
SMCB-E-2012-04-0349.R3 1

Abstract—This paper presents a novel software framework for

the development and research in the area of multimodal
human-computer interaction (MHCI) systems. The proposed
software framework, which is called the HCI^2 Framework, is
built upon publish / subscribe (P/S) architecture. It implements a
shared-memory-based data transport protocol for message
delivery and a TCP-based system management protocol. The latter
ensures that the integrity of system structure is maintained at
runtime. With the inclusion of ‘bridging modules’, the HCI^2
Framework is interoperable with other software frameworks
including Psyclone and ActiveMQ. In addition to the core
communication middleware, we also present the integrated
development environment (IDE) of the HCI^2 Framework. It
provides a complete graphical environment to support every step
in a typical MHCI system development process, including module
development, debugging, packaging, and management, as well as
the whole system management and testing. The quantitative
evaluation indicates that our framework outperforms other
similar tools in terms of average message latency and maximum
data throughput under a typical single PC scenario. To
demonstrate HCI^2 Framework’s capabilities in integrating
heterogeneous modules, we present several example modules
working with a variety of hardware and software. We also present
an example of a full system developed using the proposed HCI^2
Framework, which is called the CameGame system and represents
a computer game based on hand-held marker(s) and low-cost
camera(s).

Index Terms—Publish / Subscribe Architecture, Multimodal
Human-Computer Interface, Software Framework

I. INTRODUCTION

LONG with the rapid increase in computational power and
network bandwidth during the past decades, the trend in

the computing industry started to shift from PC-centred
applications to services delivered through ubiquitous computing
in a more human centred manner [1] [4] [7]. With this recent
development, multimodal human-computer interfaces (MHCI)
became an emerging research topic. Unlike traditional

Manuscript received 19/04/2012. This work has been supported by the

European Research Council under the ERC Starting Grant agreement no.
ERC-2007-StG-203143 (MAHNOB).

Jie Shen and Maja Pantic are with Imperial College London, 180 Queen’s
Gate, London, SW7 2AZ, UK.

Maja Pantic is also with University of Twente, Twente, NL

human-computer interfaces (e.g. based on keyboard, mouse,
and so on), MHCI interact with users through natural modalities
including facial expression, body gesture, verbal and non-verbal
vocal cues [4] [7]. Arguably, MHCI not only simplify the use of
computer systems, but also reduce user distraction and increase
user satisfaction and productivity. Hence, MHCI are naturally
seen as a (necessary) step towards future pervasive systems [1]
[2].

Nevertheless, developing MHCI is not an easy task. The
difficulty comes from two issues. Firstly, machine interpretation
of human behaviour and multimodal human-computer dialogue
modelling are closely related to context sensing [3] [4] and, in
turn, to the famous hard AI problem - the frame problem of AI
[6] (roughly, the frame problem is knowing which facts are
relevant to the current reasoning problem and which facts are
irrelevant). Secondly, because MHCI systems are normally
constructed from a large number of highly interdependent and
interwoven heterogeneous algorithmic units, the system
integration is often cumbersome. While the former has been
acknowledged and investigated by the research community, the
latter is largely overlooked. More specifically, most published
works use custom methods for system integration, resulting in
application-specific and non-extendable systems. In this paper,
we try to alleviate this problem by proposing a novel
publicly-available software framework for development of
MCHI systems being easily extendable, robust, and transparent.

A. Requirements for the Software Framework

An ideal MHCI system is expected to be, extendable,
responsive, ‘transparent’, and robust [1] – [4], [7]. Hence, we
propose a number of requirements for the software framework
with which the MHCI system is to be developed, summarized
into the following aspects.
1) Flexibility

Due to the complex nature of MHCI systems and the
algorithms they utilize, flexibility on both system level and
module level is essential.

On system level, any complex system structure should be
supported. Because feature-level and model-level (rather than
decision-level) multimodal-data-fusion-based approaches are
receiving increasing attention [4] [5], algorithms dealing with
different modalities are becoming more and more
interdependent. With this trend, complex spatial and temporal

HCI^2 Framework: A Software Framework for
Multimodal Human-Computer Interaction

Systems

Jie Shen and Maja Pantic

A

SMCB-E-2012-04-0349.R3 2

module relationships within MHCI systems should be expected
and therefore should be supported by the framework.

