SMCB-E-2012-04-0349.R3

HCI"2 Framework: A Software Framework for

Multimodal Human-

Computer Interaction

Systems

Jie Shen and Maja Pantic

Abstract—This paper presents a novel software framework for
the development and research in the area of multinual
human-computer interaction (MHCI) systems. The promsed
software framework, which is called the HCI*2 Framework, is
built upon publish / subscribe (P/S) architecturelt implements a
shared-memory-based data transport protocol for mesage
delivery and a TCP-based system management protocdlhe latter
ensures that the integrity of system structure is mintained at
runtime. With the inclusion of ‘bridging modules’, the HCI"2
Framework is interoperable with other software frameworks
including Psyclone and ActiveMQ. In addition to the core
communication middleware, we also present the integted
development environment (IDE) of the HCI*"2 Framewok. It
provides a complete graphical environment to supparevery step
in a typical MHCI system development process, inclling module
development, debugging, packaging, and managememts well as
the whole system management and testing. The quatatiive
evaluation indicates that our framework outperforms other
similar tools in terms of average message latencyné maximum
data throughput under a typical single PC scenario. To
demonstrate HCI*2 Framework's capabilities in integating
heterogeneous modules, we present several exampleodules
working with a variety of hardware and software. Wealso present
an example of a full system developed using the posed HCI*2
Framework, which is called the CameGame system andpresents
a computer game based on hand-held marker(s) and voecost
camera(s).

Index Terms—Publish / Subscribe Architecture, Multimodal
Human-Computer Interface, Software Framework

I. INTRODUCTION

LONG with the rapid increase in computational poeaed

network bandwidth during the past decades, theltien
the computing industry started to shift from PCioeth
applications to services delivered through ubigugtoomputing
in a more human centred manner [1] [4] [7]. Witisthecent
development, multimodal human-computer interfadékICl)

human-computer interfaces (e.g. based on keyboaodise,

and so on), MHCI interact with users through ndtomadalities

including facial expression, body gesture, verinal mon-verbal
vocal cues [4] [7]. Arguably, MHCI not only simpfithe use of
computer systems, but also reduce user distraatidrincrease
user satisfaction and productivity. Hence, MHCI aaturally

seen as a (necessary) step towards future penastems [1]
[2].

Nevertheless, developing MHCI is not an easy tddie
difficulty comes from two issues. Firstly, machingerpretation
of human behaviour and multimodal human-computaiodiie
modelling are closely related to context sensirfjd4Band, in
turn, to the famous hard Al problem - the framebpem of Al
[6] (roughly, the frame problem is knowing whichcta are
relevant to the current reasoning problem and wfacks are
irrelevant). Secondly, because MHCI systems arenalty
constructed from a large number of highly interdejsnt and
interwoven heterogeneous algorithmic units, the tesgs
integration is often cumbersome. While the formas theen
acknowledged and investigated by the research coitynthe
latter is largely overlooked. More specifically, sagublished
works use custom methods for system integraticsultiag in
application-specific and non-extendable systemshipaper,
we try to alleviate this problem by proposing a elov
publicly-available software framework for developriheof
MCHI systems being easily extendable, robust, eartsparent.

A. Requirements for the Software Framework

An ideal MHCI system is expected to be, extendable,
responsive, ‘transparent’, and robust [1] — [4], Fence, we
propose a number of requirements for the softwan@dwork
with which the MHCI system is to be developed, swarired
into the following aspects.

1) Flexibility

Due to the complex nature of MHCI systems and the
algorithms they utilize, flexibility on both systetavel and
module level is essential.

became an emerging research topic. Unlike tradition o, system level, any complex system structure shoel

Manuscript received 19/04/2012. This work has bsepported by the

European Research Council under the ERC StartiramtGagreement no.

ERC-2007-StG-203143 (MAHNOB).

Jie Shen and Maja Pantic are with Imperial Collegedon, 180 Queen’s
Gate, London, SW7 2AZ, UK.

Maja Pantic is also with University of Twente, TwenNL

supported. Because feature-level and model-leethér than
decision-level) multimodal-data-fusion-based apphes are
receiving increasing attention [4] [5], algorithmealing with
different modalities are becoming more and more
interdependent. With this trend, complex spatial samporal

SMCB-E-2012-04-0349.R3

module relationships within MHCI systems shouldelzpected
and therefore should be supported by the framework.

In addition, the framework should also support dgita
system structure reconfiguration. Considering thabst
algorithms only work well under very specific cotiains,
dynamic system structure reconfiguration would heffective
approach towards achieving an adaptive and
performance at system level. For instance, considgeneral
facial feature point detector (FFPD) which workdli@ both
frontal view and profile view faces. Complexity sfich an
algorithm is usually much higher than that of acsplezed
detector (e.g. two FFPDs optimized for frontal gmfile
images respectively which are activated / inactigiatt runtime
depending on the current face view).

On module level, because algorithms dealing witfedint
modalities may vary drastically, the framework didawot pose
restrictions on the modules’ internal structureother words,
local / remote procedure call (LPC/RPC)-based aggires,
which often require modules to be written in a jgfeted format
based on specific call-back mechanisms, do noicsuff
2) Middleware Performance

Since audio and video signals, which are both biginate
streams, are the primary information sources intrvidCI
systems, the framework’s underlying
middleware should be able to efficiently delivegkeamount of
data.

application / system — independent, preferablgampiled and
packaged) binary form.
6) Software Usability

A good user interface is essential for satisfactaser
satisfaction. The software framework, despite thet that its
targeted users are software developers and resesréh no

robustception from this rule. Instead of providing & skloosely

correlated utilities, the software framework shodkliver an
easy-to-use integrated graphical working envirorire@abling
the developers to build, test, and maintain thgstesns easily.

B. An Overview of Existing Tools

There are a number of existing tools of the kinddescribe
here. These tools can be categorized into two tygeftwvare
frameworks based on LPC/RPC [8] [11] [25], and ragss
passing middleware based on publish / subscribes) (P/
architecture [9] [10] (and their extensions suclirizeble [13]
and SEMAINE API [26] [27]).

The LPC/RPC-based software frameworks generallye hav
good performance in terms of data throughput, ngesksdency,
resource consumption level, and communication vy
They also provide good support to the developmérgusable
modules and systems through GUI-enabled IDE. Howyélvey

communicatiofsually lack flexibility (on both system and modideels) and

are easily crashed by faulty modules.
Since the data transport in LPC/RPC-based apprasch

Moreover, because MHCI systems are expected td ieac Usually achieved by a direct-call function of thedule’s data

real-time to users’ (interactive) actions, a loiget spent on

export interface, the connection between moduletenof

message delivery is unwanted, especially in laygtesis where involves exchange of pointers. This scheme maytriestightly
message latencies at each level of the processyate ¢ coupled systems. One limitation of this approacit isardly

accumulates over time in which the MHCI systemsisdu This

supports feedback loops and dynamic system reawatign

requires the communication middleware to facilitatessage (I-€., modifying the system'’s internal structurerattime). In

delivery with short latency.
In addition, to achieve high overall efficiency fdeveloped
MCHI systems, it is important for the framework keep its

addition, because all modules are required to Volla
predefined call-back mechanism to facilitate desagport, the
possible ways in which the modules can be impleetent

resource consumption low and support compiled mesdulinternally are limited. Last but not least, becatiggietly-coupled

(modules written in languages such as C/C++).
3) Communication Reliability

Data loss may not have severe impact for systemidna

systems are prone to cascading failure, one fawttgiule may
cause the entire system to break down.
In comparison, the existing message passing middkew

between modules. However, for
reconfigure its structure based on triggers, lapsBuch

a system which m

stem and are more robust against module crasloegever,
these tools often have poor performance in termgiaih

messages would result in significant performancss.lo throughput, message latency, and resource consumigtiel.

Therefore, the framework should guarantee sucdassfsisage
exchange or, at least, it should notify the seiriidve delivery
fails.
4) Error Tolerance

It is not uncommon for prototype modules to crashbing
terminated by a third-party debugger) at run-time tb BUGs
or invalid / unexpected input. In such cases, tanéwork
should be able to quarantine the error and keegr ptrts of the
system (including the framework it self) unaffected
5) Module Reusability

Reusability is crucial for rapid prototyping andtiag. This
is especially true for the front-end and low-les@dules (e.g.
video / audio capturers, face detectors, audiafeaxtractors,
etc.), which are commonly a part of MHCI systenwsfacilitate
module reusability, the modules should be impleegras

For example, both Psyclone and ActiveMQ are desidoethe
development of large scale distributed systems iatetnet
applications [9] [10], hence their data-transpadtpcols are
derived from TCP/IP, which is a suboptimal mean of
inter-process communication (IPC). Although Fledh&] had

a different design goal, it relies on Java Mes&aywice (JMS),
which is also based on TCP/IP and resulted in alasim
performance penalty. The current version of SEMAINEI
shares the same problem because it uses ActiveM@s as
underlying message passing middleware [26] [27].

