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ABSTRACT
One of the most commonly used audiovisual fusion approaches
is feature-level fusion where the audio and visual features
are concatenated. Although this approach has been suc-
cessfully used in several applications, it does not take into
account interactions between the features, which can be a
problem when one and/or both modalities have noisy fea-
tures. In this paper, we investigate whether feature fusion
based on explicit modelling of interactions between audio
and visual features can enhance the performance of the clas-
sifier that performs feature fusion using simple concatena-
tion of the audio-visual features. To this end, we propose
a log-linear model, named Bimodal Log-linear regression,
which accounts for interactions between the features of the
two modalities. The performance of the target classifiers
is measured in the task of laughter-vs-speech discrimina-
tion, since both laughter and speech are naturally audiovi-
sual events. Our experiments on the MAHNOB laughter
database suggest that feature fusion based on explicit mod-
elling of interactions between the audio-visual features leads
to an improvement of 3% over the standard feature concate-
nation approach, when log-linear model is used as the base
classifier. Finally, the most and least influential features can
be easily identified by observing their interactions.
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1. INTRODUCTION
Audiovisual fusion has attracted significant interest given

its successful application in speech recognition, affect recog-
nition and lately in laughter recognition [9]. The main con-
tribution of the visual information is the addition of com-
plementary and redundant information which cannot be cor-
rupted by acoustic noise and therefore may improve the per-
formance of a recognition system.

The most common types of audiovisual fusion are decision-
level and feature-level fusion [10]. In decision-level fusion
the audio and video modalities are processed independently
and then the classifiers outputs are combined using various
integration rules, e.g. a linear sum rule, or a second level
classifier. As a consequence, the correlation between the au-
dio and visual features is lost. In feature-level fusion the
extracted audio and visual features are first combined, usu-
ally through concatenation, and then fed to a classifier. This
increases the dimensionality of the problem but it provides
additional information that can be relevant for a target task.
In this paper, we limit our consideration to feature-level fu-
sion.

The goal of this study is to investigate whether explicit
modelling of interactions between audio and visual features
can enhance performance of the traditional feature fusion
approach where audio and visual features are simply con-
catenated. To this end, we propose a log-linear model,
named Bimodal Log-linear regression, that modifies the para–
metrisation of the logistic regression model for binary out-
puts in order to account for interactions between audio and
visual features. We should point out that other approaches
which take into account the interactions between audio and
visual features exist in the literature like [2, 5, 7]. However,
the aim of this work is to compare the performance of the
Bimodal Log-Linear Regression with the standard logistic
regression.

The effectiveness of the proposed classifier is evaluated
in the task of laughter-vs-speech discrimination, since both
laughter and speech are naturally audiovisual events. Fi-
nally, the experimental evaluation is conducted using the
recently released MAHNOB laughter database [8], which
contains hundreds of examples of audiovisual speech and
laughter episodes.

2. DATASET AND EXTRACTED FEATURES
For the purpose of this study we used the MAHNOB

Laughter audiovisual dataset [1, 8]. In this dataset, laugh-
ter was elicited by showing amusing videos to subjects. In a



Table 1: Description of the MAHNOB dataset.

MAHNOB

Type No Episodes / Total Duration Mean / Std

No Subjects (sec) (sec)

Laughter 554 / 22 863.7 1.56 / 2.2

Speech 845 / 22 2430.9 2.88 / 2.3

different set of sessions subjects were asked either to discuss
with a friend or talk about a topic of their choice in English.
In all cases, their reactions were recorded by a fixed camera
(720 x 576, 25 fps), and two microphones, the camera micro-
phone and a lapel microphone. Given that the subjects are
watching a fixed screen, they are mostly in frontal pose and
there is not significant head movement. In total, there are
22 subjects in total, 12 males and 10 females, with all but
one being non-native speakers. In this study, we used the
audio from the camera microphone (48 kHz) only, since it
is noisier, and poses a more challenging generalisation prob-
lem. Finally, we use the annotations for speech and laughter
provided with the database. The details of the dataset are
summarised in Table 1.
Audio Features: In this study we use the most com-

monly used features in speech processing, the Mel Frequency
Cepstral Coefficients (MFCCs). We use the first 6 coeffi-
cients, together with their deltas, which capture some local
temporal characteristics. So in total there are 12 features
which are computed every 10ms over a window of 40ms, i.e.
the frame rate is 100 fps.
Visual Features: To capture face movements in an in-

put video, we track 20 facial points using the particle fil-
tering algorithm proposed in [6]. These points are the cor-
ners/extremities of the eyebrows (4 points), the eyes (8 points),
the nose (3 points), the mouth (4 points) and the chin (1
point). The features are computed using the same Point
Distribution Model (PDM) as in [9]. As suggested in [4],
the facial expression movements are encoded by the projec-
tion of the tracking points coordinates to the N principal
components (PCs) of the PDM which correspond to facial
expressions. PCs 7-10 were found to correspond to facial
expressions so our shape features are the projection of the
20 points to those 4 PCs. Further details of the feature
extraction procedure can be found in [9, 4].

