks were also calculated. This methodwas test-
ed for AU recognition in the Bosphorus database, and achieved an aver-
age recognition rate of 94.2% when using all features combined.

An elastically deformable bilinear 3D model was employed in [69].
This morphable model captures variations in both identity and



Fig. 9. Different features based on the 83 given facial points in the BU-3DFE database. (a) Distance between particular given facial points used in [106,92,107,108]. (b) Distance and
curvature features used in [95]. (c) Circular patches around each facial point used in [101,109].
Image (a) taken from [106], (b) taken from [95] (c) taken from [101].
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expressions (as shown in Fig. 10). A prototypic facial surface model with
neutral expression and average identity was fitted at the original point
cloud data, andwas later used to establish correspondences between dif-
ferent faces. The model was fitted to the point cloud via landmarks that
were identified on both the model and the cloud. A subdivision surface
between these points was created by minimising an energy function
using an optimisation process. The energy functionwas formedby taking
various requirements into consideration, such as the distances of the ver-
tices in the model from the points (and vice-versa), and the smoothness
of themesh. Themouth boundarywas also detected prior to this process
by first using a corner detector and then fitting a spline curve to the
boundary. Once correspondence had been established, Principal Compo-
nent Analysis (PCA) was applied to find the principal components of the
base-mesh deformation, allowing any novel face to be written as a sum-
mation of these eigenmeshes. The face was then modelled via an asym-
metric bilinear model based on these base meshes, thus allowing
classification of both identity and expression via different methods. In
the expression case, vector representations for each face model were
formedduring thefitting of themodel. This approach achieved an average
expression recognition rate of 90.5% on the BU-3DFE database. This fea-
ture extraction method was also used in [113,114], though the optimal
parameterswere in this case found by differentiating the energy function,
setting it equal to zero and then performing SVD to solve the acquired lin-
ear equations. The feature extraction method was also used in [115],
though the energy function now required only the distances between
the points to be minimised, rather than a bidirectional pull of both sets
of points to one another. These methods achieved average recognition
rates of 92.3% [113], 89.5% [114], and 90.5% [115] on the BU-3DFE
database, respectively.
4.1.1.4. 2D representations. An alternative approach to the problem of
feature extraction from 3D image sequences includes mapping the 3D
data into a 2D representation. This representation can then be used
for alignment, for the division of the mesh area prior to the 3D features
extraction, or for the direct application of traditional 2D techniques.

The depth map of the 3D facial meshes and the original z values at
each x,y position were used as a 2D representation in [116]. The
Scale-Invariant Feature Transform (SIFT) algorithm was then applied
to extract features. Landmarks in the face were used as keypoints for
the algorithms and local descriptors around each of these points were
produced. This approach achieved an average expression recognition
rate of 78.4% on theBU-3DFEdatabase. Thedepthmapwas also employed
in [117]. In this case the depth map is processed to achieve histogram
equalisation over the image, and then Zernike moments [118] are taken
to be used as features for classification. This method achieves average
expression recognition rates of 73.0% and 60.5% for the BU-3DFE
and Bosphorus databases, respectively.

Differential geometry-based featureswere used to convert the 3D face
data into a 2D representation in [99]. The acquired 2D representationwas
then analysed using a traditional 2D AU detection method. The 3D data
was preprocessed to smooth and remove spikes, before mapping them
into 2D curvature images, as seen in Fig. 11a and b, respectively. The cur-
vature imageswere subsequently used to extract various 2D features such
as Gabor wavelets. This approach was tested for AU recognition in the
Bosphorus database on exampleswith intensity C or higher, and achieved
a 95.3% and 96.1% average area under the ROC curve when using either
only 3D features or combined 2D and 3D features, respectively. Similarly,
expressivemapswere created in [119] through analysis of a variety of fea-
tures such as the geometry, normals and local curvature. The maps de-
scribed the discriminative nature of the points across the mesh, and
could be used directly as features for classification purposes. This ap-
proach achieved a maximum average expression recognition rate of
90.4% when tested on the BU-3DFE database.

LSCMwas used to form the 2D images from the 3D data in [120]. This
was implemented through the method described in [121], which is an
angle-preserving parameterisation method that produces consistent 2D
images for 3D shapes. 2D elastic deformationswere then used to estimate
the correspondence between the image and a reference. Registrationwas
performed using Gaussian image pyramids and multi-resolution meshes.
Adaptive meshes were generated in order to smooth the contours and
provide suitable point densities over the different parts of the face.
These meshes were subsequently used for estimating the deformation
via a non-rigid registration method that employs deformable triangular
meshes that deform according to the stresses induced by the image
matching errors. This method achieved an average area under the ROC
curve of 96.2% when tested on the same data.