In addition to the common performance problem, Rsy
and ActiveMQ also lack built-in support to the dieyanent of
reusable modules. Although the P/S architecturauraby
eliminates the dependency between modules [14]nthdules
are still dependent on their (usually hard-codedal
environment (i.e., the channels they subscribe/ardpoublish

SMCB-E-2012-04-0349.R3 3

TABLE |
AN OVERVIEW OF EXISTING TOOLS
Software Flexibility Middleware Performance Communication
Framework | Restrictions | Dynamic System Restrictions to Data Message Resource Reliability
to System Structure Module’s Internal Throughput Latency Consumption
Structure Reconfiguration Structure Level
Microsoft No feedback| Not supported Must comply to > 800 MB/s <1ms CPU usage < 19 Guaranteed by
DirectShow | loops predefined callback design
[8] mechanism
Open- No multicast| Not supported Must comply to Could not be tested due to the lack of working exes| Guaranteed by
Interface [11] predefined callback | in public domain. design
mechanism
EyesWeb None Not supported Must comply to > 800 MB/s <1lms CPU usage < 59 Guaranteed by
[25] predefined callback design
mechanism
Psyclone None Supported None <140 MB/s Up to 6900 ms CRideis 80%| Message loss
AlIOS [9] detected
ActiveMQ None Supported None <100 MB/s Up to 650 mg CPJeisab0% | Timed-out
[10] messages may be
discarded without
notice
Fleeble [13] | None Supported None Did not test because it doesupport C++ (see Timed-out
subsection I.A.2). messages may be
discarded without
notice
SEMAINE | None Supported None Same as ActiveMQ
API [26]
HCI2 None Supported None > 800 MB/s <1ms CPU usage < 1%uaranteed by
Framework design
Software Error Tolerance Module Reusability Usability
Framework GUI-Enabled Supported Note
IDE Languages
Microsoft The system will crash if any moddleModules can be reused in other Provided C++, C#, VB Module
DirectShow | crashes systems without modification development is
[8] relatively hard
Open- The system will crash if any modyleModules can be reused in other Provided C++, Java, Matlab Poor documentation|
Interface [11] crashes systems without modification
EyesWeb The system will crash if any moddleModules can be reused in other Not provided C++
[25] crashes systems without modification
Psyclone Unaffected by module crashes The source code ney toebe Not provided C++, Java BUGs including
AIOS [9] changed if a module is to be reused deadlock, access
error and connectiol
failure were detecteq
ActiveMQ | Unaffected by module crashes The source code ney toebe Not provided C++, Java Memory leak wereg
[10] changed if a module is to be reused detected
Fleeble [13] | Unaffected by module crashes The source code ney toebe Limited (no Java
changed if a module is to be reused| graphical
system structure
representation)
SEMAINE | Unaffected by module crashes Modules can be renseatther Provided C++, Java
API [26] systems without modification
HCI"2 Unaffected by module crashes Modules can be renseatther Provided C++
Framework systems without modification

a. All tests were conducted with Intel Core i5 C@tores) and 4 GB of memory.
to), hence, lack of reusability support. Moreoveeither In order to meet the requirements regarding thdesys
Psyclone nor ActiveMQ featured a compact (visualjlexibility, data rate, latency, and reliability, ewdesign a
representation of the system structure and an ee&sn for protocol for both runtime system management anch dat
users to control the system at runtime. transport. The runtime system management protosol i

A comprehensive overview of these tools is provite@able proposed in compliance with the adopted PubliskibsSribe
I (note that the HCI*2 Framework is also includedtie table (P/S) architecture, which brings natural suppoddmplex and
for direct comparison). As shown in the table, nofidhem dynamic systems [14]. To achieve reliable and ieffic
fulfils all of the aforementioned requirements. message delivery, we develop a data transportqoblb@sed on
shared-memory, which is shown to be the most effici
inter-process communication (IPC) method in terrhslata
Our work proposes a new software framework, wredatailed throughput and average latency [12]. These prosocok
the HCI"2 Framework (‘HCI"2' stands for Human-Cenlr jmplemented by the framework's core communication
Intelligent Human-Computer Interaction), fulfillingll of the yigdieware.
aforementioned requirements.

C. Contributions

SMCB-E-2012-04-0349.R3

We developed further a self-contained and easystn-u

integrated development environment (IDE) to faaiBt the
entire development cycle of MHCI systems. This tedlich is

Module 1 Process System Manager Process

Dispatch to——— Module Adapter |4—+TCP Connec(ion——b{ Server Adapter

y

—Publish t l

called the HCI*2 Framework IDE, facilitates modrdesability

and software usability. In particular, the HCI*afework IDE Module 2 Process

embodies the following features: 5 > Modde Adaper o ere

1) Complete development support of highly flexible and Pubishto————— |
reusable modules. To increase module reusabiliy, w Module 3 Process
discriminate between the concepts of module class a Publish to———————[Module Adapter |« TcP G
module instance as explained in section 11-D. Ly Dispaton -

2) An easy-to-use centralized graphical user inter{gal) F|ngtructure of an example system built wite HCI"2 Framework.

facilitating module management, system configuratio p/s mechanism, modules at both sending and regeivids are

module and system testing, and system redistributio

D. Organization of the Paper

The rest of this paper is organized as follows.tiSecll
discusses the middleware design of the HCI*2 Framew
including the P/S architecture, the runtime protlec@ssues
regarding robustness and interoperability. Sectibinthe
concepts of module class and module instance, &ed
centralize system management scheme. The impletiventd
this tool is described in section Ill. The evaloatdf the HCI*2
Framework’s performance is presented in sectiorBiétion V

effectively isolated, which means that their depsmay on the
presence of assumed upstream and / or downstreaulesds
eliminated. In other words, a module can be usedrig
circumstance as long as appropriate channels, venehlways
the same type of entities but with different namesist.
Therefore, development and using of context- aatedtee
imodules become possible [14].

With this P/S architecture, the structure of thetem is fully
defined by the collection of channels and modulibssribed to
those channels. This simple and intuitive repregim of

demonstrates the usage of HCI"2 Framework with reéve system configuration brings great flexibility sintedoes not
example modules and the CamGame demo system. $&ttio impose any explicit restriction on the topologytu network of

concludes this paper.

Il. CONCEPTUALDESIGN

A. Publish/ Subscribe Architecture

The core of the HCI*2 Framework consists of a nedeaire
facilitating Publish / Subscribe (P/S) communicatizetween
modules at runtime. Fig. 1 illustrates an exampjetesn
containing three modules built with the HCI"2 Fravoek.

modules.

Dynamic system reconfiguration is facilitated byoaing
modules to initiate and / or cancel subscriptianshannels at
runtime. Execution of remaining modules is compjete
unaffected because each module only sees its amlibutput
channels but not the upstream and downstream ngdule
Therefore, dynamic system reconfiguration is implicand
naturally supported by the P/S architecture of H@&I"2
Framework.

Each module is built as a standalone executabldachwh All channels reside on a runtime system managevegge It

internally calls the module-side (communicationqyatetr of the
framework to exchange messages with other modDI&srent
from local / remote procedure-call-based approgdheshich
modules are implemented as components (DLLs, COjectdh
and so on), and are called by the framework orrati@dules,
modules in the HCI*2 Framework are granted exptoittrol
over their own execution route. In other words séhenodules
do not have to follow any predefined internal stnoe model as
long as they can correctly call the framework’s nleeside
adapter whenever communication is needed. In this & high
degree of flexibility at module level is achieved.

As illustrated in Fig. 1, modules do not send mgssa
directly to each other, but do so via logical mgesdispatchers,
which are called channels. Channels are namedesnthat
allow a single message to be dispatched to any eurab
receivers which have previously shown ‘interestréteiving
information from the channel in question [13] [14The

represents a central repository which stores dtirination
regarding current system configuration at runtimeluding a
list of channels, a list of working modules, andeith
subscriptions. Although this central repositorgds required in
theory, it effectively represents the system camfigjon at
runtime. In fact, the data transport protocol reegieach
module to carry a copy of a subset of this inforaratin order
to maintain consistency between all these copie€P T
connection is established between every moduldtendystem
manager. A system management protocol is then tsed
synchronize each module’s local copy of configumati
information with the original copy stored in systenanger
whenever changes occur. More details on this issaegiven
below.

B. Data Transport
Recall that achieving high data rate, low lateranyg reliable

mechanism behind is as follows. A module inform& thdata transport, which was not met by tools likedR®sye and

framework if it is ‘interested’ in messages of atam type by
subscribing to the channel dedicated to that tyfjp@messages.
Then, whenever a message is sent (published) tatizanel,
the message is automatically routed to all subsrsibVith this

ActiveMQ, is one of the most important requiremeofsa
MHCI-supportive software framework.

