
Learning Slow Features for Behaviour Analysis

Lazaros Zafeiriou1, Mihalis A. Nicolaou1, Stefanos Zafeiriou1, Symeon Nikitidis1 and Maja Pantic1,2
1Department of Computing, Imperial College London, UK

2EEMCS, University of Twente, NL
{l.zafeiriou12, mihalis, s.zafeiriou, s.nikitidis, m.pantic}@imperial.ac.uk

Abstract

A recently introduced latent feature learning technique
for time varying dynamic phenomena analysis is the so-
called Slow Feature Analysis (SFA). SFA is a determinis-
tic component analysis technique for multi-dimensional se-
quences that by minimizing the variance of the first order
time derivative approximation of the input signal finds un-
correlated projections that extract slowly-varying features
ordered by their temporal consistency and constancy. In
this paper, we propose a number of extensions in both the
deterministic and the probabilistic SFA optimization frame-
works. In particular, we derive a novel deterministic SFA
algorithm that is able to identify linear projections that ex-
tract the common slowest varying features of two or more
sequences. In addition, we propose an Expectation Max-
imization (EM) algorithm to perform inference in a prob-
abilistic formulation of SFA and similarly extend it in or-
der to handle two and more time varying data sequences.
Moreover, we demonstrate that the probabilistic SFA (EM-
SFA) algorithm that discovers the common slowest varying
latent space of multiple sequences can be combined with
dynamic time warping techniques for robust sequence time-
alignment. The proposed SFA algorithms were applied for
facial behavior analysis demonstrating their usefulness and
appropriateness for this task.

1. Introduction
Slow Feature Analysis (SFA) was first proposed in [25]

as an unsupervised methodology for finding slowly varying
(invariant) features from rapidly temporal varying signals.
The exploited slowness learning principle in [25] was moti-
vated by the empirical observation that higher order mean-
ings of sensory data, such as objects and their attributes,
are often more persistent (i.e., change smoothly) than the
independent activation of any single sensory receptor. For
instance, the position and the identity of an object are vis-
ible for extended periods of time and change with time in
a continuous fashion. Their change is slower than that of

any primary sensory signal (like the responses of individual
retinal receptors or the gray-scale values of a single pixel in
a video camera), thus being more robust to subtle changes
in the environment.

To identify the most slowly varying features, a trace
optimization problem with generalized orthogonality con-
straints was formulated in [25] that assumes a discrete time
input signal 1 and the low dimensional output signal is ob-
tained as a linear transformation of a non-linear expansion
of the input. The proposed in [25] optimization problem
aims to minimize the magnitude of the approximated first
order time derivative of the extracted slowly varying fea-
tures under the constraints that these are centered (i.e. have
zero mean) and uncorrelated. Thus, the slowest varying
features are identified by solving a generalized eigenvalue
problem for the joint diagonalization of the data covariance
matrix and the covariance matrix of the first order forward
data differences.

Intuitively, SFA imitates the functionality of the recep-
tive fields of the visual cortex [2], thus being appropriate
for describing the evolution of time varying visual phenom-
ena. However, until today limited research has been con-
ducted regarding its efficacy on computer vision problems
[8, 13, 14, 15, 26]. Recently, SFA and its discriminant
extensions have been successfully applied for human ac-
tion recognition in [26], while hierarchical segmentation of
video sequences using SFA was investigated in [15]. In [8]
SFA was applied for object and object-pose recognition on
a homogeneous background, while in [14] SFA for vector-
valued functions was studied for blind source separation.
Finally, an incremental SFA algorithm for change detection
was proposed in [13].