3. METHOD
In this section we present two different feature fusion meth-

ods for classification of speech and laughter. Throughout
the paper, we assume a supervised setting: we are given
a training set of N data triplets D = {(xA

i ,x
V
i ,yi)}Ni=1,

which are i.i.d. samples from an underlying but unknown
distribution p∗(y,x). Furthermore, xA

i = (xA
1 ...x

A
Ti
)T and

xV
i = (xV

1 ...xV
Ti
)T contain audio and visual features, respec-

tively, per sample, and yi = {0, 1} is the class label per
sequence, with 0 denoting the speech class, and 1 the laugh-
ter class.

3.1 Logistic Regression
Logistic regression [3] is the simplest form of the log-linear

models that deal with binary outputs. This model is ap-
pealing for the target task (i.e., classification of speech and
laughter) because it is a discriminative model, so it directly
models what we want, p(y|x). Its predictor variables x can

take any form since, in contrast to generative models, this
model makes no assumption about the distribution of x.
Therefore, x does not have to be normally distributed, lin-
early related or of equal variance within each group. For-
mally, logistic regression models the class-conditional prob-
ability given by

p(y = 1|x, β) = 1

1 + exp(−s(x, β))
(1)

and p(y = 0|x, β) = 1 − p(y = 1|x, β), where the feature

function s(x, β) is defined as s(x, β) = β0+
∑d

j=1 βjxj . The
parameter vector β has as its elements the intercept β0 and
the weights βj , where we use j to index over the feature
values x1 to xd of a single example of dimensionality d.

In the context of the target task, logistic regression can
be used to perform feature fusion by concatenating audio
and visual features per sample, i.e., x = (xA, xV ). Corre-
spondingly, the score function of the logistic regression can
be written as

s(xA, xV , β) = β0 +
∑dA

j=1 β
A
j xA

j +
∑dV

j=1 β
V
j xV

j

= β ·
[
1 xA xV

]T , (2)

where β = {β0, β
A, βV }, and dA and dV are the dimensions

of the audio and visual features, respectively. With such
feature function, the logistic regression is used to obtain the
class-predictions per sample, which are then combined to
obtain the class-probability for the whole sequence. This is
explained in the following section.

3.2 Bimodal Log-linear Regression
Logistic regression [3] is limited in that its feature func-

tion treats audio and visual features independently. Thus, it
ignores interactions between different audio and visual fea-
tures that could be important for the classification task. To
account for feature-interaction between the two modalities,
we employ the log-linear model, which is an extension of
logistic regression that allows modelling of arbitrary rela-
tionships among the input features. Specifically, we define
the score function of the log-linear model as

s(xA, xV , β) = β0+

dA∑
j=1

βA
j xA

j +

dV∑
j=1

βV
j xV

j +

dA∑
j=1

dV∑
k=1

βAV
jk xA

j x
V
k ,

(3)
where βAV measures the relevance of interactions between
different audio and visual features for the classification task.
Note that since we are interested in the fusion task we model
only the first-order interactions between the features of two
modalities, but not the features within these modalities.
However, these and higher order interactions can be easily
incorporated in the score function of the model. By plugging
the score function in (3) into the conditional model in (1),
we obtain a log-linear model for combining two modalities,
and which we name Bimodal Log-linear Regression (BLR).

To better understand the BLR model, we re-write the
score function in (3) using the matrix form

s(xA, xV , β) =
[
1 xA

]
· β ·

[
1
(xV )T

]
. (4)

By comparing the score functions in (2) and (3), we see that
the rank of the parameter vector β for logistic regression
is 1, whereas for BLR is r = min{dA, dV }. Therefore, the
former model performs linear classification in 1-D space, and



Table 2: The performance of the models evaluated on the
MAHNOB dataset. L-F1 and S-F1 are obtained F-1 mea-
sures for Laughter and Speech, respectively, and CR is the
classification rate, computed using all test subjects.

Model L-F1[% ] S-F1[% ] CR[% ]

A-LR 79.3 87.1 84.7

V-LR 82.5 88.6 85.9

AV-LR 87.2 91.1 89.4

AV-BLR 90.5 94.3 92.7

AV-NN[8] 86.5 92.2 90.1

the latter does so in the r-D space, in which the target classes
may be better separated.
The training of the BLR model is accomplished by max-

imising the (balanced) conditional log-likelihood

L(β) =
1∑

k=0

1

Nk

Nk∑
i=1

Ti∑
j=1

log p(yi = k|xA
ij , x

V
ij , β)− λ ∥β∥22 ,

(5)
where Nk is the number of sequences of the k-th class, and
Ti is the number of frames in the i-th sequence. Parameter
regularisation is attained using the Frobenious norm, which
implicitly enforces low-rank representation of β. We also
balance the data likelihood based on the number of samples
from each class. This is important since the speech class
usually dominates the laughter class in the number of train-
ing examples. The conditional log-likelihood in (5) is strictly
convex, so we use gradient ascent with a fixed step γ to find
the (globally) optimal parameters β as

βt+1 = βt + γ∇L(βt), (6)

where t is the number of iterations and γ = 0.1. In all
our experiments, the algorithm converged in less than 10
iterations. Finally, inference of test sequences is performed
using a two-step approach: first, we perform classification
of the input features per frame based on the probability in
(1), where the winning class is the class with p > 0.5. Then,
we apply majority voting to obtain the sequence label.