SMCB-E-2012-04-0349.R3

1) Choosing Inter-Process Communication Method
Because the data transport between modules imamefvork

TABLE II
COMPARISON BETWEENTCPAND SHARED MEMORY

is basically inter-process communication (IPCJsitmportant 50/(;'PU Usagé Q?Aaé";‘sRate of TCP gga,\tAaBiate of Shared Memory
to choose a proper underlying IPC method in orddulfil all 504 34 MBJs 230 MB/s
aforementioned requirements. The following critexia crucial [350 40 MB/s 245 MB/s
when choosing an appropriate method. 50% 55 MB/s 225 MB/s
1) The method should be general enough to support & ﬁg% 73 MB/s 245 MB/s
. . . . 0,

number of concurrent communication sessions, witA2% 80 MB/s 280 MB/s

messages having arbitrary Iength a. Conducted on a ThinkPad T43 laptop with 2.0 ®gatium M CPU and 1 GB of memory.
2) The method should be reliable enough to guaran»[eél'herefore, as the basis for the P/S communicatiergefine a

ordered data delivery (first sent, first received). protocol implementing a reliable peer-to-peer (PTP)
3) The method should be efficient enough, which megns Communication through shared memory. We do solbisv®.

should have the potential to support high dataaatelow

latency communication. This also means that more
methods would be favoured to avoid

fundamental
performance overhead.

Cross-platform support is another concern for thaeulying

IPC method. In general, it is desirable to use R@ method

1) Each peer allocates a named shared memory blodie to
used as its local inbox. Within the block, thetftdytes in
the address space are used to store an unsigreggerint
representing the total amount of data currentlgestin the
inbox. The remaining space is used to queue redeiata

messages.

available to most widely-used operating systemduiting 2) Each message consists of a variable-length costeng,
Windows, Linux and OS X. This limits our choicesasubset with a header section storing the message’s type ID
of POSIX-compliant IPC methods including TCP sockéDP sending time, and the sender's name. The messages a
socket, pipes, RPC and shared memory. Among thetens, serialized into byte strings when they are writieio the
UDP is not reliable enough (since packet-droppinaliowed), receiving peer’s inbox. _ _
while RPC and pipes can be inefficient (becausg #ne often 3) In or_der to prevent data corruption caused by Sqnebus
implemented in terms of shared-memory and / or TORly multiple access, each peer creates a named myjtsot b
TCP and shared memory meet our requirements. protect its shared memory block. The mutex obpeu‘gsed

In practice, TCP is favoured by many exiting toalsluding as the shared memory block’s access-control tokbith
Psyclone and ActiveMQ due to its convenience of arse its must be acquired by any reader / writer beforartaccess
ability to connect multiple computers. However, our the shared memory block's content.

experimental comparison between TCP and shared ryemo4)

summarised in table Il (results shown are obtaiMbndows),
shows that shared memory can support much higheeto(10
times) data throughput than TCP under every CPSwoption
constraint.

The major limitation of shared memory is it canbetused to
exchange data between different computers. Noresthethis
disadvantage is considered acceptable for two nsagorstly,
since our framework is primarily designed to fdate
single-computer applications, network communicat®not a
major concern for data transport. Secondly, inesashen
message exchanging between sub-systems runninifene ok
computers becomes necessary, it would be moreegiftito
reuse other TCP-based tools to handle network-coruation
while still using the shared memory-based protdoollocal
data transport than to delivery all messages viR.TC

Hence, we choose shared memory as the underlyiGg IP

method.
2) Data Transport Protocol

Unlike most IPC methods, shared memory is hardly
communication method. It simply allows developercteate

named global memory block, which can be mapped into

processes’ address space in order to share datssgmocess
boundary [18] [28]. There is no automatic locking the

memory block for data corruption prevention, bt tontent of
mapped buffer is guaranteed to remain consistenwhis

accessed from different processes [18] [28].

Each peer exploits a hamed event object as anaitadic
(flag) of whether there is any message pendintsitocal
inbox. As a less resource-demanding alternativbusy
waiting strategy, this event is used to ensure ¢vary
message will be retrieved as soon as it is pughtedtie
inbox.
When a message is sent, the sender obtains frsathet
inbox’s access permission by acquiring its accessrol
token (i.e., the aforementioned mutex object). Then
pushes the serialized data message into the regeivi
peer's message queue, modifies the shared memory
block’s leading bytes to reflect the new data langets
the inbox’s flag event to indicate that there imessage
waiting and finally releases the token.
Each peer uses a thread to constantly monitor its
flag-event’s state. Whenever a ‘message waitiragesis
detected, the thread parses the local inbox’'s abnte
(through protected reading operations), retrievessplits
the buffered data into separate messages, anddkets
the flag-event. The split messages are then delivén
another buffer residing in the receiving peer’svate
memory space. Because shared memory facilitatesesic
synchronous data exchange, the procedure contains
neither resynchronization step nor data validasiep.
In addition to message exchange, the PTP commioricat
scheme also features a built-in flow control meédran Since
most algorithms used in a typical MHCI system aather
time-consuming, it is not unusual for a moduleatckl sufficient
capacity to process all incoming data in time.Ualscase, the
unprocessed messages will be queued in the modaotetmal

5)

6)

a

SMCB-E-2012-04-0349.R3

Secondary Buffer (with a fixed capacity)

[\ Message 4 [Message 3 [Message 2

Delivered by internal
worker thread

Delivered by internal
worker thread

Local Inbox

Input by senders

Output Buffer

|
Output to client code

Fig. 2. The internal buffer layout of a receivingep.

buffer. This waste of memory is not only unnecessat also
harmful to the system’s stability. To solve thiiplem, we
insert a secondary buffer between each peer’siolsak and its
output buffer, as illustrated in Fig. 2. The secamdbuffer is
organized into an automatically growing queue vidtltixed
maximum capacity. If the module’s message retrienzé
cannot catch up with the input rate, the seconlaffer will be
eventually piled full and consequently block newdme of
messages. Hence, the message source will be ftoceahit
before subsequent messages can be successfullylrséhis
way, the message rate in each processing pipeliheonverge
to an optimal level over time.

We extend this protocol to P/S communication asllaction
of individual PTP message sending sessions. Lexpigin this
in more detail. In the HCI"2 Framework, channelyostists as
alogical concept. It is actually a collection abscriptions used
to guide message routing. In practice, the runtsgstem
manager stores these collections of subscriptidfienever a
module needs to publish a message, it simply xetsi¢he list of
the target channel’'s subscribers and then sendsnédssage
directly to every subscriber through the PTP protaescribed
above. In this way, message publishing is reducesdrtumber
of PTP message sending sessions, where the rigjiatsil
guaranteed. To further improve communication rdlighthe

module developers. Three types of runtime systemagement

messages are defined:

1) Request messages include: module registration sgque
remote channel creation request,
destruction request, module subscription request a
subscription cancellation request. These messagesat

from a module to the system manager when the module

requests a change in the system structure. Thensyst
manager is then required to answer every requdistami

acknowledgement message. Note that module logoff
request is unnecessary because shutting down tie TC

connection carries the same information.

Notification messages include: channel
notification, channel destruction notification, nubel
subscription notification, and subscription caretidin
notification. These messages are sent from theersyst
manager to all modules in order to indicate chamyése
system structure. Upon receiving, a module shoptthte
its local copy of the channel list to reflect thewn
configuration. Note that there is no module regiin
notification and module logoff notification as sudhe

2)

system manager sends out appropriate subscription

cancelation notification whenever a module logs off

3)
and NACK (rejected) sent by the system managehes t
answer to a module’s request.

Based on the runtime system management messag&s;qir
operations are defined including module registratichannel
creation, module subscription. These operationg lilae form
of a standard request-process-acknowledge proceduocka
further description of these is therefore unneagssa our
opinion.

D. Robustness against Faulty Modules
It is not uncommon for a prototype module to crémhbeing

sequence of sending operations is bound into alesingerminated by a third-party debugger) at run-timee do

transaction. Namely, it is guaranteed that a pbbtismessage
would be received by either all of the subscril{grsuccessful)
or none of them (otherwise). To prevent potentiehdiock
caused by overlapping publishing attempts, a timeopadded
to each request.

C. Runtime System Management Protocol

In order to support dynamic system reconfiguratand
maintain consistency between the configuration rmétion
stored in the system manager and copies of thalt helthe
modules, a runtime system management protocoled. ughis
protocol utilizes TCP for its ease of use. Giverttlthe
messages used for these purposes are normally shodsing

software BUGs. Assuming the aforementioned prowewke
correctly implemented by all modules, our desigargatees
the execution of other modules will not be affectad the
crashed one.

When a module crashes, its TCP connection to thema
system manager would be lost. Upon detecting suehtethe
runtime system manager would initiate the log-offqgdure on
behalf of the crashed module and send notificatiessages to
other modules in the same way as if the crashedulaaslas
logging off gracefully.

