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Abstract

Detection and tracking of faces in image sequences is

among the most well studied problems in the intersection

of statistical machine learning and computer vision. Often,

tracking and detection methodologies use a rigid represen-

tation to describe the facial region 1, hence they can neither

capture nor exploit the non-rigid facial deformations, which

are crucial for countless of applications (e.g., facial expres-

sion analysis, facial motion capture, high-performance face

recognition etc.). Usually, the non-rigid deformations are

captured by locating and tracking the position of a set of

fiducial facial landmarks (e.g., eyes, nose, mouth etc.). Re-

cently, we witnessed a burst of research in automatic fa-

cial landmark localisation in static imagery. This is partly

attributed to the availability of large amount of annotated

data, many of which have been provided by the first fa-

cial landmark localisation challenge (also known as 300-W

challenge). Even though now well established benchmarks

exist for facial landmark localisation in static imagery, to

the best of our knowledge, there is no established bench-

mark for assessing the performance of facial landmark

tracking methodologies, containing an adequate number

of annotated face videos. In conjunction with ICCV’2015

we run the first competition/challenge on facial landmark

tracking in long-term videos. In this paper, we present

the first benchmark for long-term facial landmark track-

ing, containing currently over 110 annotated videos, and

we summarise the results of the competition.

1Usually, this representation involves a rectangular or ellipse-shaped

bounding-box

1. Introduction

Nowadays, face detection has matured enough so as to

provide effective and efficient solutions in imagery captured

in arbitrary conditions (referred to as ”in-the-wild”). Some

of the recent face detection systems are now fast enough

to be integral parts of very popular electronic commodities,

such as various kinds of cameras. The interested reader may

refer to [67] for recent advances in face detection ”in-the-

wild”. Usually, for efficiency purposes, face detection al-

gorithms use a rigid representation in order to describe the

facial region (e.g., using a rectangular or ellipse-like shape).

Face tracking is another field of research that has received

considerable attention in the past years. Similar to face de-

tection, face tracking algorithms use a rigid rectangular rep-

resentation of the face. This is mainly attributed to the fact

that face tracking is modelled as a face detection or as a

general object tracking problem [43, 23, 61, 24]. Even in

the most recent generic object tracking benchmarks, which

contain a considerable amount of short face videos, face is

annotated using a rectangular bounding box [6, 3, 1].

Recently, it was shown that in order to achieve state-

of-the-art results in a series of important computer vision

applications, such as face recognition/verification and fa-

cial expression analysis, it is important to provide an en-

hanced representation of the face that contains the locations

of several key facial landmarks [47, 52]. Hence, not surpris-

ingly, facial landmark localization in static ”in-the-wild”

imagery is a problem that has received a lot of attention

[8, 55, 11, 12, 9, 56, 57, 54, 15, 68, 42, 63]. Such method-

ologies achieving good performance have been presented

and some of them have been integrated in certain devices

(e.g., cameras installed in automobiles for monitoring the

behaviour of the driver).

This progress would not be feasible without the efforts
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made by the scientific community to design and develop

both benchmarks with high-quality landmark annotations

[16, 30, 28, 44, 46], as well as rigorous protocols for perfor-

mance assessment. Arguably, the most comprehensive such

benchmark was firstly presented in [46] and then continued

in [44] (so-called 300-W benchmark). The annotated data

from the 300-W benchmark are now used by the majority of

scientific and industrial community for training and testing

facial landmark localization algorithms [44, 46].

Even though a considerable amount of high-quality an-

notated data have been collected for benchmarking efforts

regarding facial landmark localization, to the best of our

knowledge there exists no benchmark for facial landmark

tracking in long in-the-wild videos 2. Currently, evaluation

of facial landmark tracking algorithms in-the-wild is per-

formed in the following two rather limited ways:

• In a pure qualitative manner. Facial landmark track-

ing is considered by many as a by-product of facial

landmark detection. Hence, in order to demonstrate

the effectiveness of their algorithm for facial landmark

tracking, the authors often visualise the tracking results

in a small number of short videos, which they subse-

quently upload on YouTube (as a kind of supplemen-

tary material) [63, 57, 42].