The authors in [74] used conformal mappings to convert the 3D
meshes to 2D planar meshes and find correspondences, as described in
Section 2. An example of the conformal mapping representation found
for the face data in Fig. 11c can be seen in Fig. 11d. Facial surface features
on the mapped mesh were then labelled according to twelve primitives
to form a facial expression label map (FELM). The labels were applied
through estimation of the surface principal curvatures and directions
by fitting a local facial surface and using the characteristics of the
resulting Hessian matrix. This method achieved an average expression
recognition rate of 81.2% on the BU-3DFE database.

A combination of features derived from2D texture, 2D and 3D surface,
and 3D curvature were employed in [100]. These were determined from
coefficients found from surface fitting using cubic functions and by com-
puting the Gabor wavelet coefficients around landmarks in the face in
order to compute moment invariants. During the validation stage of the
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Fig. 10. Morphable model fitting in [69,113,114]. (a) The base mesh. (b) The original
surface data. (c) The base mesh fitted to the surface.
Images taken from [69].
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testing, themethodwas tested on a custombuilt database containing four
expressions: happy, angry, fear and sadness, achieving an average expres-
sion recognition rate of 83.0%. 2D and 3D wavelet tranforms were
employed in [122] in order to extract multiscale features from the 3D
face data. These were used for classification purposes and resulted in an
average expression recognition rate of 81.0% on a custom built dataset.

4.1.2. Dynamic analysis
Instead of employing single or multiple static images for 3D facial

expression recognition, some work has begun to utilise 3D image se-
quences for analysis of facial expressions dynamics. Here we examine
the methods that have been proposed for this purpose.

For example, in [21], feature points were tracked in order to capture
the deformation of the 3Dmesh during the expression. Although a small
3D database was created for expression recognition, no testing results
have been reported.

One of the first works that employed 3Dmotion-based features for fa-
cial expression analysis was presented in [67]. A deformable model was
used to track the changes between frames, thus calculating motion vec-
tors. The acquired motion vectors were then classified via an extracted
3D facial expression label map which was produced for each expression.
This resulted in an average expression recognition rate of 80.2% on the
BU-3DFE database.

The method in [74], as described in the previous Section, was also
applied to 3D dynamic data. This approach achieved an average expres-
sion recognition rate of 85.9% on BU-3DFE database. The tracking tech-
nique from [60] was used in both [102] and [61] to track themovement
of landmarks in the face. The extracted information was subsequently
used to determine the presence of different deformations in the face
Fig. 11. 2D representations of 3D face data. (a) Original face range data. (b) 2D curvature rep
tation used in [74].
Images (a)–(b) taken from [99].
corresponding to particular AUs considering the change in measure-
ments in different polygonal shapes represented by the landmarks.
These methods were tested on a custom built database. The approach
in [102] achieved an average recognition rate of 84.0% over neutral se-
quences and four expressions: happy, disgust, sadness and surprise,
while the method in [61] resulted in an average expression recognition
rate of 89.5% over the same four expressions, and an average AU detec-
tion rate of 89.5% over 11 AUs.

A motion-based approach was also followed in [123]. The 3D facial
meshes were mapped onto a uniform 3D matrix before subtracting the
matrix corresponding to the neutral state for that subject. In that way a
flow matrix was produced, showing the movement appearing due to
the expression evolvement through time. The Fourier Transformwas sub-
sequently applied to this matrix, and the rows of the resulting spectral
matrix were concatenated to form a feature vector representing the ex-
pression. This method resulted in an average expression recognition
rate of 85.6% when tested on the BU-3DFE database.

One of the first works to make use of the BU-4DFE database for the
analysis of facial expression dynamicswas [103], inwhich the deformable
model presented in [67] was adapted to each frame in the image, and its
changes were tracked in order to extract geometric features. This ap-
proach achieved an average expression recognition rate of 90.4% when
tested on the BU-4DFE database. Facial level curves were used in [104]
to extract spatio-temporal features which were subsequently used to an-
alyse 3Ddynamic expression sequences. These level curveswere acquired
from each frame by extracting the points that lay at a particular height on
the face for different levels, after applying alignment and cropping. Fea-
tures were then extracted by comparing the curves across frames using
Chamfer distances. The Chamfer distances were applied to segments of
the curve after partitioning by an arclength parameterised function. The
features extracted from the previous, current and next frames were also
considered for each frame in order to exploit temporal information. This
method was tested on three expressions from the BU-4DFE database:
happy, sadness and surprise, and achieved an average recognition rate
of 92.2%.