If a module crashes in the middle of a messageighibd
operation, the termination of the publishing threedld trigger

TCP, which is shown to be suboptimal in terms ofadathe automatic release of all mutex objects it h¢k#, hence

throughput (see Table 1), should not lead to digait
performance penalty.

transferring the access permission of the sharedamneblocks
to other modules. Therefore, the potential deadtzaised by a

As explained above, each module maintains a TC$ashed module is eliminated. Furthermore, to prevee

connection to the system manager during its elifegecycle.
This connection is used by the runtime system memagt
protocol for message exchanging. The messages adlexl ¢
runtime-system-management-messages and are transpar

shared memory blocks from being corrupted by haiften

messages produced by crashed modules, we exmgdadhthat
writing to a well-aligned 32-bit memory chunk takasy one
machine instruction and is hence atomic [24]. Tfoee as long

remote channel

creation

Acknowledgement messages include: ACK (approved)

SMCB-E-2012-04-0349.R3

as we do not write intermediate value to the deigth indicator
residing in the first 4 bytes (which are guarantd¢edbe
well-aligned) of the shared memory block, all hatftten
messages would be automatically discarded or ovteewrby
subsequent accesses to the buffer.

Last but not least, since each module executessiown
virtual address space, there is no danger of grir@mory
corruption when another module crashes.

E. Interoperability with Other Message Passing Middleware

One limitation of the shared-memory-based datasprart
protocol is all communicating modules must residete same
computer. However, this limitation can be overcofmg
interoperating with existing TCP/IP based messaassipg
middleware.

including module ID, algorithm parameters (e.g.ssifier
coefficients), input / output message specificatfery. video
resolution) and so on. As a remedy to this probleerefine the
original concept of module and introduce two terthe,module
class and the module instance. The basic idea isete
distinguish between task-specific requirements gederic
specifications of a module. This concept is lenonfr
object-oriented programming paradigm, hence theilaim
terminology.
1) Module Class

A module class consists of a generic implementatiba
function unit. It usually contains a group of fileeluding the
algorithm implementation, a help document, instanegariant
data / binary files, and similar. Hence, a modués< can be
called a module package. In addition, the modwsscprovides

Another advantage of interoperating with existing, template specifying which task-dependent infoionatit
middleware is the users of the HCI"2 Framework mMayeeds to create an instance for specific use.

conveniently reuse the modules and / or subsystiewsloped
using these tools in their new system built upoa HCI*2
Framework.

To store module class information including theansiation
template into what we call a module descriptioe,fd standard
XML semantics is defined. In particular, each medul

Because the HCI"2 Framework does not impose ascription file encapsulates the following.

restrictions to the behaviour of the modules ag las they are
capable of communicating with other modules throulgé
aforementioned protocols, special ‘bridging modutaay be
developed by implementing the protocols definecbbth the

HCI* 2 Framework and the existing middleware to be

interoperated with. As an example, a pair of meda sender
and a receiver) are developed to facilitate messagkanging
between the HCI*2 Framework and ActiveMQ. In partc,
the sender module subscribes to an input chanribeikCI2
Framework, translates all received messages toveld)
format, and publishes the messages to a specif@yeMQ
topic, while the receiver module relays the messajeng the
opposite direction.

With the inclusion of these ‘bridging modules’, nsystems
developed using the HCI*2 Framework may deleggiaeraof
its functionality to an old system build upon ailsérg message
passing middleware, or
middleware’s communication capability to pass mgssa
between multiple subsystems running on differemmaters.

F. Module Class and Module Instance

Although the P/S architecture eliminates dependsnci
between the modules and improves flexibility of tleveloped
system, it does not necessarily lead to reusabldules. The
key issue here is that of the structural dependddegsider the
following case. Suppose that both a face detectiodule and
an object tracking module take input from a singtkeo stream
related to a ‘Video_In’ channel. In this casehif face detector
runs on greyscale images while the object trackeuires
colour information, their requirement to the ‘Viddo’
channel’'s message format will be different. Consexdjy, these
two modules will not be able to co-exist in the sagystem
without being modified. The hard-coded channel ID a
module’s implementation generates unnecessary depey to
its local environment, hence limits its reusability

A module developed using Psyclone [9], ActiveMQ][1dY
Fleeble [13] may contain even more hard-coded méion

simply take advantage of the

1) Content file list, which specifies the files inckdlin the
module package. We define three types of files: the
algorithm (also known as the module programme), the
help document, and the miscellaneous dependereigs (
DLLs, data files, etc.). The module programme scexed
each time a module class' instance is activateldotAer
files are optional.

Input / output (I/0) specification, which defindgtinput /
output channels to which the module may subscrilet@a
which it may publish. Instead of using a fixed I€ch
channel is identified by its local (within the seopf the
module class only) alias. During instantiation, thannel
aliases will be mapped to the IDs of the chanrels are
actually used in the particular system. By using th
channel mapping mechanism, the modules no longer
display structural dependency on their local emrinent,
and may be reused in different systems.

Parameter template specifies the rest of the taplktient
information. In terms of parameters, each paramister
defined by its name, type, default value, and range

Note that in this paper we use the term module ras a

abbreviation of module class, unless the discusisi@bout a

particular system, when ‘module’ refers to a modngtance.

2) Module Instance
In addition to the generic data and operations igeal/by its

module class, each module instance also contaskssteecific

information. This information is stored in the asponding
module configuration file. Specifically, a modulendiguration

file contains the following fields:

2)

3)

1) Registration information including the module imsta’s
ID, inbox size, and secondary buffer capacity.

2) Channel mappings, which specify the correspondence
between the channel aliases and the actual chabeel
used by the particular system.

3) Value of the parameters defined in the module class

specification.

SMCB-E-2012-04-0349.R3

With an appropriate module configuration file, adule may
be easily reused in any system without modification

G. Centralized System Management

While the distributed nature of the P/S architetbrings
flexibility, as a side effect, it may also lead potentially
counter-intuitive and cumbersome system integratamd
testing process. Specifically, if all modules witlthe system
need to be executed as standalone applications tfges case in
Psyclone [9] and ActiveMQ [10]), the system woukl Hard to
build, configure, test and redistribute. To be ahlle
conveniently construct a system from existing medtlasses,
an explicit (visual) system representation is vitahis is
achieved in the HCI*2 Framework by means of the uted
warehouse and the system configuration files.

The module warehouse serves as a global storagbeof
module classes to be used as the system buildoak$l The
module warehouse maintains a content list in the fof a XML
file. This simple structure allows a module clagsbe easily
imported and / or exported, which hardly requiresren
operations than copying a folder.

The system configuration files are used to repreberactual
systems. Each such file specifies the channels,nibdule
instances, and the P/S relations between themlaBitoi the
module description files and the module configanafiles, we
define a standard XML semantics for the systemigaretion
files as well. In essence, a system configuratiencbnsists of
concatenated module configuration files specifyirgsystem’s
constituent module instances and a list of the wélsnit uses.
Since each system configuration file serves adfaeetained
repository of all information defining a given ssst, the
procedure for system reconfiguration and redistiiou are
reduced to mere file operations.

By using the module warehouse and the system aoafign
files, building a GUI-enabled IDE becomes a ratisy task.
An intuitive visual display (in the form of a dynamblock
diagram) of a given system’ structure can be easibduced
based on the relevant system configuration filetivating a
system or a part of it is also straightforward. TB& merely
needs to split the system configuration file intcodule
configuration files, pass them as command-line petars, and
execute the appropriate module programmes storethen
module warehouse.

1. HCI"2 FRAMEWORK IMPLEMENTATION

The HCI*2 Framework is implemented as a self-comtgi
open-source software development tool (currentliidbfor
Windows only). The overall architecture of the HEI®
Framework is illustrated in Fig. 3. The softwareckage is
divided into two major parts: the HCI*2 FramewoRkSand
the HCI*2 Framework IDE.

The HCI*2 Framework SDK comes as a set of libraries

implementing the protocols described in sectioHe HCI*2
Framework IDE is divided into three parts: the mledu
packaging tools for module debugging and packagthg,
system construction workbench for system integnatamd

HCI*2 Framework IDE

System Construction Workbench

Module Packaging Tools

Module
Configuration
File Editor

System Redistribution Tools

Module
Programme
Debugger

Module
Description
File Editor

Basic
Server

System
Controller

System
Configurator

HCI*2 Framework SDK

HCI2ModuleHelpers.lib

HCI2AdaptedModulePlug.lib HCI2RedistributionHelpers.lib

HCI2BasicPlugs.lib HCI2Documents.lib

HCI2Exceptions.lib

Windows Platform SDK

Fig. 3. Architecture of the HCI"2 Framework.
testing, and the system redistribution tools fopaking the
developed systems as self-contained readily-depleya
application packages.

