
A Scouting-Inspired Evolutionary Algorithm
Jeffrey 0. Pfaffmann Konstantinos Bousmalis Silvan0 Colombano

Dept. of Computer Science Dept. of Computer Science Computation Sciences Division
Lafayette College Lafayette College NASA-Ames Research Center
Easton, PA 18042 Easton, PA 18042 MS 269-2

pfaffmaj@cs.lafayette.edu bousmalk@cs.lafayette.edu Moffett Field, CA 94035.
scolombano@mail.arc.nasa.gov

Abstract-The goal of an Evolutionary Algorithm
(EA) is to find the global optimum in a state space
of potential solutions. But these systems can become
trapped in local optima due to the EA having only
generational information. Using the Scouting Algorithm
(SA) it is suggested that a cross-generation memory
mechanism can be added to modulate fitness relative to
how well a region has previously heen sampled. Thus,
the goal is to allow the Scouting-inspired EA (SEA) to
leave well explore regions to find the global optimum
more quickly. It will he shown that the SEA does
achieve this goal for the problem domain of nonlinear
programming (NLP).

I. INTRODUCTION
An Evolutionary Algorithm (EA) in its most basic

form generates a population of potential solutions
for a given task that are ranked, selected based on
rank, and varied to produce a new population of
potential solutions. Over time this system converges
on a solution that can be the global optimum, but
the system can also become trapped in one of many
different local optima. One solution to this issue is
to add a cross-generational memory mechanism for
regulating how future populations search the state
space based on previous experience. Thus, over time
the system will accumulate domain knowledge that
can be used for a more effective search.

This idea has been previously explored by
Reynold's with Cultural Algorithms (CAS), where
an anthropological view is taken on EAs 11, 21.
CAS maintain both population and cultural knowl-
edge, with the population knowledge contributing to
the cultural knowledge that is available for future
generations. CAS use cultural knowledge to form
generalizations about previously encountered phe-
nomena, providing a belief space for facilitating a
population's exploration of the state space. CAS were
initially created to explore archaeological findings of

developing cultures [3]. CAS have also been used to
solve nonlinear constrained parameter optimization
problems [4], which is the same problem domain used
for these explorations.

The work presented here takes inspiration from
the Scouting Algorithm (SA) to introduce a cross-
generational memory mechanism to an Evolutionary
Algorithm, creating the Scouting-inspired EA (or
SEA). But unlike the CA's belief space, the SA
confers the ability to determine what regions have
already been explored and to what degree. This will
allow the SEA to avoid being trapped in local optima
and free the system to pursue the global optimum.

Anual Bahrvlor
obj - O,E,

I dlobj, o b j ') l

Figure I . Surprise is [he difference between actual and estimated
behavior.

The SA was originally developed to perform au-
tomatic experimentation [5] where the resources to
conduct experiments are limited or the system being
examined is too complex for an exhaustive search
to be performed. Thus, initially it was the SAS goal
to efficiently search the state space by looking for
interesting behavior that the experimentalist can later
examine. It should be emphasized that this explo-
ration is not to find optimal behavior, but instead to
find interesting or "surprising" behavior.

To determine surprising behavior, the SA builds
an experience database from previously performed

0-7803-851 5-2/04/$20.00 02004 IEEE 1706

mailto:pfaffmaj@cs.lafayette.edu
mailto:bousmalk@cs.lafayette.edu
mailto:scolombano@mail.arc.nasa.gov

experiments to calculate an estimated result for a
yet unperformed experiment. The estimate is com-
pared to the actual result, with the difference being
the surprise value. Thus, an experiment where the
difference between actual and estimated behavior is
quite large will generate a great surprise. To calculate
the estimate value, the k-nearest neighbors in the
experimental space are averaged together, with each
neighbor weighted by its distance to the current
point being estimated relative to all other averaged
neighbors.

The SA uses the surprise value in two ways,
as the fitness value and to modulate the mutation
operator. Allowing individuals with a great surprise
to be predominately selected and mutated to remain
in the region of previously great surprise. As a region
becomes well sampled the surprise value will be-
come smaller, allowing newly generated individuals
to move farther from the current region until a new
surprising result is located and the system focus
moves appropriately.