• In a quantitative manner using a small number of very

short (2-3 secs) videos. Since annotating facial videos

with regards to facial landmarks is a tedious, expen-

sive and labour intensive procedure, researchers in the

field often evaluate their algorithms using a very small

number (around 4-5) of short videos [14, 45].

In this paper, we take a significant step further and

present a new comprehensive benchmark, as well as sum-

marise the results of the first challenge on landmark track-

ing/detection of a set of 60+ fiducial points in long-term fa-

cial videos (duration of each video is approximately 1 min).

To the best of our knowledge, this is the first time that a

comprehensive attempt to benchmark the efforts in the field

is presented.

2. Existing Face Databases for Assessing

Tracking Technologies

Rigid and non-rigid tracking of faces and facial features

has been a very popular topic of research over the past

twenty years [21, 29, 20, 17, 25, 37, 43, 23, 61, 19, 49, 14,

31, 34, 62, 63, 64, 10, 32, 40, 51, 39, 50, 35, 24, 26, 53, 56,

57, 54].

Rigid face tracking has been generally treated along the

same lines as general object tracking [37, 23, 49, 32, 33,

2While these lines were written, another considerably smaller bench-

mark appeared in [64].

43, 61, 31]. To this end, several short face sequences have

been annotated with regards to the facial region (using a

bounding box style annotation). One of the first sequences

that has been annotated for this task is the so-called Dudek

sequence [2] 3. Nowadays several such sequences have been

annotated and are publicly available [1, 3, 6].

Non-rigid tracking of faces can be further subdivided

into tracking of certain facial landmarks [29, 17, 35, 40,

14, 63, 34, 62, 10, 51, 39, 53, 64] or tracking/estimation

of dense facial motion [19, 21, 20, 65, 50, 26]. The per-

formance of non-rigid dense facial tracking methodologies

was usually assessed by using markers [19], simulated data

[50], visual inspection [19, 21, 20, 65, 50, 26] or indirectly

by the use of the dense facial motion for certain tasks, such

as expression analysis [20, 65, 26]. Regarding tracking of

facial landmarks, up until recently, the preferred method for

assessing the performance was visual inspection in a num-

ber of selected facial videos [63, 53]. Other methods were

assessed on a small number of short (few seconds in length)

annotated facial videos [45, 14]. Until recently the longest

annotated facial video sequence was the so-called talking

face [4] which was used to evaluate many tracking methods

[38, 10]. The talking face video comprises of 5000 frames

(around 200 secs) taken from a video of a person engaged

in a conversation [4]. The talking face video was initially

tracked using an Active Appearance Model (AAM) that had

a shape model of a total of 68 landmarks. The tracked land-

marks were visually checked and manually corrected.

While these lines were written another annotated

database was presented in [64] 4. The database was built us-

ing videos from the Distracted Driver Face(DDF) and Nat-

uralistic Driving Study (NDS)[5]. The DDF dataset con-

tains 15 sequences, with a total of 10,882 frames. Each

sequence displays a single subject posing as the distracted

driver in a stationary vehicle or indoor environment. 12

out of 15 videos were recorded with subjects sitting inside

of a vehicle. Five of them were recorded in the night un-

der infrared (IR) light and the others were recorded during

the daytime under natural lighting. The remaining three

were recorded indoors. The NDS database contains 20

sub-sequences of driver faces recorded during a drive con-

ducted between the Blacksburg, VA and Washington, DC

areas (NDS is the more challenging than DDF since it’s

videos are of lower spatial and temporal resolution). Each

sequence of NDS database consists of a one-minute video

recorded at 15 frames per second (fps) with a resolution of

360 × 240. For both datasets one in every ten frames was

annotated using either 49 landmarks, for near-frontal-faces,

or 31 landmarks, for profile faces. The database contains

3The Dudek sequence has been annotated with regards to certain facial

landmarks only to be used for the estimation of an affine transformation
4In a private communication, the authors of [64] informed us that the

annotated data, as described in [64], will not be made publicly available (at

least not in the near future).
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many extreme facial poses (90 yaw, 50 pitch) as well as

many faces under extreme lighting condition (e.g., IR). In

total the dataset presented in [64] contains between 2,000

to 3,000 annotated faces (please refer to [64] for example

annotations).