As shown in Fig. 3, the entire HCI"2 Framework iedtly
built upon Windows Platform SDK (and C++ Standard
Template Library) with no additional dependencyamry other
software. Moreover, the HCI*2 Framework is deliekire both
source-code and binary forhBoth features greatly simplify
the installation of the framework and the redisttibn
procedure of the systems developed using it.

A. HCI™2 Framework SDK

The HCI"2 Framework SDK is a set of libraries faating
module development. It includes several C++ classes
implementing all protocols described in Section IThese
classes are categorized into the following six gsou
1) Exception hierarchy used to represent various meti
errors. In addition to textual description, thelesses also
implement call stack tracing and cross-thread etaep
handling (i.e., allowing an exception thrown fromeo
thread to be handled by another thread) to provide
developers with more accurate information about the
nature of the error.

Basic communication adapters implementing the data
transport protocol and the runtime system managemen
protocol.

File handler classes for parsing and composing teodu
description files, module configuration files, asgstem
configuration files.

Integrated plug-in component to further simplifyeth
development of HCI*2 Framework IDE-compatible
modules by integrating the module-side communicatio
adapter and the module configuration file parséo i
single component.

Module development helper classes providing adutio
functionalities including enhanced flow control addta
synchronisation between multiple input streams.

System redistribution helper classes facilitatingdole
warehouse management, file system object management
and console output redirection. These classessefaldor
developing task-specific system controller / comfagion
utilities.

2)

3)

4)

5)

6)

! Available athttp://ibug.doc.ic.ac.uk/resources/hci2-framework/

SMCB-E-2012-04-0349.R3

‘% HCI*2 Workbench - [Face_Detection.xml]

k\g Create Channel

File Control View Help 3 z
: |An active module instance | S
e HER) e [,
rg Default Camera { Colour Converter : 'y Face Detector
(7 &) aByte [0 Byt V(@4 Loome) 600 | (¢ Loows f15.00mB
5 Video Capturer : Colour Space Converter |! A Viola Jones Face Detectar
! s i =
ﬁ-q D) video Out ;J Q\J‘ldeo In 4 () Video Out 1:\ J 0 Video In | () Face Boxes Out
______________ st somemTTeT |

| An inactive module instance | .-' | \
7 % A

1

I'; Impart Module Class
| Available module classes

G

Colour Based Object
Detector
<—Video In

/

a oo |
|An active channel (channels are always active) |

- Object Position Out

/ @-
',\D Colour_Video

Redrected Console Output | Module Instance Parameters - [2]

{ :
/ : I
H ; @ Grayscale_Video
i |
7~ §

' i Colour Space Converter
[ﬁ <--\Video In
: -->\ideo Qut
Face Boxes Marker

S
/‘\ «<--Face Boxes In
¥ = <--Video In

- \ideo Out

| The main working area |§V'.
[|

exe" “C:\DPOCUME~1'\hhj%LOCALS~1%Temp \WE_SES. tmp"
Colour space conversion started.
| |Press ahy key to guit...

C:\Documents and Settingsi\hhj\Desktopi\Just for Testingi\Redist_2010.05 12 \Bin\HCI
2workbench_module_warehouse\18cbTef3-0dib-45bT-8348-6c7b8sarzarai»"Clirconverter.

8 NS-Shaft Controller
(" g <— 1P Object Position In
\ <-- 2P Object Position In

R

System log /| module instance output and parameters | |

b Video Capturer
ﬂ;{;} —= Video Cut

Ready

Server Port: 4708

Fig. 4. The main window of the system constructi@rkbench.
Note that most classes included in the HCI*2 Fraonkw 2) System Construction Workbench

SDK follow the design pattern of interface / implemation
separation. This allows us to eliminate referenc&3S-specific
datatypes from the SDK’s exported classes, thudtieg in a
platform-independent interface. Consequently, albduoie

programmes developed using the HCI*2 Framework SBK
naturally platform-independent on source-code leiérefore,

these modules may be easily migrated to anotheratipg
system as soon as the framework is re-implementethat
platform.

B. HCI®2 Framework IDE

The HCI*2 Framework IDE is a GUIl-enabled, easyde-u

integrated development environment for module dgvakent
and system integration. The IDE is divided into thedule
packaging tools, the system construction workbemacid, the
system redistribution tools.
1) Module Packaging Tools

Since every module class is fully specified by ritedule

description file, creating such a file is the ostgp of module

packaging. Hence, the central component of the ieodihytput and its parameters. If no module instascselected, a

packaging tools is the module description file @ditwhich
enables users to create and edit module descrifiésnusing
an easy-to-understand GUI. Other programmes indlimi¢he
module packaging tools are provided to supportyestege
module debugging, that is, testing the module pEogne
before importing it into the module warehouse. $jedly, the

module configuration file editor enables usersreate example

module configuration file for the module programmieder

testing, and the module programme debugger faeititeonsole

output redirection and enables the module progrartumiee
tested in a simulated environment.

The system construction workbench provides antimeuGUI
for system integration, testing, and redistributidts main

window (see Fig. 4) is split into three areas: ghstem editing
area (top-left), the status area (bottom-left), #mel module

class list (right).
The system editing area displays the visual reptaten of
the system under construction and enables usersasdy

modify its structure (e.g., adding / removing madinstances /

channels, establishing / cancelling channel magspiraic.)

using mouse clicks. As shown in Fig. 4, every medaoktance

is represented by a button, which can be presseadtieate or

deactivate it. Toolbar buttons are also providedrtable users
to activate or deactivate the whole system usisiggle mouse

click. The activation state of the module is indéchby the
button’s colour (green means active, while purpleans
inactive). Subscriptions are represented by theslitinking
modules to the channels they are subscribed to.

The status area displays the details of the cuyreetected
module instance, including the module’s redirecteshsole

log of system events will be presented in this area

The module class list shows all available moduless#s
in the module warehouse. Each module class

stored
represented by a button with a popup menu fadilgatnodule
instantiation, removal, exporting, and updating. ddle
updating is particularly useful for module testirgjince the
system construction workbench allows a module ctasbe

updated without affecting the current system stngctand the

activation state of the module instances, users @ffigiently
fine-tune a module class without being requiredemonfigure
or restart the whole system before testing eaclsicev All
accesses to the module warehouse are synchronistte,

SMCB-E-2012-04-0349.R3

there is no danger of data corruption when two @rem
instances of the system construction workbenchuaeing at
the same time.

The system construction workbench enables devedofmer
save / load the current system structure into hfie system
configuration file. This file can be copied to amet machine
for system redistribution.

3) System Redistribution Tools

To deploy a system on a machine which does not treve
HCI?2 Framework installed, the following items mulse
included in the redistribution package.

1) The system configuration file.

2) All module classes used by the system.

3) A system controller for parsing the system configion
file and managing the system at runtime.

4) A system configuration utility enabling users tguesd the

system’s parameters.

The system configuration file and the module clagsn be
produced by the system construction workbench, ewttie
system redistribution tools provide a generic immatation of
the other two items. Since the programmes inclutiethe
system redistribution tools do not rely on any taspkcific
knowledge, they can be used in all system redigidh
packages.

IV. MIDDLEWARE PERFORMANCEEVALUATION
This section provides a quantitative comparisonvbenh the

HCI*2 Framework, Psyclone, and ActiveMQ in terms of

maximum data throughput and average message latency

The experiment was conducted using a mock-up systen

running on a single computer. The system contawueral data
sources and data sinks. A variety of data sourcae wsed
during the experiment, each outputting at a speddita-rate to
simulate a typical type of audio or video strearne Tata rate
we considered include 8 KB/s (8 kHz / 8-bit / 1 mhal audio),
187.50 KB/s (48 kHz / 16 bit / 2 channel audio5 MB/s
(352x288 / 3 channel / 25 FPS video), 26.37 MBAD{@I80 / 3
channel / 30FPS video) and many other values wittérrange
between 8KB/s and 26.37 MB/s. In order to simuldte
behaviour of real-time audio and / or video sourdks data
sources were allowed to drop messages. We thendaade
number of data sinks into the systems to simulaiata d
processing modules. By changing the number of thestules
and the data sources’ output data rate, we weestalgidjust the
overall communication workload in the mock-up systéVe
then measured the actual data rate (which canvizr filvan the
overall source data rate due to message droppirthpeerage
message latency in the mock-up system under diffézgels of
communication workload. The test was repeated fines,
each time for a different type of dispatcher (HCFramework
channel, ActiveMQ topic / queue, or Psyclone wrotsid /
stream) provided by the three tested frameworks.