The SA has been applied to variety of experimental
systems [6, 71 where it has been shown to perform
well. In the initial SA, population size and mutation
strength was specified by parameters, while for auto-
matic experimentation it would be more advantageous
to allow these parameters be set dynamically based on
the previous system behavior. Recently, the modula-
tion of both aspeckare explored in the Self-adaptive
Scouting implementation [SI, by modifying the initial
SA in two ways. The first modification modulates
the mutation operator so that the average surprise up
to that point is used to scale the mutation strength
relative to the difference between averaged and cur-
rent surprise. The second modification regulates the
number of offspring a parent has according to the
performance of theoffspring. It should be noted that
this is an unusual concept, as typically parent fitness
will influence the number of generated children.

Using Self-adaptive Scouting as inspiration, the
SEA creates a mapping from the current surprise
value to the normal distribution parameter ci for a
gaussian distribution. The mapping is a simple inverse
relationship, so that a high surprise value will produce
a low ci to generate variates near zero. When the
surprise value is low a high ci is generated and will
produce a more even distribution of random variates.
Thus, the enhancement will regulate the randomness
exhibited by the EA, allowing the system to focus on

a specific region when the underlying state space is
poorly understood, and become more random when
that local region is well understood.

11. THE PROBLEM DOMAIN
The goal of the presented work is not to solve a

specific problem, rather it is to determine the potential
for enhanced performance by incorporating surprise,
from the SA, into a traditional EA. Thus, a test-case
generator was chosen that could produce a variety
of problems of sufficient complexity to challenge
both the EA and SEA. Additionally, two other de-
sirable traits were looked for: the ability to generate
problems with specified levels of complexity and
the capability to change the problem dimensionality.
These qualities were found in the TCG-2 package by
Schmidt and Michalewicz 191, which is a C++ class
for generating nonlinear constrained parameter opti-
mization tasks (also known as nonlinear programming
(NLP) problems).

Briefly, NLP problems are n-dimensional real-
valued tasks consisting of an objective function that
is constrained to produce a feasible solution space.
Potential solutions are specified 'as a n-dimensional
vector X = (~ 1 , . . . , xn) E YZn, which is bounded by a
specified search space. For the TCG-2 package the
search space is contained to 0 _<.xi _< 1, where 1 5
i 5 n. For a more detailed account of NLP problems
and their relationship to the TCG-2 see [9].

The fitness function used here follows Schmidt
and Michalewicz's suggestion of a static penalty
approach, as follows:

Fit@) = G(X) - W x CV(?), (1)
where the objective function G(X) is penalized
with the constraint violation function CV(X) value
weighted by the penalty constant W. The given fitness
function requires that W > 0, which is fixed to W = 10
for all experiments.

Different NLP problems were examined by ma-
nipulating the TCG-2 parameters and examining the
resulting objective landscape. This process was fa-
cilitated by the capability of the TCG-2 package to
provide the different landscapes as files containing the
numerical information that later can be visualized.

The goal while manipulating the TCG-2 package
parameters was to find a very rugged landscape with
many regions of local optima that have a similar mag-
nitude as the global optimum. The final parameter

1707

TABLE I
TCG-2 PARAMETER SET

problem dimensionality
feasible components
search space feasibility
search space complexity
active constraints at global optimum
objective function peak count
peak width
peak decay
component min. distance

choices are given in Table I producing the follow-
ing landscapes for the objective function (Figure 2),
constraint violation (Figure 3), and fitness function
(Figure 4).

Figure 2. Objective function landscape G(?)

Figure 3.

Schmidt and Michalewicz's paper provide a de-
tailed description of the listed parameters (in Table I)
and their effect on the resulting NLP problem. One
notable parameter is the peak count count that directly
translates into the number of peaks in the actual
objective function. The global optimum peak was
generated by the TCG-2 package near the center of
the search space, X8 = (0.480704,0.495582), with a

Consoaint Violation function landscape CV(E)

peak height of 1. Within the search space there are
5 local optima with a peak height of 0.9 and greater,
with the greatest peak within this group at 0.982. For
peaks that range: from 0.8 to 0.9 there are 5 and from
0.7 to 0.8 there are 6. The active constraints on the
parameters at the global optimum specify whether the
global fitness point is placed in a feasible area of the
fitness landscape or near the edge of such an area. For
the problem used here, the global optimum is placed
in a feasible area and not on the edge such an area.