Links between SFA and other other component analy-
sis techniques, such as Independent Component Analysis
(ICA) and Laplacian Eigenmaps (LE) [1] were extensively
studied in [4, 20]. In [4], the equivalence between linear
SFA and the second-order ICA algorithm, in the case of one
time delay, is demonstrated. In [20], the relation between

1Continuous time SFA has been proposed in [24] but since in this paper
we assume discrete time signals, such works are out of our scope.
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Figure 1: The latent space obtained by EM-SFA, accurately
capturing the transition between temporal phases of action
units. The ground truth is shown as N: Neutral, ON: Onset,
A: Apex, OF: Offset.

LE and SFA was studied and exhibited that SFA is a special
case of kernel Locality Preserving Projections (LPP) [9] ac-
quired by defining the data neighborhood structure using
their temporal variations. In [21], it was shown that the pro-
jection bases provided by SFA are similar to those yielded
by the Maximum Likelihood (ML) solution of a probabilis-
tic generative model in the limit case that the noise vari-
ance tends to zero. The probabilistic generative model com-
prises a linear model for the generation of observations and
imposes a Gaussian linear dynamical system with diagonal
covariances over the latent space.

In this paper, we study the application of SFA for unsu-
pervised facial behaviour analysis. Our motivation is based
on the aforementioned theory on the close relationship
between human perception and SFA. Our application is
further motivated by Fig. 1. In more detail, in Fig. 1, we
can see the resulting latent space obtained by EM-SFA,
applied on a video sequence where the subject is activating
Action Unit (AU) 22 (Lip Funneler). In general, when
activating an AU, the following temporal phases are
recorded: Neutral, when the face is relaxed, Onset, when
the action initiates, Apex, when the muscles reach the peak
intensity and Offset when the muscles begin to relax. The
action finally ends with Neutral. It can be clearly observed
in the figure, that the latent space obtained by EM-SFA
accurately captures the transitions between the temporal
phases of the AU, providing an unsupervised method for
detecting the temporal phases of AUs.

Summarising the contributions of our paper, we propose
the following theoretical novelties:

• We propose the first Expectation Maximization (EM)
algorithm for learning the model parameters of a
probabilistic SFA (EM-SFA). In contrast to existing
ML approaches ([21]), our approach allows for full
probabilistic modelling of the latent distributions

instead of mapping the variances to zero, as in ML.

• We extend both deterministic and probabilistic SFA to
enable us to find the common slowest varying features
of two or more time varying data sequences, thus
allowing the simultaneous analysis of multiple data
streams.

The novelties of our paper in terms of application can be
summarized as follows:

• We apply the proposed EM-SFA to facial behaviour
dynamics analysis and in particular for facial Action
Units (AUs) analysis. More precisely, we demonstrate
that it is possible to discover the dynamics of AUs in
an unsupervised manner using EM-SFA. To the best of
our knowledge, this is the first unsupervised approach
which detects the temporal phases of AUs (other un-
supervised approaches such as [29] focus on detecting
global structures (i.e. AUs or expressions) rather than
their temporal phases).

• We combine the common latent space derived by
EM-SFA with Dynamic Time Warping techniques
[18] for the temporal alignment of dynamic facial
behaviour. We claim that by using the slowest varying
features for sequence alignment is well motivated
by the principle of slowness as described above (i.e.,
slowly varying features correspond to meaningful
changes rather than rapidly varying ones, which most
likely correspond to noise [25]).

The rest of the paper is organised as follows. In Sec.2,
we describe the deterministic SFA model, while in Sec. 3,
we introduce the probabilistic interpretation of SFA. Our
proposed EM-SFA is presented in Sec. 4, both for one
(Sec. 4.1) and multiple sequences (Sec. 4.2), while the
latter method is incremented with warpings in Sec. 5.3.
Finally, we evaluate the proposed models in Sec. 5, by a set
of experiments with both synthetic (Sec. 5.1) and real (5.2,
5.3) data.