In addition, the framework should also support dynamic
system structure reconfiguration. Considering that most
algorithms only work well under very specific conditions,
dynamic system structure reconfiguration would be an effective
approach towards achieving an adaptive and robust
performance at system level. For instance, consider a general
facial feature point detector (FFPD) which works well for both
frontal view and profile view faces. Complexity of such an
algorithm is usually much higher than that of a specialized
detector (e.g. two FFPDs optimized for frontal and profile
images respectively which are activated / inactivated at runtime
depending on the current face view).

On module level, because algorithms dealing with different
modalities may vary drastically, the framework should not pose
restrictions on the modules’ internal structure. In other words,
local / remote procedure call (LPC/RPC)-based approaches,
which often require modules to be written in a predefined format
based on specific call-back mechanisms, do not suffice.
2) Middleware Performance

Since audio and video signals, which are both high-bit-rate
streams, are the primary information sources in most MHCI
systems, the framework’s underlying communication
middleware should be able to efficiently deliver large amount of
data.

Moreover, because MHCI systems are expected to react in
real-time to users’ (interactive) actions, a long time spent on
message delivery is unwanted, especially in large systems where
message latencies at each level of the processing cycle
accumulates over time in which the MHCI system is used. This
requires the communication middleware to facilitate message
delivery with short latency.

In addition, to achieve high overall efficiency for developed
MCHI systems, it is important for the framework to keep its
resource consumption low and support compiled modules
(modules written in languages such as C/C++).
3) Communication Reliability

Data loss may not have severe impact for systems having
fixed structure where only data messages are transmitted
between modules. However, for a system which may
reconfigure its structure based on triggers, loosing such
messages would result in significant performance loss.
Therefore, the framework should guarantee successful message
exchange or, at least, it should notify the sender if the delivery
fails.
4) Error Tolerance

It is not uncommon for prototype modules to crash (or being
terminated by a third-party debugger) at run-time due to BUGs
or invalid / unexpected input. In such cases, the framework
should be able to quarantine the error and keep other parts of the
system (including the framework it self) unaffected.
5) Module Reusability

Reusability is crucial for rapid prototyping and testing. This
is especially true for the front-end and low-level modules (e.g.
video / audio capturers, face detectors, audio feature extractors,
etc.), which are commonly a part of MHCI systems. To facilitate
module reusability, the modules should be implemented as

application / system – independent, preferably in (compiled and
packaged) binary form.
6) Software Usability

A good user interface is essential for satisfactory user
satisfaction. The software framework, despite the fact that its
targeted users are software developers and researchers, is no
exception from this rule. Instead of providing a set of loosely
correlated utilities, the software framework should deliver an
easy-to-use integrated graphical working environment enabling
the developers to build, test, and maintain their systems easily.

B. An Overview of Existing Tools

There are a number of existing tools of the kind we describe
here. These tools can be categorized into two types: software
frameworks based on LPC/RPC [8] [11] [25], and message
passing middleware based on publish / subscribe (P/S)
architecture [9] [10] (and their extensions such as Fleeble [13]
and SEMAINE API [26] [27]).

The LPC/RPC-based software frameworks generally have
good performance in terms of data throughput, message latency,
resource consumption level, and communication reliability.
They also provide good support to the development of reusable
modules and systems through GUI-enabled IDE. However, they
usually lack flexibility (on both system and module levels) and
are easily crashed by faulty modules.

Since the data transport in LPC/RPC-based approach is
usually achieved by a direct-call function of the module’s data
export interface, the connection between modules often
involves exchange of pointers. This scheme may result in tightly
coupled systems. One limitation of this approach is it hardly
supports feedback loops and dynamic system reconfiguration
(i.e., modifying the system’s internal structure at runtime). In
addition, because all modules are required to follow a
predefined call-back mechanism to facilitate data transport, the
possible ways in which the modules can be implemented
internally are limited. Last but not least, because tightly-coupled
systems are prone to cascading failure, one faulty module may
cause the entire system to break down.