Figure 4. Fimess function landscape Fit(?).

111. SCOUTING-INSPIRED EVOLUTIONARY
ALGORITHM

As indicated previously the design of the EA
took a traditional approach, capturing the essence of
the evolutionary optimization technique. An initial
population of vectors are generated, each vector is
evaluated using the fitness function (Equation I) ,
these individuals are selected using roulette wheel
sampling, and each selected individual is mutated by
varying a single gene within the vector that repre-
sents the individual. Individuals are mutated using
a gaussian distribution with the standard deviation
parameter U set to provide a specific range of random
variates biased. around a median of 0. The process
of variation and selection continues until a specific
generation is reached.

From one generation to the next there is a total
population turnover, allowing the EA the maximum
number of new samples each generation. To ensure
that convergence is achieved, in the presence of a new
population each generation, roulette wheel sampling
is used. This type of sampling will in general retain
the best performing individuals to contribute their
genetic material to the next generation while still
allowing for lesser performers to also contribute.

1708

Pseudocode for the Scouting-inspired EA is given
below with the first part indicating the parameters and
the second part providing the code.

PARAMETERS:
Pop = population size
n = problem dimensinnnliry: number ql‘genes
om, = minimum standard deviation
om, = maximum standard deviation
gen,, = maximum numbrr of grnarotions

BODY:
01 initialize random number generatar.
0 2 initialize scouting database.
03 generate initial population : X p = {?E,. . . ,?pop}
04 gen = 0
05 repeat
06
07
08
09
l o
11 end far
12
13 Select Z,, using roularle selection
14 select gene to mutate :
15 calculate mutation modulator :

16
17 end for
18 increment gen by 1
19 unlil gen = gen,,

for i = I to Pop do
calculate fimess : .fit, =Fir(?!)
calculate eslimate : f i t (= FiI‘(Yj)
calculate surprise : supi = //it; -/?til
store fitness value in experience database

for i = 1 to Pop do

for g = I to n

5” = 5“““ - (SUPP x (5- - 5,””))
mutate gene : xP4 = ~ ~ , ~ + g l l ~ . ~ ~ i (m R ~ n d (u ~ :

Conceptually, the surprise calculation processes in
parallel to the EA by looking over the EA’S shoulder
and helping to guide the search behavior without
changing the basic EA functionality. Examining the
previous pseudocode the parallel functionality is con-
tained in lines 8-10. 15, and 16. The first for-loop
(starting line 6) calculates the fitness, evaluates the
current population by determining surprise from pre-
vious fitness values, and stores the actual behavior in
the scouting database. The calculation of the surprise
value (supi) uses the actual (fit,) and estimated (fit:)
fitness, with the estimate generated by the weighted
k-nearest neighbor technique described previously for
the SA.

Once the fitness (f i t i) and surprise (supi) val-
ues have been generated for each individual of
the current generation, the algorithm enters the
variatiodselection-loop (lines 12-17). In the second
for-loop the EA enhancement is seen only on lines 15
and 16 where the standard deviation (up) is calculated
and applied for each parent to be mutated.

Integrating the surprise calculation in this way

the fitness space, providing a finer granularity of
control. Thus, not only is the fitness used to select
an individual to be varied, the information from all
previous samples can be used to further refine the
search mechanism by regulating the variation. So a
high surprise value indicates an unexplored region
where children should be varied only slightly. While
a low surprise value indicates a well explored region
and the resulting children should be varied greatly
so that new regions can be searched out. It should be
noted, variates producing a mutation that falls outside
of the range 0 5 xP,* 5 1 are rejected and a new
variate is generated as a replacement. This has the
effect of rejecting a larger number of variates when
U is high. In future implementations the variate can
be scaled to reduce the rejection frequency, which
will also reduce the quantity of calls to the random
number generator.