2. Deterministic Slow Feature Analysis
In order to identify the slowest varying features deter-

ministic SFA considers the following optimization prob-
lem. Given an M -dimensional time-varying input sequence
X = [xt, t ∈ [1, T ]], where t denotes time and xt ∈ <M
is the sample of observations at time t, SFA seeks to deter-
mine appropriate projection bases stored in the columns of
matrix V = [v1,v2, . . . ,vN ] ∈ <M×N (N << M), that
in the low dimensional space minimize the variance of the
approximated first order time derivative of the latent vari-
ables Y = [y1,y2, . . . ,yT ] ∈ <N×T subject to zero mean,
unit covariance and decorrelation constraints:

minV tr[ẎẎT ]
s.t. Y1 = 0, YYT = I

(1)
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where tr[.] is the matrix trace operator, 1 is a T × 1 vector
with all its elements equal to 1

T , I is aN×N identity matrix
and matrix Ẏ approximates the first order time derivative of
Y, evaluated using the forward latent variable differences as
follows:

Ẏ = [y2 − y1,y3 − y2, . . . ,yT − yT−1]. (2)

Considering the linear case where the latent space can be
derived by projecting the input samples on a set of basis V
where Y = VTX and assuming that input data have been
normalized such as to have zero mean, problem (1) can be
reformulated to the following trace optimization problem:

min
V

tr[VTAV], s.t. VTBV = I. (3)

where B is the input data covariance matrix and A is an
M×M covariance matrix evaluated using the forward tem-
poral differences of the input data, contained in matrix Ẋ

A =
1

T − 1
ẊẊT ,B =

1

T
XXT . (4)

The solution of (3) can be found from the Generalized
Eigenvalue Problem (GEP) [25]:

AV = BVL (5)

where the columns of the projection matrix V are the gen-
eralized eigenvectors associated with the N -lower general-
ized eigenvalues contained sorted in the diagonal matrix L.

3. A Probabilistic Interpretation of SFA
In this section, we discuss a probabilistic approach to

SFA latent variable extraction. Let us assume the following
linear generative model that relates the latent variable yt
with the observed samples xt as:

xt = V−Tyt + et, et ∼ N(0, σ2
xI) (6)

where ei is the noise which is assumed to be an isotropic
Gaussian model. Hence the conditional probability is
P (xt|V,yt, σ2

x) = N (V−Tyt, σ
2
xI). Let us also assume

the linear Gaussian dynamical system priors over the latent
space Y are:

P (yt|yt−1, λ1:N , σ2
1:N ) =

N∏
n=1

P (yn,t|yn,t−1, λn, σ2
n)

P (yn,t|yn,t−1, λn, σ2
n) = N (λnyn,t−1, σ

2
n)

P (yn,1|σ2
n,1) = N

(
0, σ2

n,1

)
. (7)

Defining the model parameters θ = {θx, θy} where θx =
{V, σ2

x}, θy = {Λ,Σ,Σ1} with matrices Λ = [δi,jλn],

Σ = [δi,jσ
2
n] and Σ1 = [δi,jσ

2
n,1] the prior over the latent

space can be evaluated as:

P (Y|θy) = 1
Z exp

[
−
∑N
n=1

(
1

2σ2
n,1
yn,1

+ 1
2σ2

n

∑T
t=2 [yn,t − λnyn,t−1]

2
)]

= 1
Z exp

[
−tr
[
YYTΛ(2) + ẎẎTΛ(1)

+(y1y1 + yTyT )Λ
(3)
]]

(8)
where Z =

∫
Y
P (Y)dY, Λ(1) = [δi,j

λn

σ2
n
], Λ(2) =

[δi,j
(1−λn)

2

σ2
n

] and Λ(3) = [δi,jλn(1− λn)].

In [21], it was shown that the ML solution of the above
model in the deterministic case (i.e., σ2

x → 0) with T →
∞, where the conditional probability in (8) is simplified
to P (Y|θy) ≈ 1

Z exp
[
−tr
[
YYTΛ(2) + ẎẎTΛ(1)

]]
, is

evaluated as:

V = arg max
V,σ2

x→0
logP (X|θ)

= argmax log

∫
Y

P (X|Y, θx)P (Y|θy)dY (9)

yields the same solution as (3) up to a scale factor.