In comparison, the existing message passing middleware
usually support flexible spatial and temporal structure of the
system and are more robust against module crashes. However,
these tools often have poor performance in terms of data
throughput, message latency, and resource consumption level.
For example, both Psyclone and ActiveMQ are designed for the
development of large scale distributed systems and internet
applications [9] [10], hence their data-transport protocols are
derived from TCP/IP, which is a suboptimal mean of
inter-process communication (IPC). Although Fleeble [13] had
a different design goal, it relies on Java Message Service (JMS),
which is also based on TCP/IP and resulted in a similar
performance penalty. The current version of SEMAINE API
shares the same problem because it uses ActiveMQ as its
underlying message passing middleware [26] [27].

In addition to the common performance problem, Psyclone
and ActiveMQ also lack built-in support to the development of
reusable modules. Although the P/S architecture naturally
eliminates the dependency between modules [14], the modules
are still dependent on their (usually hard-coded) local
environment (i.e., the channels they subscribe and / or publish

SMCB-E-2012-04-0349.R3 3

to), hence, lack of reusability support. Moreover, neither
Psyclone nor ActiveMQ featured a compact (visual)
representation of the system structure and an easy mean for
users to control the system at runtime.

A comprehensive overview of these tools is provided in Table
I (note that the HCI^2 Framework is also included in the table
for direct comparison). As shown in the table, none of them
fulfils all of the aforementioned requirements.

C. Contributions

Our work proposes a new software framework, which is called
the HCI^2 Framework (‘HCI^2’ stands for Human-Centred
Intelligent Human-Computer Interaction), fulfilling all of the
aforementioned requirements.

In order to meet the requirements regarding the system
flexibility, data rate, latency, and reliability, we design a
protocol for both runtime system management and data
transport. The runtime system management protocol is
proposed in compliance with the adopted Publish / Subscribe
(P/S) architecture, which brings natural support to complex and
dynamic systems [14]. To achieve reliable and efficient
message delivery, we develop a data transport protocol based on
shared-memory, which is shown to be the most efficient
inter-process communication (IPC) method in terms of data
throughput and average latency [12]. These protocols are
implemented by the framework’s core communication
middleware.

TABLE I
AN OVERVIEW OF EXISTING TOOLS

Flexibility Middleware Performance Software
Framework Restrictions

to System
Structure

Dynamic System
Structure

Reconfiguration

Restrictions to
Module’s Internal

Structure

Data
Throughput

Message
Latency

Resource
Consumption

Level

Communication
Reliability

Microsoft
DirectShow
[8]

No feedback
loops

Not supported Must comply to
predefined callback
mechanism

> 800 MB/s < 1ms CPU usage < 1% Guaranteed by
design

Open-
Interface [11]

No multicast Not supported Must comply to
predefined callback
mechanism

Could not be tested due to the lack of working examples
in public domain.

Guaranteed by
design

EyesWeb
[25]

None Not supported Must comply to
predefined callback
mechanism

> 800 MB/s < 1ms CPU usage < 5% Guaranteed by
design

Psyclone
AIOS [9]

None Supported None < 140 MB/s Up to 6900 ms CPU usage < 80% Message loss
detected

ActiveMQ
[10]

None Supported None < 100 MB/s Up to 650 ms CPU usage < 50% Timed-out
messages may be
discarded without
notice

Fleeble [13] None Supported None Did not test because it does not support C++ (see
subsection I.A.2).

Timed-out
messages may be
discarded without
notice

SEMAINE
API [26]

None Supported None Same as ActiveMQ

HCI^2
Framework

None Supported None > 800 MB/s < 1ms CPU usage < 1% Guaranteed by
design

Usability Software
Framework

Error Tolerance Module Reusability
GUI-Enabled

IDE
Supported
Languages

Note

Microsoft
DirectShow
[8]

The system will crash if any module
crashes

Modules can be reused in other
systems without modification

Provided C++, C#, VB Module
development is
relatively hard

Open-
Interface [11]

The system will crash if any module
crashes

Modules can be reused in other
systems without modification

Provided C++, Java, Matlab Poor documentation

EyesWeb
[25]

The system will crash if any module
crashes

Modules can be reused in other
systems without modification

Not provided C++

Psyclone
AIOS [9]

Unaffected by module crashes The source code may need to be
changed if a module is to be reused

Not provided C++, Java BUGs including
deadlock, access
error and connection
failure were detected