IV. S Y S T E M P E R F O R M A N C E

Since the focus of the presented work is to per-
form a comparison of an EA with and without
the surprise modulated variation enhancement, the
choice of random generators was critical. Thus, an
established numerical package was selected, the GNU
Scientific Library (gsl) [lo], and from that three
high quality random number generators were chosen.
The first generator was Matsumoto and Nishimura’s
“Mersenne Twister” [ll], which is known to generate
long periods with law correlation. The second and
third generators use Liischer’s ranlux algorithm, or
the “luxury random number generator”. [12]. The first
of these generators is the original implementation,
while the second is a double precision variant that
runs a quarter times slower. Like the first generator,
the ranlux generators create very long periods and
produce provably de-correlated numbers at different
levels of randomness. For the three generators SO
different random seeds were generated using dice,
further ensuring a high level of randomness, to pro-
duce 150 different random sequences for experimen-
tation. This is to indicate that during an experiment
only one of the three different generators is used as
part of the gaussianRand(0,) function (see line 16
of the previous algorithm). The goal of using the
three random generators is to eliminate any biases
that might occur from the different techniques and
implementations.

allows the EA to have an additional perspective on To determine what population size should be used,

1709

again the work by Schmidt and Michalewicz was
referred to. The TCG-2 package was initially eval-
uated using an evolutionary algorithm to empirically
explore arbitrarily derived problem spaces generated
by the package for given parameter sets. In this work,
Schmidt and Michalewicz used a population size of
100 individuals with a very high problem dimen-
sionality (n = 30). Additionally, their evolutionary
algorithm used a crossover mutation operator, which
is not true of the EA used here.

From Schmidt and Michalewicz's studies, it was
determined that the three most important parameters
were dimensionality, number of peaks, and peak
width (affecting the peak slope). The work here uses
both a large number of peaks and a small peak width
or 50 peaks with a width of 0.1. In general, Schmidt
and Michalewicz used 30 peaks at a width of 0.5,
while varying a single parameter to examine the sys-
tem behavior along that dimension in the parameter
space. In this regard, our chosen problem is more
complex than theirs, where our task is less complex in
the dimensionality. As mentioned above, Schmidt and
Michalewicz used 30 dimensions compared to our 2
dimensions, with the motivation being the ability to
visualize the system on the landscape. In future work
the dimensionality will be increased to determine if
the SEA functionality similarly scales.

Since the problem here is less complex, in terms
of dimensionality, the size of our populations were
chosen to be smaller for the majority of the experi-
ments, using population sizes of IO. 20, 30, and 100.
As seen in Figure 5-A the averaged EA fitness values
over 150 experiments for 5000 generations produces
high levels of fitness that scale as the number of
individuals increase. But when compared to the SEA
(Figure 5-B) the EA (Figure 5-A) performs poorly, as
the SEA consistently achieves higher fitnesses more
quickly. Given 5000 generations all SEA experiments
reached a fitness level of 0.99 or greater, seen in
Figure 5-B.

Figure 6 plots the number of individual experi-
ments to reach a level of 0.99 or higher at a given
generation out of a total 150 experiments, for both
the EA (Figure 6-A) and SEA (Figure 6-B). The
fitness level of .99 is significant because it indicates
that the regions containing the global optimum fitness
has been reached (as the next highest peak is 0.982).
Figure 6-B shows the SEA achieved a fitness of
0.99 or greater within 5000 generations for all 150

0.92

e 0.9
E 0.88

1

B. 0.98
0.96

0.94

0.92
E 0.9

0.88

0.86

0.94
0.82

0.8

30 individudr

lOindivlduail -
200 4w 6M 8" 1m ~~

GB"NafiD"S

Figure 5. Average fimess of 150 experimenb for different
population sizes, showing the: A. EA and B. SEA. Note, only
IWO generations of the SEA re~ults were ploned for increased
graph clarity.

experiments, indicating that the region containing the
global optimum was always reached. While Figure 6-
A indicates a lesser but still significant number of EA
experiments reached this region. This advantageous
behavior can be attributed to the ability of the SEA
to perform a much broader search of all possible local
optima.

TABLE II
EXPERIMENTS THAT FOUND GLOBAL OPTIMUM.

20 6 1
3 1 10

But as can be seen in Table I1 that shows the num-
ber of experiments that found the global optimum,
the EA exceeded the capability of the SEA to find
the optimum solution. This indicates that the SEA
has lost its ability to converge, which is an important
aspect of evolutionary algorithms. This convergence

I710

BO , I A.

.-
B. 110 B.