In the ML solution the direction of V does not depend
on σ2

n and λn. If 0 < λn < 1, ∀ n, then larger values
of λn correspond to slower latent variables. This corre-
sponds directly to inducing an order to the derived SFA
slowly varying features. In order to recover the exact equiv-
alent of the deterministic SFA algorithm, another limit is
required to correct the scales. A natural approach is to set
σ2
n = 1−λ2n [21], which constraints the prior covariance of

the latent variables to be one.

3.1. Extension to two sequences

The probabilistic interpretation of SFA discussed above
can be extended to more than one sequences. Under
this scenario, the method essentially uncovers the common
slowly varying features extracted from the sequences at-
hand. We define the following generative model,

xkt = V̂−1k yt + εkt , εkt ∼ N (0, σ2
kI), k = 1, 2

Xtot
t =

[
x1
t

x2
t

]
= V−1yt +

[
ε1t
ε2t

]
(10)

By computing the marginal logP (X1,X2|θ) (i.e.
marginalising out the latent space) and taking the lim-
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its lim{σ2
x,1, σ

2
x,2} → 0, T →∞, we obtain

logP (X1,X2|θ) (11)

= log

∫
Y

T∏
t=1

P
(
Xtot
t |yt, θx1

, θx2

)
P (Y|θy)dY

= log

∫
lim{σ2

x,1,σ
2
x,2}→0

δ
(
Xtot
t −V−1yt

)
P (Y|θy)dY

= c+ T (log|V1|+ log|V2|)

− T

2
tr

[[
V1

V2

]T
B

[
V1

V2

]T
Λ(2) +

[
V1

V2

]T
A

[
V1

V2

]T
Λ(1)

]

where

B =

[
X1X

T
1 X1X

T
2

X2X
T
1 X2X

T
2

]
and A =

[
Ẋ1Ẋ

T
1 Ẋ1Ẋ

T
2

Ẋ2Ẋ
T
1 Ẋ2Ẋ

T
2

]
(12)

By taking the derivatives and solving for the loadings V1

and V2, we arrive at the condition[
V1

V2

]T
B

[
V1

V2

]
Λ(2) +

[
V1

V2

]T
A

[
V1

V2

]
Λ(1) = I (13)

since Λ(2) and Λ(1) are diagonal, then the projection bases
V1,V2 are given by joint diagonalization of B and A.
Hence, the ML solution of the above probabilistic model
gives the same (up to a scale) projection bases as the fol-
lowing trace optimization problem.

min
V

tr

[[
V1

V2

]T
A

[
V1

V2

]]

s.t.
[

V1

V2

]T
B

[
V1

V2

]
= I. (14)

which can be solved by keeping the smallest eigenvalues of
the following GEP

A

[
V1

V2

]
= B

[
V1

V2

] [
L1 0
0 L2

]
. (15)

It is straightforward to extend the above methodology such
as to identify the common slowest varying features of mul-
tiple sequences.

4. An EM approach for probabilistic SFA
The ML approach for probabilistic SFA bears many dis-

advantages. Firstly, the mapping of σ2
x → 0 essentially re-

duces the model to a deterministic one, and serves mostly as
a theoretical proof of the connection of the probabilistic in-
terpretation and the deterministic model. Furthermore, the
ML method approximates the latent markov chain by em-
ploying first order derivatives. In this section, we present a

fully probabilistic treatment to SFA, which includes mod-
elling full distributions along with both observation and la-
tent variance (EM-SFA, Sec. 4.1). Furthermore, we ex-
tend EM-SFA to handle two distinct sequences (Sec. 4.2),
while the extension for handling any number of multiple se-
quences is straight-forward.