Results of this experiment (conducted on a Delpimms
N5010 laptop with Intel Core i5 M430 CPU @ 2.27 Gated 4
GB of memory) are shown in Fig. 5 - Fig. 7. Fign8icates that
both ActiveMQ and Psyclone dispatchers start teedhe data
sources to drop messages when the overall soutaerata is
above 102.4 MB/s. This is because these dispatarersio

10

e 1 ~
% 09 ——HCI"2
ﬂci» 0.8 Framework
g 0.7 —— Psyclone
=3 82 (Whiteboard)
a 04 —— Psyclone
% 03 (Stream)
8 02 —8— ActiveMQ
s0l (Topic)

—¥— ActiveMQ

(Queue)

Overall Source Data Rate (MB/s)

Fig. 5. Message dropping rate of the data souncgdQI*2 Framework

Psyclone, and ActiveMQ at different levels of oWlesaurce data rate.

900
800
700
600
500
400
300
200
100

——HCr2
Framework

—— Psyclone
(Whiteboard)

—&— Psyclone
(Stream)

—8— ActiveMQ
(Topic)

—#— ActiveMQ
(Queue)

Actual Data Rate (MB/s)

Overall Source Data Rate (MB/s)

Fig. 6. Actual data rate achieved by HCI"2 FraméwdPsyclone, iad
ActiveMQ at different levels of overall source daste.

10000

——HCI2
Framework

—— Psyclone
(Whiteboard)

—&— Psyclone
(Stream)

—8— ActiveMQ
(Topic)

—¥— ActiveMQ
(Queue)

1000

100

10

1

Message Latency (ms)

01 |°

0.01

Overall Source Data Rate (MB/s)

Fig. 7. Average message latency in HCI*2 Framewdtkyclone, ar
ActiveMQ at different levels of overall source daste.

longer capable of delivering all messages produmgdhe
sources at these rates. In comparison, the averegpsage
dropping rate for the data sources running in thel"#
Framework is constantly zero during the entire expent.

The same trend is also visible in Fig. 6. As shaowthe figure,
only the HCI*2 Framework is able to achieve the esattual
data rate (up to 818.4 MB/s) as the overall sodata rate in
the mock-up system during the whole test. All ofn@meworks
/ dispatchers reach their maximum data throughphénathe
overall source data rate is 204.8 MB/s. Specificathe
maximum data throughput is 138.1 MB/s for Psycl@mben
using streams as dispatchers) and 94.8 MB/s foivé&l&Q
(when using queues as dispatchers), respectivelie that the
maximum data throughput of both Psyclone and AdiQe
which are 5.24 and 3.59 times the data rate 6F% 640x480
RGB video stream, respectively, may not be highughoto
meet the requirement of MHCI systems for it is matommon
for such systems to capture several high-resolutimeo
streams simultaneously from multiple views.

Regarding the message latency (shown in Fig. 7)yef
consider only values obtained when all frameworksrew
performing well (i.e., when no message droppingucey the
HCI"2 Framework outperforms all tested frameworkst b
ActiveMQ. The HCI*2 Framework also outperforms AetilQ
if heavier workload situations are taken into cdesation.

SMCB-E-2012-04-0349.R3

V. DEMONSTRATION OFUSAGE

To demonstrate the ease of use of the HCI*2 Framhefwo
integrating heterogeneous modules, we developedrber of
example modules working with a variety of hardwarmed
software. We then integrated some of the modulés &
readily-applicable system called the CamGame. Th
open-source demo systéis an interactive system allowing
users to play a computer game using hand-held m{aykand
low-cost camera(s) instead of keyboard and mouse.

A. Inclusion of Modules

The implemented example modules are summarizecliheT
lll. Two of these modules — the Video Capturer &malVideo
File Reader — are built upon Microsoft DirectShowhis
decision was made because DirectShow is considéred
optimal choice for developing Windows applicatiatesaling
with video and / or audio streams. Note, howevet tlue to its
complex architecture, using DirectShow is not sidfitask.
This is often the reason for developers to uselsimpols such
as OpenCV and / or Windows Platform SDK'’s videoessing
interfaces, which are less powerful than DirectSlaod often
suffer from compatibility issues. By incorporatinthe
DirectShow-based video capturing and decoding iotm
modules, we effectively enable future users of H@&I"2
Framework to utilize DirectShow for their systenvel®epment
while freeing them from the workload of getting kviedgeable
in using DirectShow.

The ActiveMQ Receiver / Sender and Psyclone Recdive
Sender are the ‘bridging modules’ used to facditatessage
exchanging between HCI*2 Framework and ActiveMQ an
Psyclone, respectively. Specifically, the sendedut® relays
messages from a HCI*2 Framework channel to an iy
topic (or a Psyclone whiteboard) while the receiwerdule
delivers messages in the opposite direction. @pécation of
these modules is to pass (high level) message&betmultiple
subsystems residing on different computers throAgiiveMQ
or Psyclone, hence to compensate for the limitabbrour
shared-memory-based data transport protocol. litiaddthese
modules also encourage developers to reuse anubextésting
systems built upon ActiveMQ and / or Psyclone hmiglating
the need for rebuilding every existing componerthig HCI2
Framework.

11

TABLE Il
A LIST OFEXAMPLE MODULES
Module Name Purpose Hardware Software
Dependencies| Dependencies
Video Capturer| Captures realtime | USB webcam DirectShow ary
video from a USB OpenCV 2.3.1
) webcam
ideo File Extracts video frameisNone DirectShow,
Reader from an offline video CODECs and
file OpenCV 2.3.1
CMS Receiver [Exchanges messagedNone ActineMQ 5.3.2
Sender between HCI"2 and ActiveMQ /
Framework and CMS SDK
ActiveMQ
Psyclone Exchanges messages\one Psyclone AIOS
Receiver / between HCI"2 1.1.7 and
Sender Framework and OpenAIR SDK
Psyclone
Message Relay| Implements a variaty None None
of flow cotrol
mechanisms
Video Synchronises input | None None
Synchroniser |video stream to a
trigger signal
Tobii Eye Tracks the user's gazd@obii Eye Tobii SDK
Tracker movement in realtimgTracker X120 |2.4.12 [20]
MS Kinect Captures realtime | Microsoft ‘Kinect for
Adapter video with per-pixel | Kinect Windows’ SDK
depth information 1.0.3.190 [21]
Video Renderer Renders realtime None None
video
Viola Jones Detects faces from | None OpenCV 2.3.1
Face Detector |the input video
stream
Colour Based | Tracks a user-selectetiione OpenCV 2.3.1
jObject Tracker | object in the input
video stream
Image Converts input None OpenCV 2.3.1
Converter frames to a different
format

only focus on their system development and theyaisabf the
captured gaze data.

The MS Kinect Adapter module is based on the ‘Kirfec
Windows’ SDK. Using Kinect and the SDK, the module
captures real-time colour video with per-pixel dept
information. The depth information can be deliveeexdeither
greyscale images (which are more suitable for s
analysis) or colour-coded images (which may beguadfle for
recording). In order to minimize the temporal niggament

Two other modules worth mentioning are the Tobiie Eybetween the colour video stream the depth fielelastr caused

Tracker and the MS Kinect Adapter. Built upon TE&RDK, the
Tobii Eye Tracker module tracks the user's gazeanmnt in
real-time using the Tobii Eye Tracker X120 devicghwa
sample rate of either 60 or 120 Hz. Apart fromghee tracking
algorithm, the module also delivers a GUI-basedialization
wizard’ tool which helps the user to choose, ifit& calibrate,
and test the eye tracker device in a step-by-stmer before
starting the gaze tracking process. Similar to @8aow, the
Tobii SDK is a powerful and comprehensive tool, yather
hard to use (especially when it comes to the fonstiand
classes related to calibration). With the inclusidrthe Tobii

by frame dropping (which is an inherent problenthaf Kinect
device), the module buffers several raw framesweagtfrom
both streams and pairs them based on the franmas:diamp.
This solution helps to set up an upper bound, wisch7ms
(half of the camera’s frame interval), for the terad disparity
between the two image streams.

B. CamGame: A Demo System

To demonstrate the usage of the HCI*2 Framework dD&
to provide a tutorial example for future users, Wwave
developed an open-source demo system called the>@anm

Eye Tracker module, future HCI*2 Framework usersy masee Fig. 8). The baseline CamGame system enatdesrdwo

ignore the cumbersome details of the Tobii SDKgdtber and

2 Available at: http://ibug.doc.ic.ac.uk/resourcesZhframework/

players to play a computer game using low-cost cafag(e.g.,
USB webcams) and hand-held marker(s) (any brigidlgured
rigid object may be used) instead of keyboard andse. The

SMCB-E-2012-04-0349.R3

| DIFFICULTY:
&23

5| RECORD:
T #0025k

Fig. 8. The baseline CamGame system in thesinglgepimode.
CamGame system is customizable to exploit othewutinp
modalities as well, such as face position and egeeglin
addition, since the overall structure of the systemdependent
from the game being controlled, the CamGame systmbe
reconfigured to control any conventional computamg with
few modifications to the command mapper module.

The baseline system requires three processingsstamgko
capturing, marker tracking, and command mapping. H&lee
developed a separate module class for each ofitbe tasks.