ActiveMQ
[10]

Unaffected by module crashes The source code may need to be
changed if a module is to be reused

Not provided C++, Java Memory leak were
detected

Fleeble [13] Unaffected by module crashes The source code may need to be
changed if a module is to be reused

Limited (no
graphical
system structure
representation)

Java

SEMAINE
API [26]

Unaffected by module crashes Modules can be reused in other
systems without modification

Provided C++, Java

HCI^2
Framework

Unaffected by module crashes Modules can be reused in other
systems without modification

Provided C++

a. All tests were conducted with Intel Core i5 CPU (4 cores) and 4 GB of memory.

SMCB-E-2012-04-0349.R3 4

We developed further a self-contained and easy-to-use
integrated development environment (IDE) to facilitate the
entire development cycle of MHCI systems. This tool, which is
called the HCI^2 Framework IDE, facilitates module reusability
and software usability. In particular, the HCI^2 Framework IDE
embodies the following features:
1) Complete development support of highly flexible and

reusable modules. To increase module reusability, we
discriminate between the concepts of module class and
module instance as explained in section II-D.

2) An easy-to-use centralized graphical user interface (GUI)
facilitating module management, system configuration,
module and system testing, and system redistribution.

D. Organization of the Paper

The rest of this paper is organized as follows. Section II
discusses the middleware design of the HCI^2 Framework,
including the P/S architecture, the runtime protocols, issues
regarding robustness and interoperability. Section III the
concepts of module class and module instance, and the
centralize system management scheme. The implementation of
this tool is described in section III. The evaluation of the HCI^2
Framework’s performance is presented in section IV. Section V
demonstrates the usage of HCI^2 Framework with several
example modules and the CamGame demo system. Section VI
concludes this paper.

II. CONCEPTUAL DESIGN

A. Publish / Subscribe Architecture

The core of the HCI^2 Framework consists of a middleware
facilitating Publish / Subscribe (P/S) communication between
modules at runtime. Fig. 1 illustrates an example system
containing three modules built with the HCI^2 Framework.
Each module is built as a standalone executable, which
internally calls the module-side (communication) adapter of the
framework to exchange messages with other modules. Different
from local / remote procedure-call-based approaches, in which
modules are implemented as components (DLLs, COM objects,
and so on), and are called by the framework or other modules,
modules in the HCI^2 Framework are granted explicit control
over their own execution route. In other words, these modules
do not have to follow any predefined internal structure model as
long as they can correctly call the framework’s module-side
adapter whenever communication is needed. In this way, a high
degree of flexibility at module level is achieved.

As illustrated in Fig. 1, modules do not send messages
directly to each other, but do so via logical message dispatchers,
which are called channels. Channels are named entities that
allow a single message to be dispatched to any number of
receivers which have previously shown ‘interest’ in receiving
information from the channel in question [13] [14]. The
mechanism behind is as follows. A module informs the
framework if it is ‘interested’ in messages of a certain type by
subscribing to the channel dedicated to that type of messages.
Then, whenever a message is sent (published) to that channel,
the message is automatically routed to all subscribers. With this

P/S mechanism, modules at both sending and receiving ends are
effectively isolated, which means that their dependency on the
presence of assumed upstream and / or downstream modules is
eliminated. In other words, a module can be used in any
circumstance as long as appropriate channels, which are always
the same type of entities but with different names, exist.
Therefore, development and using of context- and state-free
modules become possible [14].

With this P/S architecture, the structure of the system is fully
defined by the collection of channels and modules subscribed to
those channels. This simple and intuitive representation of
system configuration brings great flexibility since it does not
impose any explicit restriction on the topology of the network of
modules.

Dynamic system reconfiguration is facilitated by allowing
modules to initiate and / or cancel subscriptions to channels at
runtime. Execution of remaining modules is completely
unaffected because each module only sees its input and output
channels but not the upstream and downstream modules.
Therefore, dynamic system reconfiguration is implicitly and
naturally supported by the P/S architecture of the HCI^2
Framework.