4.1. EM-SFA for Single Sequence

In this Section we propose a complete probabilistic SFA
algorithm using EM, while following the constraints dis-
cussed in Sec. 3 (0 < λn < 1, ∀ n and σ2

n = 1 − λ2n). 2.
First let us slightly modify the considered linear generative
model such as xt = Vyt + et, et ∼ N(0, σ2

xI)
3. Let

us also define the new model parameters θ = {θx,Σ1,Λ}
(since Σ is a function of Λ).

In order to perform EM we need to define the complete
log likelihood of the model as:

logP (X,Y|θ) =
T∑
t=1

logP (xt|yt, θx) + logP (y1|Σ1)

+

T∑
t=2

logP (yt|yt−1,Λ) (16)

In the Expectation step we need to find the sufficient
statistics given the observed data and the model parame-
ters θ. The sufficient statistics E[yt|X], E[ytyTt |X] and
E[ytyTt−1|X] can be computed using forward and backward
recursions,known as the Kalman or Rauch-Tung-Streibel
(RTS) smoother [17]. In the Maximization step given the
sufficient statistics obtained, we need to find the model pa-
rameters θ by optimising:

θo = argmax
θ

E
P (Y|X)

[logP (X,Y|θ)] (17)

which can be split to three parts
EP (Y|X)[

∑T
t=1 logP (xt|yt, θx)], EP (Y|X)[P (y1|Σ1)]

and EP (Y|X)[log
∑T
t=2 p(yt|yt−1,Λ)]. By expanding the

first part, which provides updates for Vnew and (σnewx )2,
we obtain

{Vnew, (σnewx )2}
= argmaxV,σ2

x
EP (Y|X)[

∑T
t=1 logP (xt|yt, θx)]

= argmaxV,σ2
x
−MT

2 ln(2πσ2
x)− 1

2σ2
x

∑T
t=1

(
tr(xtx

T
t )

−2xTt VE[yt|X] + tr(E[ytyTt |X]VTV)
)
.

Subsequently, by setting the derivatives for Vnew and

2The EM algorithm presented shares some similarities with the EM for
LDS c.f., Chap. 13 of [3], [19], [7], [5]

3In the ML problem V−1 was used instead in order to facilitate the
computations in the case of σ2

x → 0.
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(σnewx )2 equal to zero we obtain the updates

Vnew =

(
T∑
t=1

xt E[yTt |Y]

)(
T∑
t=1

E[ytyTt |Y]

)−1
(18)

(σnewx )2 =
1

MT

T∑
t=1

(
tr(xtx

T
t )− 2xTt Vnew E[yt|Y]

+ tr(E[ytyTt |Y](Vnew)TVnew)
)
. (19)

By maximizing, the second part EP (Y|X)[P (y1|Σ1)] we
find the updates for the observed variance, Σ1 as:

Σo
1 = argmax

Σ1

E
P (Y|X)

[P (y1|Σ1)] (20)

from which we derive Σo
1 = E[y1y

T
1 |X].

Finally, for parameters Λ, by applying the constraint
σ2
n = 1− λ2n we maximize the third part:

Λ = argmax
Λ

E
P (Y|X)

[log

T∑
t=2

p(yt|yt−1,Λ)]

= argmax
Λ
−1

2

T∑
t=2

[
N∑
n=1

ln(1− λ2n)

+
1

1− λ2n

N∑
n=1

((E[y2n,t|X]− 2λd E[yn,tyn,t−1|X]

+ λ2n E[y2n,t−1|X])

]
+ const (21)

where by computing the first order derivative with respect
to λn we derive to the following cubic equation:

T∑
t=2

(
(λnewn )3 − E[yn,tyn,t−1|X](λnewn )2 + (E[y2n,t|X]

+ E[y2n,t−1|X]− 1)λnewn − E[yn,tyn,t−1|X]
)
= 0 (22)

The above equation yields three solutions for λnewn . We
retain the solution which satisfies 0 < λnewn < 1. Due to
space limitations the detailed solution of the cubic equation
is provided in the supplementary materials.