- 120

I,

0'
2 100

6 8 0

60

40

20

0

ui

0 ?WO 2wo 3Wo 4000 50W
Gene~Uoni

Figure 6.
greater: A. showing the EA and B. showing the SEA.

Count of 'experiments achieving a bmess of 0.99 or Figure 7.
and SEA (B).

bpical Slate space sampling patlems far an EA (A)

loss is due to the effect of surprise always pushing the
system from a well explored region to another less
explored region, based on an estimate, and will rarely
find the optimum.?However. the SEA always finds the
region near optimum for the system explored here.

This behavior can he visualized by plotting how
the EA and SEA" sample their state space over the
5M)O generations, shown in Figure 7. The EA' i s
an inherent local. search mechanism that examines
where it currently is, and thus more slowly explores
the larger state space with the possibility of well
explored regions. to continued to be explored. The
SEA also retains this local search aspect, hut the
local search is modulated by the effects of surprise
that is continuously pushing the system into more
interesting regions. Figure 7-A shows a single EA
experimental state space 'sampling, which is clearly
localized to specific regions due to the issue of local
optima trapping:.While the SEA (Figure 7-B) can
more freely move throughout the space, paying the
price of losing the ability to converge.

V. CONCLUSION
Often when Evolutionary Algorithms (EAs) are

discussed in relation to a random search it is in terms

of performance, in other words, can the EA outper-
form a purely random search. In the case of this work
it is better to think of the EA as a constrained random
search, with the two search mechanisms forming a
continuum. Obviously, a purely random search is
a waste of resources, hut so is examining regions
of the fitness landscape that have been throughly
explored particularly if that region only contains a
local optimum and the EA is trapped. The question
becomes how can the EA he made less constrained,
or can the level of constraint be modulated, allowing
for the more effective use of randomness.

Presented is a potential solution to how the level of
randomness can be modulated by taking inspiration
from the Scouting Algorithm (SA) to enhance an EA,
producing the SEA. This enhancement exists purely
to determine when the SEA has explored a space to
such a level that there is little new, or surprising,
information to discover. This information is derived
from previously generated samples to compute an
estimate about a given location in the state space.
This estimate is compared to the actual behavior to
determine a level of surprise, using the difference.
Great differences produce large surprises, indicating
that the system should remain in that region. The

171 1

surprise level is used to modulate the gaussian ran-
dom variate distribution so that when the SEA is in
a region that little is known about a high surprise
is generated, causing the variate to more likely be
generated near 0. If the surprise is low, this causes
a more even variate distribution, allowing children to
be mutated so they are more likely to leave a well
understood region.

It has been shown that this enhancement both
quickly and consistently moves the SEA into regions
containing solutions that are near the global optimum,
while at the same time sacrificing convergence. The
traditional EA retains the ability to converge, at the
cost of possibly being trapped in local optima. Both
systems have their advantages and clearly the next
step in this work is to resolve this issue by modulating
the effects of the scouting surprise value in relation
to the current fitness level. The idea is to reduce the
effect of surprise if fitness is high. The opposite will
be performed if the fitness is low. Another avenue of
exploration is the mapping from the surprise value
to the standard deviation parameter. Here a simple
mapping is used, hut due to the nature of the gaussian
distribution the effect of changing the standard devi-
ation parameter is a non-linear relationship and it is
not clear that this is the most effective mapping. The
third and most challenging avenue of exploration is
to see whether the behavior of the SEA can be scaled
to solve high dimensional problems.

Overall, this work shows initial steps to providing
an enhancement to many evolutionary algorithms that
does not drastically change the essential spirit of this
optimization technique.

ACKNOWLEDGMENT
This research was conducted with support from the

Lafayette College Excel Scholar program. Also, the
authors would like to thank Schmidt and Michalewicz
for the contribution of the TCG-2 package, allowing
exploration of the SEA to be conducted in a timely
fashion.

REFERENCES
[I] R. G. Reynolds. "An introduction to cultural algorithm,"

in Evolurionary Pmgramming 111: Proceedings of the Third
Annual Conference. February 24-26 San Diego. CA, L. J.
Fogel and A. V. Sebald, Eds.River Edge, NI: World Scientific
Publishing Co., Inc., 1994, pp. 131-139.