The aim of the challenge presented in this paper is to

go a significant step further and assess the performance

of current and future facial landmark tracking technolo-

gies in long-term facial videos (with duration around or

longer than 1 minute). To this end we have collected more

than 300 videos, mostly from video-sharing websites (such

as YouTube). Other sources that were used for collecting

videos were the SEMAINE database [36] (22 video clips

were taken). Until the submission of the binaries by the

participants we have managed to annotate 114 videos (50

released for training and 64 for testing). The total and av-

erage duration of the videos was 7293 and 64 seconds, re-

spectively. All videos were captured/encoded in 30 fps and

the total number of frames was 218595 . All videos show

only one person.

From the 114 videos, 86 were annotated using the semi-

automatic procedure that is proposed in [18]. In brief, the

procedure goes as follows: First a generic face and land-

mark localization scheme is applied to the video, then the

generic deformable face detector is turned into a person spe-

cific one and re-applied to the video. The average recall

(i.e., true positive) we achieved with the proposed procedure

is more than 98% with almost 0% of false positives. The fa-

cial landmarks of a number of selected frames are detected

and automatically corrected using a method similar to [13].

Next, a person-specific deformable model is trained and ap-

plied to all remaining frames. In the next step, annotators

performed manual corrections to 1 in every 8 frames and a

final person-specific model was trained and applied to the

video. A visual inspection was performed in the final anno-

tations and the frames. Annotations not deemed satisfactory

were either corrected or removed (e.g., profile images). In

total, annotating the 86 videos required 837 hours of man-

ual labour. In order to evaluate the gain of using the above

tool all frames of 6 videos were fully annotated manually.

This task took around 260 hours. Hence, annotating all 86

videos by human annotators alone would have taken around

3727 hours (around 4.5 times gain by using the system).

The pipeline and the annotation tool was build on top of the

Menpo platform [7] and will be soon made publicly avail-

able.

The remaining 28 videos (14 for training and 14 for test-

ing) were selected and annotated as follows: first, the state-

of-the-art method Project-Out Cascaded Regression (PO-

CR) of [54] was employed in a tracking-by-detection fash-

ion where each frame is initialized by the bounding box of

the previous frame. This provided per frame detection of

the facial landmarks. Our tracking-by-detection framework

was found to be much more robust than standard tracking;

in fact, this way, all frames of the 28 sequences were tracked

automatically without the need of re-initialization. Next, for

each video, a person specific GN-DPM [57, 27] was trained

using the fittings of PO-CR and re-fitting of the video was

performed. Finally, all erroneously fitted frames were man-

ually corrected and a final re-fitting was performed. Over-

all, this very simple pipeline resulted in remarkably accu-

rate annotations. The annotations created by this pipeline

can be visually inspected in training videos with IDs 112,

113, 115, 119, 120, 123, 138, 143, 144, 160, 204, 205, 223

and 225.

We separated the videos into three different categories.

• Category one: Contains videos of people recorded in

well-lit conditions in various head poses (occlusions

such as glasses and beards are possible but cases of oc-

clusions by hand or another person are not be consid-

ered here). This scenario aims to evaluate algorithms

that could be suitable for facial motion tracking in nat-

uralistic well-lit conditions. Example frames with the

corresponding annotation is shown in Figure 1.