4.2. EM-SFA for two sequences

In the following we propose a generative probabilis-
tic model for finding the common higher-order, slowest
varying feature between the two sequences. To do so let
us assume the following generative model for the sam-
ples of the following time varying input sequences X1 =[
x1
t , t ∈ [1, T ]

]
∈ <M1×T and X2 =

[
x2
t , t ∈ [1, T ]

]
∈

<M2×T :

xkt = Vkyt + ekt , e
k
t ∼ N (0, σ2

x,kI), k = 1, 2 (23)

where each sequence has different loads V1 and V2 and
noise, while both sequences share a common latent space Y
with P (Y|θy) given by (8). The complete joint likelihood
distribution P (X1,X2,Y) is of the form

logP (X1,X2,Y|θ) =

logP (y1|0,Σ1) +

T∑
t=2

logP (yt|yt−1,Λ)+

T∑
t=1

logP (x1
t |yt,V1, σ

2
x,1) +

T∑
t=1

logP (x2
t |yt,V2, σ

2
x,2)

(24)

where now θ = {θ1x, θ2x,Σ1,Λ} with θ1x = {V1, σ
2
x,1} and

θ2x = {V2, σ
2
x,2}.

For the two-sequence SFA, in the Expectation step
we need to compute E[yt|X1,X2], E[yt|X1,X2],
E[ytyTt |X1,X2] and E[ytyTt−1|X1,X2] which can be also
performed using RTS smoothing, as in Sec. 4.1. Applying
the maximization step on the joint log likelihood (24) we
obtain the updates for V1,V2 and σ2

x,1, σ
2
x,2 as:

Vnew
k =

(
T∑
t=1

xkt E[yTt |Xtot]

)(
T∑
t=1

E[ytyTt |Xtot]

)−1
(25)

(σnewx,k )2 =
1

MkT

∑T
t=1

(
tr(xkt (x

k
t )
T )− 2(xkt )

TVnew
k E[yt|Xtot]

+tr(E[ytyTt |Xtot](Vnew
k )TVnew

k )
)
, k = 1, 2.

Regarding Λ and Σ1 the updates are given by (21)
and (20), applied using the derived E[yt|X1,X2],
E[ytyTt |X1,X2] and E[ytyTt−1|X1,X2]. Using the above
expositions the K-sequence case can be trivially derived.

4.3. Aligning observed sequences

In this section we propose an algorithm that uses the
latent spaces provided by the two-sequence EM-SFA
for time-series alignment. We claim that since the two-
sequence EM-SFA provides the slowest varying common
features, these features would be well-suited for time
series alignment. In essence, this translates to aligning
the slowest varying features from two sequences. This
entails that we disregard high frequency features which
are likely to be noisy. We note that recently, time series
alignment was performed on a space recovered by the ap-
plication of Canonical Correlation Analysis (CCA) ([27]).
A simple, commonly used [27] and optimal method for
finding the warpings is Dynamic Time Warping (DTW)4,
which we employ in our case. Given two sequences

4Other methods that can be used include e.g., [28], while for related
work from functional data analysis, please c.f., [10, 11, 12].
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X1 ∈ <M1×T1 and X2 ∈ <M2×T2 of different lengths
T1 6= T2, DTW aims is to find the warpings ∆1 ∈ <T1×T

and ∆2 ∈ <T2×T such that the observation sequences
will have common length of size T . The augmentation of
EM-SFA with DTW is presented in Algorithm 1.