Video capturing is performed by the Video Captumedule,
a console programme which captures real-time vistegam
using DirectShow. The video capturer defines tip@®meters
enabling users to specify the source (the cameic}e frame
size (width and height) of the captured video sirea

There are many object tracking algorithms availaddiay [29]
[30]. We intended to keep the actual processingimple as
applicable. Thus we used the mean-shift based itigor
described in [22], which is relatively easy to ieplent while
yielding good tracking results. A brief descriptiofithe object
tracking algorithm is as follows.

1) Initialization: We model the target object as a &aan
distribution based on the colour histogram extmdtem

the region of interest. In order to keep the athomisimple,
we assume that the target is a uniformly colourej@ad.

Hence, the object model is only based on the prédorh
hue.

Tracking: in each new frame, we calculate everefsx
likelihood of belonging to the target object (basedthe

2)

12

»

&)

=

)

] D viden In | (D) Object Position Out

Default Camera
0Byte (0 Byte
Video Capturer

1P Object Tracker
1.00 MB f 16,00 MB
Colour Based Object Tracker

Game
64.00 KB [16.00 MB

T
"ﬁ NS-Shaft Controller

1P Object (— () 1P Object Position In

Q) 2p Object Position In

@ 2P Object

Fig. 9. The basline CamGame system in a cooperatode using a single

camera.
@ 1P Object
~

¢ # 1P Object Tracker
(¢ 4 1.00vB | 16.00 MB
3 Colour Based Object Tracker

Q) video In | () Object Position Out

() viden Out

@ Video
12

O Video In | @ Object Position Out

-

@

2P Object Tracker
1.00 MB f 16.00 MB
Colour Based Object Tracker

"% Geme
(i 4 s4.00KB | 16.00 MB

NS-Shaft Controller
) 1P Object Position In

(o 2 Comera (% 7P Object Tracker Q) 2 Object Position In
(7 g 0Byt= 0 Byt= " ¢ 1.00MB [16.00 MB
' Video Capturer 4 Calour Based Object Tracker
(D video Out / O Video In ‘ (D) Object Position Out
| ﬂ 2P Video \ @ 2P Object

Fig. 10. The baseline CamGame system in a coope#atde using tw
cameras, one for each player.

results (including the marker’s position, size, amgntation)
and output them to an appropriate output chanrfed. fiodule
also allows the player to refine the target modehtanually
adjusting the track box on-the-fly.

A command mapper is used to map the input objesitipo
into an appropriate keyboard message as to cotteoyame
(note that we did not develop a game but a gaméaltar).
Since the assumption is that the game itself ig cotrolled by
two keys, which are ‘left’ and ‘right’, the mappirsgheme is
rather simple, which merely maps the marker pasito ‘left’
and ‘right’ according to its horizontal orientation

The actual structure of the baseline system istifhtied in Fig.
8. It consists of 3 module instances, one of efagsdntroduced
above, connected by 2 channels. This version i tsplay the
game in the single-player mode. The system can dsilye
upgraded to enable two players to play the gameain
cooperative-mode. Fig. 9 and Fig. 10 illustrate fpassible
versions of such an upgraded system. In the fiession, a
single camera is used to capture both players,ewinilthe

target object colour model). We then apply theecond version, two cameras are used, one perrplayeoth

CAMSHIFT algorithm [22] to the resulting probabjiit
map to obtain an estimate of the target objecttioosin
the current frame (i.e., its centre, size, andreiton).
Updating: To be able to handle gradual change
illumination, the object colour model is continubus
updated (with a small learning rate) using theodgjstm
extracted from the image patch within the areahef t
tracking result obtained in the latest frame.

In practice, the marker tracker has been built m®dule (the
Colour Based Object Tracker module) that takestifimum a
video channel and displays the tracking resultgcatdd by an
ellipse. It requires the player to initialize thhadking process by
selecting the marker in the first input video fran@nce
initialized, the module will continuously produceadking

3)

versions, there are two instances of the markekéraand
marker-position channel as to enable the productow
delivery of the control messages for both players.

INSince the game controlling mechanism and the input
acquisition method are decoupled, the CamGamersysia be
further customized to incorporate other input miigsl by
reconfiguring the front-end multimodal input acdtids
subsystem. As examples,
CamGame variants using face position and eye gasiggn are
shown in Fig. 11 and Fig. 12, respectively. In fingt variant,
the object tracker is replaced by the Viola & Jofaes detector
[16]. This is the most commonly used face deteictdhe field
[5] [31] [32]. Here it is used to detect the largésce in the
scene and output the face position to the commaapper's

the system configuratiohs o

SMCB-E-2012-04-0349.R3

19 Face Gamexmi* - HCI*2 Workbench

DIFFICULTY

RE
!'TOOZSA‘

o
:

§

LIFE

#T0007F

i| DIFFICULTY:
&23

i| RECORD:
= #F00250

‘‘‘‘‘

Fig. 12. The CamGame variant using eye gaze paositio

input channel. In the second variant, the entirenthfend
subsystem is substituted by a Tobii eye tracket {83rack
user's eye gaze position in real-time [34]

Currently, the CamGame system is bond to a paatiggdme
called NS-SHAFT (freely available at:
http://www.nagi-p.com/eng/nsshaft.html). A more egei

command mapper module can be developed to ena

keyboard- and mouse-free control for an arbitraagng. This
can be achieved by enabling the player to custorttize
mapping relations between input object positionsl dine

underlying Windows messages used to control theegarhis /
her choice. More complex scheme may be proposedKiyg

temporal information into account (i.e., how loisgtle object
on a certain location and / or how fast it charteslocation).
Nonetheless, according to our preliminary testg, simple
method we described here tends to produce satisfasults
for many games that do not feature intense actam,(Super
Mario and other classic arcade games of the kind).

Last but not least, the 3rd-party software usedthia
CamGame system is not limited to games. With fe
modifications, any software accepting standard \Whvsl
keyboard and / or mouse messages can be used.,Hbace
CamGame system may be easily modified for integmaitito
various (existing) human-computer interaction syste

VL.

We have proposed a software framework to facilithie
development of multimodal human-computer
systems. This software framework, which is called HCI*2

CONCLUSION

interactio

13

Framework, consists of a combination of SDK and @bkbled
utilities to provide complete support for the syste
development procedure, including module programme
development, system construction, testing, andstelliition.

Internally, the HCI*2 Framework adopts a P/S aetttitre to
support flexible system structures while uses aeshenemory
based data transport to guarantee reliable delieérhigh
data-rate message stream with low latency. Theopobtis
robust against crash-prone faulty modules and esstiie
execution of other modules will not be affectecckgshed ones.
In addition, with the introduction of ‘bridging makbs’, the
HCI"2 Framework is interoperable with some existimgssage
passing middleware including ActiveMQ and Psyclone.

To facilitate module reusing, we have refined tbacept of
module into two related terms, which are the modidss and
the module instance. Based on the design of madaiehouse
and the XML semantics for system configurationsfilee have
proposed a centralized system management schenieh wh
greatly simplifies system construction, testing, dan
redistribution.

The HCI*2 Framework is implemented as a self-cowizhi
open-source software development tool. It considtsthe
HCI"2 Framework SDK, which implements the aforeramd
protocols, and the HCI*2 Framework IDE, which poms a
complete GUIl-enabled environment facilitating madul
development and system integration.

The quantitative comparison shows that our fram&wor
outperforms the other similar tools including Psyd and
ActiveMQ in terms of maximum data throughput andssage
latency under a typical single PC scenario.

To demonstrate the HCI*2 Framework’'s ease of use in
integrating heterogonous modules, we have developed
number of example modules interacting with a vgriet
%%rdware and software, including Microsoft Direa®h

penCV, Tobii Eye Tracker, and Microsoft Kinect. sikl
these modules, we further built a readily-applieallemo
system called the CamGame, which enables playeptatoa
computer game using hand-held marker(s) and orginar
low-cost camera(s) instead of keyboard and mouse.

The redistribution package of the HCI*2 Framework
(including the CamGame system) is now publicly de at:
http://ibug.doc.ic.ac.uk/resources/hci2-framewdukider BSD
licence: http://opensource.org/licenses/BSD-3-Glaus

ACKNOWLEDGEMENT
The authors would like to thank Wenzhe Shi of Ingder

\ﬁollege London for his involvement in the developinand

testing of the CamGame system. We would also tikbank all
members of the Intelligent Behaviour Understandimngup for
testing the HCI*2 Framework. This work has beerpsuied by
the European Research Council under the ERC Sja@mant
agreement no. ERC-2007-StG-203143 (MAHNOB). The
current work by Jie Shen is also supported by theojfiean
Union’s 7th Framework Programme [FP7/2007-2013]eund
grant agreement no. 288235 (FROG).