• Category two: Contains videos of people recorded in

unconstrained conditions (different illuminations, dark

rooms, overexposed shots, etc.), displaying arbitrary

expressions in various head poses but without large oc-

clusions (similar to category one). This scenario aims

to evaluate algorithms that could be suitable for facial

motion analysis in real-world human-computer inter-

action applications. Example frames with the corre-

sponding annotation is shown in Figure 2.

• Category three: Contains videos of people recorded

in completely unconstrained conditions including the

illumination conditions, occlusions, make-up, expres-

sion, head pose, etc. This scenario aims to assess the

performance of facial landmark tracking in arbitrary

recording conditions. Example frames with the corre-

sponding annotation is shown in Figure 3.

All frames have been annotated with regards to the same

mark-up (i.e. set of facial landmarks) used in the facial land-

mark localisation series of competitions [44, 46] (a total of

68 landmarks). Even though some videos contain frames of

faces in profile views we did not used these frames in evalu-

ation, since (a) currently there is no widely accepted mark-

up for profile views and (b) to the best of our knowledge

there are no publicly available samples of profile views in

unconstrained conditions (profile view annotations can cur-

rently be found only in Multi-PIE [22]).

In July 2015 we made 50 videos (3063 seconds of an-

notated videos) publicly available for all three categories to

be used as the training/development set. The contestants

could use these videos to learn statistics in order to train
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Figure 1: Representative frames of category one videos. Faces display expressions and have pose variations (but not extreme).

Figure 2: Representative frames of category one videos. The videos contain faces that undergo severe illumination changes

or are captured under challenging illumination conditions.

Figure 3: Some frames of videos of category three. The faces are captured in very challenging conditions.

their trackers. The contestants were also allowed to use pub-

licly or privately collected data to train their methods (e.g.,

they could use the datasets made available with the 300-W

series of competitions [44, 46]).

Among the 64 test videos, 31 belong to category one, 19

to category two and the remaining 14 to category three. All

categories contain videos of various spacial resolutions.

3. Experiments

3.1. Evaluation Methodology

To ensure a fair comparison between the submitted

methodologies, the contestants did not have access to the

testing dataset. All contestants had to submit a compiled

(binary) file of their systems which could track 68 land-

marks. The binaries submitted for the competition were all

handled confidentially. They were used only for the scope

of the competition and were subsequently erased after its

completion. We did not provide face bounding boxes, hence

all the submitted methodologies should have a face detec-

tion module in their pipelines. One of the pre-requisites was

that the submitted trackers should track with a speed of at

least 0.5 frame/sec. As a baseline we trained a Supervised

Descent Method (SDM) [63] using annotation/images re-

leased with the 300 W competition [14] 5. The SDM was

coupled with the Matlab implementation of the Viola-Jones

face detector [59].

As in 300-W competition, and since we had only one

mark-up scheme, the accuracy of the fitting results was

measured by the point-to-point Root-Mean-Square (RMS)

error between each fitted shape and the ground truth an-

notations, normalized by the face’s inter-ocular distance

[46]. Specifically, by denoting the fitted and ground

truth shapes as s
f = [xf

1
, y

f
1
, . . . , x

f
N , y

f
N ]T and s

g =
[xg

1
, y

g
1
, . . . , x

g
N , y

g
N ]T respectively, the error is computed

5For the baseline we used only 49 landmarks out of 68
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Figure 4: The data have been annotated using the 68-

landmarks mark-up (both red and green landmarks). The

performance of all submitted methodologies was assessed

using both 68 and 49 landmarks (red subset). The inter-

occular distance, used for normalization is defined between

the outer points of the eyes.

as:

RMSE =

∑N

i=1

√

(xf
i − x

g
i )

2 + (yfi − y
g
i )

2

douterN
, (1)

where douter is the inter-ocular distance computed as the

Euclidean distance between the outer points of each eye,

as shown in Figure 4. For the employed landmark con-

figuration the inter-ocular distance is defined as douter =
√

(xg
37

− x
g
46
)2 + (yg

37
− y

g
46
)2.