[2] R. G. Reynolds, "Cultural algorithms: Theory and applica-
tions:' in New ldeos in Oprimirorion, D. Come, M. Dariga.
and F. Glover, Eds. London. England McGraw-Hill, 1999.
chapter 24, pp. 367-377.

131 R. G. Reynolds. "The impactof raiding on settlement patterns
in the nonhem vallcy of oaxaca: An approach using decision
trees:' in Dynamics in Human and Primre Societies; Agenr-
Bared Modeling of Social and Sparial Pmcsssrs, Santa Fe
Institute Studies in the Sciences of Complexity. T. Kohler and
G. Gummermann, Eds. New York, NY Oxford University
Press. Inc., 2000, pp. 251-274.

[4] R. G. Reynolds and X. Jin, "Using knowledge-based
evolutionary computation to solve non-linear optimization
problem: A cultural algorithm approach:' in Pmceedings
of the Congress of Evolurionory Compurafion. P. 1. Angeline,
Z. Michalewicz, M. Schoenauer, X. Yao. and A. " l a l a . Eds.
1999, vol. 3, pp. 1672-1678.

[51 J. 0. Pfaffmann and Zauner, "Scouting contert-
sensitive components," in 7hha Third NASA/DoD Workhop
on Evolvable Hardware EH-2001. D. Keymeulen, A. Stoica,
1. Lohn. and R. S. Zebulum. Eds. Los Alamitos. CA: IEEE
Computer Society Press, 2001. pp. 1620 .

[6] N. Matsunmu, S. Colombano, and K.-P. Zauoer, "Scout-
ing enzyme behavior" in Proceedings of rhe 2002 World
C O ~ ~ ~ O S on Computational Inrelligence, May 12-1 7 Hon-
olulu, Hawaii, D. B. Fogel, M. A. El-Sharkawi, X. Yao,
G. Greenwood, H. Iba, P. Marrow, and M. Shackleton, Eds.
Piscataway, NJ: IEEE Press, 2002, pp. CEC 19-24.

[7] E Centler, P. Dittrich, L. Ku, N. M a t s u m , J. Pfaffmann.
and K.-P. Zauner, "Artificial life as an aid to astrobiology:
Testing life seeking techniques:' in Advances in An@-
rial Life - Proceedings of the 711, European on Anificinl
Life. ECAL 2W3, September 14-17 Dortmund, G e m n y ,
vol. 2801 of k c r u n Noles in Compurer Science. W. Banzhaf.
T. Chrismler, P. Ditmch. J. T. Kim, and 1. Ziegler, Eds.
Heidelberg. Germany: Springer-Verlag. 2003. pp. 3140.

[8] N. M a t s u m , E Centler, Zauner. and P. Dituich,
"Self-adaptive scouting-autonomous experimentation for
system biology:' in Proceedings of 2nd European Workrhop
on Evolurionary Bioinformarics. EvoBIO 2w4, lacrure Norss
in Computer Science. Heidelberg. Germany: Springer-Verlag.
2004.

[9] M. Schmidt and 2. Michalewicz, "Test-care generator TCG-
2 for nonlinear parameter optimization," in Porallel Problem
Solving fmm Nature - PPSN Vl, Proceedings of the 6rh
Inarnoliowl Confinnce, September 18-20 Paris, France,
vol. 1917 of k c t u r e N o m in Compusr Science. M. Schoe-
nauer, K. Deb, G. Rudolph, X. Yao, E. Lutton. J. 1. M.
Guervds, and H.-P. Schwefel. Eds. Heidelberg, Germany:
Springer-Verlag. 2000, pp. 539-548.

1101 M. Galassi. I. Davies. J. Theiler, B. Gough, G. Juogman,
M. Booth, and F. Rossi, GNU Scienlific Library Reference
Monunl. Bristol, U K Network Theory Ltd., 2003.

[I l l M. Matsumoto and T. Nishimura. Menenne twister: A
623-dimensionally equidismbuted uniform pseudo-random
number generator. ACM Tmnroctiom on Modeling ond
Computer Simulation, vol. 8. num. I, pp. 3-30, 1998.;

[I21 M. Liischer, "A portable high-quality random number gener-
ator far lattice field theory calculations:' Compuar Physics
Commwicotionr. vol. 79, pp. 1W110. 1994.

I712