Algorithm 1: EMSFA with DTW
Data: X1,X2, iter, q
Result: ∆1,∆2,E[Y|X∆

1 ,X
∆
2 ]

1 while not converged do
2 if iter = 1 then
3 (∆1, ∆2)← DTW(X1, X2)

4 else
5 (∆1, ∆2)← DTW(E[Y|X1], E[Y|X2])

6 X∆
1 ← X1∆1, X∆

2 ← X2∆2

7 while not converged do
8 Update θ (Eq. (25,26, 21,20)
9 Update Σ acc. to σ2

n = 1− λ2
n

10 E[Y|X∆
1 ,X

∆
2 ]← RTS(X∆

tot,Λ,Σ,V, σ
2
x,tot,Σ1)

11 σ2
x,1, σ

2
x,2 ← σtot

x IM =

(
σ2
x,1IM1 0

0 σ2
x,2IM2

)
12 V1,V2 ← V =

(
V1

V2

)
13 E[Y|Xk]← RTS(Xk,Λ,Σ,Vk, σ

2
x,k,Σk), k=1,2

5. Experimental Results
For demonstrating the effectiveness of our proposed

methods, experiments were conducted both on synthetic
(Sec. 5.1) and real (Sec. 5.2, 5.3) data.

5.1. Synthetic Data

In this section we demonstrate the experimental results
of our proposed algorithms on synthetic data. We use the
Dimensionality Reduction Toolbox to generate randomly
scaled synthetic examples of 1000 data points each. In
Fig. 2, we can see a comparison between the resulting la-
tent space of EM-SFA and deterministic SFA, when apply-
ing the algorithms on the two sequences presented in Fig.
2(a,b). It is easy to observe that the latent spaces derived by
both EM-SFA (d) and deterministic SFA Fig. 2(c) are es-
sentially equivalent. Due to lack of space, further synthetic
examples are shown in the supplementary materials.

5.2. Real Data 1: Unsupervised AU Temporal Phase
Segmentation

Regarding real data, we employ the publicly available
MMI database [16], which consists of more than 400 videos
annotated in terms of facial Action Units (AUs) and their
temporal phases, i.e. Neutral, Onset, Apex and Offset.
Throughout this section, we use trackings of facial expres-

(a) (b) (c) (d)

X1

X2

Data Sequences Common Latent Space

Y=VTX E[y]

Det. SFA EM-SFA

Figure 2: Application of deterministic SFA and EM-SFA on
two synthetic data sequences X1,X2 (a,b). The resulting
common latent space is shown in (c),(d).

average     neutral      onset        apex         offset
10

20

30

Er
ro

r

EMSFA
CTW

Figure 4: Results obtained when comparing EM-SFA with
DTW to CTW, for all temporal phases of AUs.

sions for each subject. The employed tracker is a person-
independent implementation of Active Appearance Models
(AAMs), using the normalised gradient features proposed
in [6]. The implementation used, presented in [22], firstly
detects the faces of the subjects by applying the Viola-Jones
face detector [23] and subsequently tracks 68 2-dimensional
facial points.

For the first experiment, our goal is to measure how
effectively EM-SFA can detect the temporal phases of AUs,
in comparison to deterministic SFA and traditional Linear
Dynamic Systems (LDS). In this experiment, for each AU
present in the data, we apply the compared algorithms
based on the corresponding region of the face (mouth, eyes,
brows). We subsequently evaluate the latent space obtained
by all methods, and compare to the annotated ground truth.

To facilitate the comparison with the ground truth, we
map the recovered latent space to the temporal phases of
AUs. This is done by finding the points in which the first
order derivative of the obtained latent space (most slowly
varying feature) crosses zero and switches to positive or
negative. In more detail, when the derivative switches to
positive and then back to zero we obtain points x1 and x2
and when the derivative switches to a negative value and
back we obtain the points x3 and x4. These points are
clearly illustrated in Fig. 3(a) in green bullets. Subse-
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Accuracy (%)

Neutral Onset Apex Offset Expr. Peak

Method Mouth Eyes Brows Mouth Eyes Brows Mouth Eyes Brows Mouth Eyes Brows Mouth Eyes Brows

EMSFA 88.15 83.59 78.68 93.78 85 100 67.76 26.67 54.59 90.05 31.48 95.52 87.5 50 100
SFA 69.48 58.77 69.97 90.67 60 87.5 51.97 2 42.35 87.06 22.22 83.58 41.67 7.14 36.36
LDS 67.37 53.16 67.57 91.19 50 81.25 47.86 6.67 45.41 87.56 18.52 77.61 79.17 2 63.64

Table 1: Performance of SFA, EMSFA and LDS in terms of extracting the ground truth from Actions Units related to mouth,
eyes and brows, evaluated on all AU temporal phases and the expression peak.