3.2. Summary of Contestants

In total, five participants contributed to the challenge

(plus another four binary file submissions not accompanied

by an article describing the algorithm, hence were excluded

from evaluation). A brief description of each participant’s

methodology (gathered after the end of the paper submis-

sion process) are given below. Each method is identified by

the first author’s surname.

• Method Yang [66]: The method uses a spatio-temporal

cascade shape regression model for robust facial shape

tracking. It’s novelties lie in (a) the use of a multi-view

cascade shape regression model that is employed to de-

crease the shape variance in shape regression model

construction, (b) a time series regression model that

is incorporated to enhance the temporal consecutive-

ness and (c) a novel re-initialization mechanism that

is adopted to effectively and accurately locate the face

when the face is misaligned or lost.

• Method Uricar [58]: The tracker is an extension of a

well tuned tree-based Deformable Part Models (DPM)

landmark detector originally developed for static im-

ages. The tracker is obtained by applying the static

detector independently in each frame and using the

Kalman filter to smooth estimates of the face positions

as well as to compensate possible failures of the face

detector.

• Method Xiao [48]: The method uses a multi-stage

regression-based approach, which progressively ini-

tializes the shape from obvious landmarks with strong

semantic meanings, e.g. eyes and mouth corners, to

landmarks on face contour, eyebrows and nose bridge

which have more challenging features. Compared with

initialization based on mean shape and multiple ran-

dom shapes, the proposed progressive initialization

can very robustly handle challenging poses.

• Method Rajamanoharan [41]: The method uses a

Multi-View Constrained Local Models which com-

bines a global shape model with separate sets of re-

sponse maps targeted at different head angles, indexed

on the shape model parameters. The method explores

shape- space division strategies to identify the optimal

strategy.

• Method Wu [60]: The method applies a shape aug-

mented regression method for face alignment, where

the regression function is automatically chosen for dif-

ferent face shapes.

3.3. Summary of Results

The Cumulative Error Distribution (CED) curves using

the 68 landmarks for all the five contestants is plotted in

Figure 5 (a), (b) and (c) for videos in category one, two and

three, respectively. Similarly, the CED curves using the 49

landmarks is plotted in Figure 6. We plot the curve up until

0.08 error (after that the tracking result is quite off). By

performing a visual inspection we found that good tracking

results can be found up until an error of 0.05.

We found that the majority of the tested methods per-

formed equally well in videos of category one and two. This

may suggest that illumination changes may not be a signif-

icant factor in performance decrease. Of course more ex-

periments are required in order to make a safe conclusion.

We found that there is a significant performance drop in the

videos of category three (which were the most challenging

videos, containing occlusions etc.). Finally, as it has been

verified in 300-W competition, the performance of all meth-

ods increases when the comparison is performed on the 49-

landmark mark-up.
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In order to declare the winners we measured the Area

Under the Curve (AUC) until 0.08 in the three categories

separately. The methods are then ranked according to as-

cending order AUC. Using this as the measure, the best per-

forming method in category one is that of Yang [66] and in

both category two and three is that of Xiao [48].

Finally, we compare the results of this competition with

the results of the 300-W series of competitions. In the last

run of the competition the best performing methods had

80% of the images with error less than 0.05. In compari-

son, the best performing methods in category one and two

of this competition, which mainly contain videos which dis-

play faces that are not-occluded and do not show severe fa-

cial poses, have 90% of the images with error less than 0.05.

However, the best performing methods in category three

only achieved similar performance to the best performing

methods in the last 300-W competition, indicating there is

considerable space for improvement in this scenario.

4. Conclusions

We have presented the first comprehensive benchmark

for assessing the performance of facial tracking methodolo-

gies in long-term videos. The current version of the bench-

mark contains 114 annotated videos (around two hours of

video and a total of 218,595 frames). Furthermore, we have

ran the first challenge using the above data. We show that

current methodologies achieve good performance in videos

that display a single person and do not contain occlusions

and severe head poses. Finally, we found that for fully un-

constrained videos there is still a significant space for im-

provement.
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