SMCB-E-2012-04-0349.R3

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
9]
(10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

(19]

[20]

[21]

REFERENCES

M. Pantic, and L. J. M. Rothkrantz, “Towards aneaffsensitive
multimodal human-computer interaction”, Proceediofjthe IEEE, vol.
91, no. 9, pp. 1370-1390, September 2003.

A. Jaimes, and N. Sebe, "Multimodal human—compirt@Eraction: a
survey", Computer Vision and Image Understanding, 108, no.1-2, pp.
116-134, 2007.

M. Pantic, A. Pentland, A. Nijholt and T.S. Huafiguman computing
and machine understanding of human behavior: aegynArtificial
Intelligence For Human Computing, T.S. Huang, Aihblit, M. Pantic
and A. Pentland, Eds. Springer, Lecture Notes itifiéial Intelligence,
vol. 4451, pp. 47-71, 2007.

M. Pantic, A. Nijholt, A. Pentland and T. Huang, diian-centred
intelligent human-computer interaction (HEIhow far are we from
attaining it?”, Intl Journal of Autonomous and Autave
Communications Systems, vol. 1, no. 2, pp. 168-2808.

Z. Zeng, M. Pantic, G.I. Roisman and T.S. Huang,sthvey of affect
recognition methods: audio, visual, and spontaneapgessions”, IEEE
Transactions on Pattern Analysis and Machine Igggice, vol. 31, no. 1,
pp. 39-58, 2009.

A. Pentland, “Looking at People: Sensing for Ubfqus and Wearable
Computing”, Transactions on Pattern Analysis anditze Intelligence,
vol. 22, no. 1, pp. 107-119, 2000.

L. Maat, and M. Pantic, “Gaze-X: adaptive affectiveltimodal interface
for single-user office scenarios”, Atrtificial Intigence for Human
Computing, T. S. Huang, A. Nijholt, M. Pantic, aAd Pentland, Eds.
Springer, Lecture Notes in Atrtificial Intelligenosl. 4451, pp. 251-271,
2007.

“MSDN: DirectShow (Windows)”, Dec. 4, 2008. [Onéih Available:
http://msdn.microsoft.com/en-us/library/dd375454(85%.aspx.

“Communicative Machines: Pscylone”, 2007. [Onlin&}ailable:
http://ww.cmlabs.com/psyclone/.

“Apache ActiveMQ”, 2009. [Online], Available:
http://activemq.apache.org/.

J-Y. Lawson, J. Vanderdonckt, and B. Macq, “Rapidtgtyping of
multimodal interactive applications based on o#-#helf heterogeneous
components”, Adjunct Proceedings of the 21st And@\ Symposium
on User Interface Software and Technology, pp. 2,12008.

J. Shen, and M. Pantic, “A Software Framework foultWhodal
Human-Computer Interaction Systems”, Proceeding HEE
Inrernational Conference on Systems, Man and Cyotis) pp.
2038-2045, 2009.

M. Pantic, R.J. Grootjans, and R. Zwitserloot, &k agent framework
for teaching an introductory course in Al", IADISnhtérnational
Conference Cognition and Exploratory Learning irgifail Age, pp.
525-530, 2004.

K. R. Thorisson, H. Benko, D. Abramov, A. Arnold, i8askey, and A.
Vaseekaran, “Constructionist design methodology fateractive
intelligences”, Al Magazine, vol. 25, no. 4, pp.9@; 2004.

S. Meyers, “Minimize compilation dependencies betwéles”. Efective
C++: 50 Specific Ways to Improve Your Programs d@ebigns 2nd
Edition, pp. 140-148, Addison Wesley, October, 1997

P. Viola, and M. J. Jones, “Robust real-time faegction”, International
Journal of Computer Vision, vol. 57, no. 2, pp. 4154, 2004.

D. Comaniciu, V. Ramesh, P. Meer, “Real-time tragkbf non-rigid
objects using mean-shift”, IEEE Conference on Camplision and
Pattern Recognition, vol. 2, pp. 438-445, 2000.

“MSDN: Inter-Process Communications”, Feb. 12, 2009nline].
Available:http://msdn.microsoft.com/en-us/librag&65574(VS.85).as
pX.

P. Dabak, S. Phadke, and M. Borate, “Local procedaall”,
Undocumented Windows NT, Foster City: M&T Books,999 pp.
143-189.

Tobii SDK, 2010. [Online]. Available:
http://www.tobii.com/en/assistive-technology/gldipabducts/partner-so
ftware/third-party-program/sdk/

Microsoft Kinect for Windows SDK, Feb. 01, 2012.Hle]. Available:
http://www.microsoft.com/en-us/kinectforwindows/eéésp/overview.as
pX.

14

[22] G. R. Bradski, "Computer Vision Face Tracking f@eln a Perceptual
User Interface”, Intel Technology Journal, No. Q®98. [Online].
Available:
ftp://download.intel.com/technology/itj/q21998/petimshift.pdf

[23] “MSDN: Mutex Objects”, Mar. 07, 2012. [Online]. Aiable:
http://msdn.microsoft.com/en-us/library/windowsktep/ms684266(v

=vs.85).aspx.

[24] “MSDN: Interlocked Variable Access”, Mar. 07, 2012Online].
Available:
http://msdn.microsoft.com/en-us/library/windowskteg/ms684122(v
=vs.85).aspx.

[25] A. Camurri, S. Hashimoto, M. Ricchetti, A. Ricci, Buzuki, R. Trocca
and G. Volpe, “Eyesweb: Toward gesture and affectognition in
i.nteractive dance and music systems”, Computeridvimurnal vol. 24,
no. 1, pp. 57-69, 2000.

[26] M. Schroder, “The SEMAINE API: Towards a StandaBised
Framework for Building Emotion-Oriented Systems,’dvances in
Human-Computer Interaction, vol. 2010, Article IRRBI06, 21 pages,
2010. doi:10.1155/2010/319406.

[27] M. Schroder, E. Bevacqua, R. Cowie, F. Eyben, Hhé&SuD. Heylen, M.
Maat, G. Mckeown, S. Pammi, M. Pantic, C. Pelach&idchuller, E.
Sevin, M. F. Valstar and M. Woellmer, “Building Aartomous Sensitive
Artificial Listeners”, IEEE Transactions on Affecé\Computing, vol. 3,
no. 2, pp. 165-183, 2011

[28] W. Richard Stevens, “Chapter 12. Shared Memonpthiction”. Unix
Network Programming: Interprocess Communicattiop, B03-323,
Prentice Hall PTR, 1999.

[29] A. Yilmaz, O. Jamed and M. Shah, “Object TrackiAgSurvey”, ACM
Computing Surveys, vol. 38, no. 4, article 13, 452006.

[30] H. Yang, L. Shao, F. Zhen and L. Wang and Z. StRgcent advances
and trends in visual tracking: A review”, Neurocartipg, vol. 74, no. 18,
pp. 3823-3831, 2011.

[31] M. Pantic, “Machine Analysis of Facial BehaviouratNralistic and
Dynamic Behaviour”, Philosophical Transactionsh&f Royal Society B:
Biological Sciences, vol. 364 no. 1535, pp. 35033%009.

[32] MF Valstar, M Mehu, B Jiang, M Pantic and K Schetbteta-Analysis
of the First Facial Expression Recognition ChallEn¢EEE Transaction
on Systems, Man, and Cybernetics, Part B: Cybasetol. 42, no. 4: pp.
966-979, 2012.

[33] Tobii T60 & T120 Eye Tracker. [Online]. Available:
http://www.tobii.com/en/eye-tracking-research/glgp@ducts/hardwar
e/tobii-t60t120-eye-tracker/

[34

J. Lichtenauer, J. Shen, M. F. Valstar and M. RaritCost-Effective
Solution to Synchronised Audio-Visual Data Captursing Multiple
Sensors”, Image and Vision Computing, vol. 29, ®iopp. 666-680,
2011.

Jie Shenis a Ph.D. candidate at Imperial College
London, Department of Computing, U.K. He received
B.Eng. in Electric Engineering in 2005 from Zhejjan
University, China, and M.Sc. in Advanced Computing
in 2008 from Imperial College London, U.K. He wodke
as a research assistant, in intelligent video diianee,

at Institute of Automation, Chinese Academy of
Sciences from 2005 to 2007. His current research
interests include affect-sensitive human-computer
interaction and software / hardware platform forll4gstems. He is a student
member of IEEE.

.p- Maja Pantic is Professor in Affective and Behavioural
Computing at Imperial College London, Department of
Computing, UK, and at the University of Twente,
Department of Computer Science, the Netherlands. Sh
received various awards for her work on automatic
analysis of human behaviour including the European
Research Council Starting Grant Fellowship 2008 and
the Roger Needham Award 2011. She currently serves
as the Editor in Chief of Image and Vision Compgtin
Journal and as an Associate Editor for both théElEEansactions on Systems,
Man, and Cybernetics Part B and the IEEE Transastam Pattern Analysis
and Machine Intelligence. She is a Fellow of thEEE

NN 2