Deterministic Slow Feature Analysis Expectation Maximisation Slow Feature Analysis
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Figure 3: Comparing the derived latent space (i.e. slowest varying feature) for SFA and EM-SFA, obtained when applying
the algorithms on two different videos. The space (E[y]) along with the gradient (E[y]′) is shown. The true points were the
AU temporal phase changes are shown with red markers. (ON - change from neutral to onset, AP - change from onset to
apex, OF - change from apex to offset, N - change from offset to neutral).

quently, we corresponded the points from 0 to x1 to Neutral,
from x1 to x2 to Onset, from x2 to x3 to Apex and from x3
to x4 to Offset, while the rest of the frames are considered
as Neutral. The overall results for the applied methods are
summarized in Table 1. The presented results show that
EM-SFA overperforms deterministic SFA and LDS on the
unsupervised detection of the temporal phases of AUs, for
all temporal phases and for all relevant regions of the face.
Furthermore, in Table 1 ta we show the results for detect-
ing the peak of the expression, i.e. when the intensity of
the expression is maximal. This corresponds to the maxi-
mum of the derived latent space, and should in theory cor-
respond to a frame which is annotated as an apex frame.
In this scenario, EM-SFA outperforms all compared meth-
ods. We note that the low performance in terms of Apex and
Expression Peak for eyes, is due to the fact that most eye-
related AUs in the data were blinks, which have a very small
apex (most of the times just 1 frame). Therefore, it is very
challenging to capture it. Nevertheless, EM-SFA appears to
capture the blink Apex much better than compared meth-

ods. In Fig. 3, we can visually evaluate the performance
of EM-SFA and deterministic SFA on the given problem.
Two examples are shown, in (a), both methods manage to
capture the apex of the expression as well as segment the
temporal phases according to the ground truth, with EM-
SFA performing better. In example (b), deterministic SFA
fails to capture the dynamics of the AU, while EM-SFA ac-
curately captures the transition.

5.3. Real Data 2: Temporal Alignment

In this section, we present results on aligning pairs of
videos from the MMI database, where the same AU is
activated. The goal of this experiment is to evaluate the
derived space of EM-SFA to the obtained space when
using CCA. Our claim is that the space derived by SFA
(essentially recovering the slowest varying feature) will
enable better alignment (when combined with DTW) than
CCA (when combined with DTW (CTW [27]). Of major
importance to this claim is the modelling of dynamics in
EM-SFA, on the contrary to traditional CCA, which is
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does not account for temporal dependencies. Results are
presented in Fig. 4. The error we used is the percentage
of misaligned frames for each pair of videos, normalised
per frame (i.e. divided by the aligned video length). We
present results on average (for the entire video) and results
regarding the apex, as well as neutral, onset and offset. It
is clear from our results that the derived space of SFA is
better suited for the alignment of temporal sequences than
the space obtained by applying CCA.

6. Conclusions
In this paper, we presented a novel, probabilistic ap-

proach to Slow Feature Analysis. Specifically, we extended
SFA to a fully probabilistic EM model (EM-SFA), while
we augmented both deterministic and EM-SFA to handle
multiple sequences. With a set of experiments we have
shown the applicability of these novel models on both
synthetic and real data. Our results show that the EM-SFA
is a flexible component analysis model, which in an
unsupervised manner can accurately capture the dynamics
of sequences, such as facial expressions.
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