Finally, motion-based features were employed in [56,57]. These
were extracted using FFDs that modelled the motion between frames
as the B-spline interpolation of a deformed lattice of control points.
Vector projections were used to establish the spatial and temporal
areas in the image sequences that contained the highest concentration
of motion during the onset and offset segments of each expression.
They were also used to perform a quad-tree decomposition in each
pair of axes which divided the image into regions of difference sizes,
with smaller regions covering the areas with the most motion. Features
were then extracted from each region, consisting of measures of the
amount of motion, divergence and curl of the vector field and the
resentation used in [99]. (c) Original face range data. (d) 2D conformal map represen-
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direction of the motion. This approach was tested on three expressions
from the BU-4DFE database: happy, angry and surprise, and achieved
an average F1-measure of 83.0%.

4.2. Feature selection and classification

Feature selection and classification methods used for 3D facial ex-
pression analysis are generally similar to those used for the 2D cases.
In this Section we briefly present existing techniques.

PCA is a widely used technique for dimensionality reduction which
has been employed in several 3D facial expression recognitionmethods
[107,108,95]. In some of these methods, linear discriminant analysis
(LDA) was subsequently applied to create a discriminant subspace
[107,108,67].

GentleBoost, a variation of AdaBoost was used for feature selection
in [56,57]. Discriminant measures have also been employed to deter-
mine the features that should be considered for classification. The Fisher
criterion was employed in [107,108], whereas the Kullback–Leibler
divergence measure was used in [106] to determine the discriminative
power of the feature vectors. Finally, the normalised cut-based filter
(NCBF) algorithm, that aims to represent this discriminative ability
with as few features as possible, was used in [95] prior to the application
of PCA.

A wide range of classification techniques have been employed in 3D
facial expression recognition systems. These include methods such as
LDA [110,74,95] and linear classifiers [119], nearest neighbour classifi-
cation [100,123], clustering algorithms [97] and Maximum Likelihood
classifiers [69,114,115,120]. Rule-based classifiers, widely used for the
2D cases, have also been employed for 3D facial expression analysis
[113,102,61]. In [113], the rules were discovered via ant colony and par-
ticle swarm optimisations (ACO and PCO). One of the main methods of
classification that have been employed is Support Vector Machines
(SVMs) [110,99,96,68,101,116,109,95,111], including multi-class SVMs
[92,117]. Another technique that has beenwidely used is AdaBoost clas-
sification [106,99,101,109] with a selection of different weak classifiers
such as linear regressors and LDA. A variation of this is GentleBoost clas-
sification, which was employed in [56,57]. Bayes classifiers have been
also widely used [110,99]. Neural network classifiers constitute an-
other popular approach [91]. Indeed, probabilistic neural networks
are employed in [105,108,94,93]. Manifold learning has also been
applied to the 3D feature classification problem [100].

4.3. Temporal modelling

So far, the majority of works regarding in 3D facial expression analy-
sis have not used temporal modelling as a final stage in the classification
process. This is due to the fact that existing approaches mainly employ
static methods, or purely encode the temporal aspects of the data into
the feature descriptors, as in [74,102,61,65]. However temporal models
are widely employed in 2D dynamic facial expression analysis in order
tomodel the dynamics as part of the classification process. This approach
has been followed in a limited number of works in the literature.

Several methods use hidden Markov models (HMMs) for temporal
modelling [104,56,57]. A variation of simple HMMs is the use of 2D
spatio-temporal HMMs, which are employed in [103] to model both
the spatial and temporal relationships in the features. An alternative
method presented in [21] employed a manifold learning technique in
order to embed image sequences as lines that can be traced through a
low dimensional representation of the expression space.

5. Challenges and discussion

Research in 3D facial expression analysis is still in its infant stage,
with a large number of works expected in the near future as the current
technological advances allow the easy and affordable acquisition of high
quality 3Ddata. However, there exist several issues that remain unsolved
in this field.

There aremany databases that can be used for static 3D facial expres-
sion analysis. However the current trend has shown a shift in interest of
researchers towards the analysis of facial expression dynamics, as these
allow the encoding of temporal cues that are indicative of more complex
states and expressions. Currently, contrary to the 2D facial expression
analysis, there exist only two publicly available datasets of dynamic 3D
facial samples, namely BU-4DFE and D3DFACS. BU-4DFE was mainly
used for facial expression recognition, and the recently published
D3DFACS,which contains only 10 subjects, was designed for AU analysis.
In order to design cross-database experiments, a standard procedure has
to be followed in 2D facial expression and AU analysis [124,125], and in
order to test the real generalisation capabilities of 4D facial expression
and AU recognition/analysis algorithms, more databases of posed 4D fa-
cial expressions and AUs must be created.