4. EXPERIMENTS
We test the performance of the proposed BLR model in

the task of laughter-vs-speech discrimination. In all our ex-
periments, we applied a leave-one-subject-out cross-validation
procedure. The regularisation term is obtained by running
another cross validation among λ = {10−5, 10−4, ..., 1, 2}
on the training set. Both audio and visual features are z-
normalized to zero mean and unity standard deviation. The
means and standard deviations are computed on the train-
ing set only, and then applied to the test set. In addition,
the audio and visual features are synchronised for audiovi-
sual fusion, since they are extracted at different frame rates.
This is achieved by upsampling the visual features by linear
interpolation as in [9]. The generalisation performance is
reported using F-1 measure (per class) and the classification
rate (CR), computed on the predicted labels for sequences
of all test subjects. We compare the BLR model, trained
using audio-visual (AV) features, to logistic regression (LR)
models trained using: (i) audio (A-LR), (ii) visual (V-LR),
and (iii) concatenated audio-visual (AV-LR) features, as ex-
plained in Sec. 3.1. Table 2 shows comparative results of the
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(f) Laughter probability for audiovisual fusion using logistic
regression (LR) and bimodal logistic regression (BLR).

Figure 1: Example from subject S009, S009-001.

tested models. The models that rely on the single modality
(A-LR and V-LR) are outperformed by the feature-fusion-
based models. This is expected and the reader is referred
to [8] for more insights about this. The proposed AV-BLR
model attains better performance in terms of both F-1 mea-
sure and CR than the AV-LR model. We account this to
modelling of the interactions between the two modalities in
the BLR model. For the sake of comparison, we also include
the baseline results for the MAHNOB dataset [8] obtained
using a feedforward neural network for audio-visual feature
fusion (AV-NN).

To better understand the effect of modelling the interac-
tions between the audio and visual features in the AV-BLR
model, in Fig.1 and 2 we contrast its classification per frame
to that attained by the AV-LR model on two example se-
quences of Laughter. Note from Fig.1 that in the case of
‘pronounced’ laughter, both models achieve similar perfor-
mance, with the AV-BLR model slightly outperforming the
AV-LR model. This is expected since both audio and visual
features vary sufficiently to discriminate between the tar-
get classes. However, note that in the case of ‘soft’ laugh-
ter (Fig.2), it is difficult to extract from the noisy audio
signal the features that are typical for laughter. Although
the probabilities of both models lie in close vicinity of the
classification margin (p=0.5), the proposed AV-BLR model
exploits the correlations between the two modalities, which,
evidently, helps to extract useful information from the noisy
audio features that are highly correlated with the visual fea-
tures. This is especially the case in the second half of the
sequence in Fig.2, where visual features provide more evi-
dence of laughter, and hence, amplify the influence of the
correlated audio features.
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(f) Laughter probability for audiovisual fusion using logistic
regression (LR) and bimodal logistic regression (BLR).

Figure 2: Example from subject S005, S005-008.

Finally, we inspect the parameters β of the AV-BLRmodel
in order to see to what extent AV-BLR was able to learn
interactions between the two modalities. To this end, we
visualise β in Fig. 3. Note that the first visual feature has
the highest influence on the score function in the AV-BLR
model. The first visual feature corresponds to the 7th PC
that captures mouth movements that are important for dis-
criminating laughter vs. speech. Also, the first six MFCC
features have much more influence than their deltas (fea-
tures 8 to 13). Finally, note that the model has learned
different weights for correlations between audio and visual
features. For example, from Fig. 3, we can see that the
first visual feature is negatively correlated with 1-3 MFCC
features. These correlations make the whole classification
process more robust to noise in the features of both modal-
ities, as evidenced by the experiments presented before.

5. CONCLUSION
We have proposed a new log-linear model for bimodal fea-

ture fusion, named Bimodal Log-linear regression. In con-
trast to the standard feature-level fusion that is based on a
simple feature concatenation, BLR explicitly models inter-
actions between two modalities. Our experiments conducted
on the MAHNOB dataset show that modelling those inter-
actions improves the discriminative power of the log-linear
classifier. In addition, the most influential features and their
interactions can be easily identified by visualizing the fusion
matrix of the BLR model.
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