Existingworks in the field of facial expressions in 3D are all based on
databases of acted, exaggerated expressions of the six basic emotions,
although they rarely occur in our daily life. In addition, increasing evi-
dence suggests that deliberate or acted behaviours differ in appearance
and timing from spontaneous ones [126]. For instance, acted smiles
have larger amplitude, shorter duration, and faster onset and offset ve-
locity than naturally occurring smiles [127]. In turn, automatic ap-
proaches trained in laboratory settings on recordings of acted
behaviour fail to generalise to the complexity of expressive behaviours
found in real-world settings.

Furthermore, the human face is capable of micro-expressions which
can last less than 0.04 s and be of very low intensity. A frame rate of at
least 50–60 frames/s is therefore required to capture such micro ex-
pressions on at least 2–3 frames. In addition, the resolution of the
recorded frames is expected to be very high in order to capture motion
in very small parts of the face. Currently, a small number of solutions are
available for the recording of such data. To the best of our knowledge
two such commercial products are available [49,18] but both allow for
restricted recording scenarios and none supports real time 3D face re-
construction. Therefore, another challenge would be the recording of
4D face databases consisting of spontaneous behaviour, captured in a
range of contexts having both high spatial and temporal resolution in
real-time. The equipment and setup required for the acquisition of
such 3D data constitutes an even greater challenge as strategies will
have to be developed in order to distract the subjects from the restric-
tions imposed from the environment and allow them to behave natural-
ly,while inducing at the same time extremes of the universal expressions
and other affective states. Finally, there is a demand of capturing 360 de-
gree view of a facemodel. Due the limitation of current imaging systems,
4D capture is still limited to ear-to-ear frontal face, which is incapable of
handling the very large pose variation issue. To handle the arbitrary head
movement with large poses or postures, a full-range capture withmulti-
ple cameras setting around a head is needed. If so, a complete facial ex-
pression model can be captured under any circumstance of over 60° or
90° of rotation of a head. To this end, the issue of partial face capture or
occlusion could be resolved.

Amajor challenge in 3D face tracking is thatmany existing 3D corre-
spondence algorithms are computationally expensive. As the amount of
data captured in 3D databases increases, being of high resolution and
frame rates, the problem will become even bigger. Thus the area of re-
search on optimisation methods for either model fitting or finding
dense correspondences constitutes an open one. The ultimate goal for
3D facial expression systems will be real-time analysis, requiring
real-time alignment and tracking, two operations that require low com-
putational cost. Finally, another important challenge in 4D facial expres-
sion analysis occurs by the availability of both 2D texture and 3D facial
surface. That is, schemes that fuse, in a dynamical manner, both sources
(2D and 3D) should be developed. Source fusion constitutes a scientific
field on its own , which combines elements of statistics, signal process-
ing and machine learning. Current decision level and/or feature level



695G. Sandbach et al. / Image and Vision Computing 30 (2012) 683–697
fusion schemes can be studied, but fusion algorithms that are specif-
ically designed for the problem at hand should be preferred. The chal-
lenge is even greater in the case where information is extracted using
other modalities (e.g., speech). For open problems and challenges in
multimodal fusion for the task of automatic human behaviour analysis
the interested reader may refer to [5].

6. Conclusions

Several approaches have been followed in the field of 3D facial ex-
pression analysis. The development of 3D data acquisition methods has
allowed the creation of several databases containing 3D static faces and
facial image sequences demonstrating expressions. The public availabil-
ity of these databases has facilitated research in this area, particularly in
static analysis. Manymethods have been developed for the tracking and
alignment of 3D facial meshes, a crucial step before feature extraction.
Several promising approaches have been proposed for facial expression
analysis. The developed systems generally share several similarities
with 2D systems regarding the classification and temporal modelling
techniques used. However, they differ greatly in the feature extraction
methodologies used in order to exploit the benefits of the 3D facial ge-
ometries. In this survey paper we reviewed the state-of-the-art work in
each of these areas, and highlighted possible directions towards which
research should focus on, in order to progress beyond the state of the
art.

3D facial expression analysis constitutes an open research field that
is still at its infant stage. In order for the research to progress beyond the
state of the art, additional databases of dynamic 3D facial expression
data, plus some examples of spontaneous and natural behaviour cap-
tured in 3D are required. In addition, for the recognition ofmore complex
affective states, capturing micro-expressions is essential, something that
requires higher resolution 3D data. Real or near real-time tracking
methods that are robust to occlusions and a wide range of contexts will
have to be developed ensuring that important information is preserved
through mapping or model fitting. As a consequence of all of the above
expression analysis systems will need to become more robust and be
able to adapt to spontaneous expressions and more complex states.
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