All channels reside on a runtime system manager (server). It
represents a central repository which stores all information
regarding current system configuration at runtime, including a
list of channels, a list of working modules, and their
subscriptions. Although this central repository is not required in
theory, it effectively represents the system configuration at
runtime. In fact, the data transport protocol requires each
module to carry a copy of a subset of this information. In order
to maintain consistency between all these copies, TCP
connection is established between every module and the system
manager. A system management protocol is then used to
synchronize each module’s local copy of configuration
information with the original copy stored in system manger
whenever changes occur. More details on this issue are given
below.

B. Data Transport

Recall that achieving high data rate, low latency, and reliable
data transport, which was not met by tools like Psyclone and
ActiveMQ, is one of the most important requirements of a
MHCI-supportive software framework.

Fig. 1. Structure of an example system built with the HCI^2 Framework.

SMCB-E-2012-04-0349.R3 5

1) Choosing Inter-Process Communication Method
Because the data transport between modules in our framework

is basically inter-process communication (IPC), it is important
to choose a proper underlying IPC method in order to fulfil all
aforementioned requirements. The following criteria are crucial
when choosing an appropriate method.
1) The method should be general enough to support any

number of concurrent communication sessions, with
messages having arbitrary length.

2) The method should be reliable enough to guarantee
ordered data delivery (first sent, first received).

3) The method should be efficient enough, which means it
should have the potential to support high data rate and low
latency communication. This also means that more
fundamental methods would be favoured to avoid
performance overhead.

Cross-platform support is another concern for the underlying
IPC method. In general, it is desirable to use an IPC method
available to most widely-used operating systems including
Windows, Linux and OS X. This limits our choices to a subset
of POSIX-compliant IPC methods including TCP socket, UDP
socket, pipes, RPC and shared memory. Among these options,
UDP is not reliable enough (since packet-dropping is allowed),
while RPC and pipes can be inefficient (because they are often
implemented in terms of shared-memory and / or TCP), only
TCP and shared memory meet our requirements.

In practice, TCP is favoured by many exiting tools including
Psyclone and ActiveMQ due to its convenience of use and its
ability to connect multiple computers. However, our
experimental comparison between TCP and shared memory,
summarised in table II (results shown are obtain on Windows),
shows that shared memory can support much higher (up to 10
times) data throughput than TCP under every CPU consumption
constraint.

The major limitation of shared memory is it cannot be used to
exchange data between different computers. Nonetheless, this
disadvantage is considered acceptable for two reasons. Firstly,
since our framework is primarily designed to facilitate
single-computer applications, network communication is not a
major concern for data transport. Secondly, in cases when
message exchanging between sub-systems running on different
computers becomes necessary, it would be more efficient to
reuse other TCP-based tools to handle network-communication
while still using the shared memory-based protocol for local
data transport than to delivery all messages via TCP.

Hence, we choose shared memory as the underlying IPC
method.
2) Data Transport Protocol

Unlike most IPC methods, shared memory is hardly a
communication method. It simply allows developer to create
named global memory block, which can be mapped into
processes’ address space in order to share data across process
boundary [18] [28]. There is no automatic locking for the
memory block for data corruption prevention, but the content of
mapped buffer is guaranteed to remain consistent when it is
accessed from different processes [18] [28].

Therefore, as the basis for the P/S communication, we define a
protocol implementing a reliable peer-to-peer (PTP)
communication through shared memory. We do so as follows.
1) Each peer allocates a named shared memory block, to be

used as its local inbox. Within the block, the first 4 bytes in
the address space are used to store an unsigned integer
representing the total amount of data currently stored in the
inbox. The remaining space is used to queue received data
messages.

2) Each message consists of a variable-length content string,
with a header section storing the message’s type ID,
sending time, and the sender’s name. The messages are
serialized into byte strings when they are written into the
receiving peer’s inbox.

3) In order to prevent data corruption caused by simultaneous
multiple access, each peer creates a named mutex object to
protect its shared memory block. The mutex object is used
as the shared memory block’s access-control token, which
must be acquired by any reader / writer before it can access
the shared memory block’s content.

4) Each peer exploits a named event object as an indicator
(flag) of whether there is any message pending in its local
inbox. As a less resource-demanding alternative to busy
waiting strategy, this event is used to ensure that every
message will be retrieved as soon as it is pushed into the
inbox.

5) When a message is sent, the sender obtains first the target
inbox’s access permission by acquiring its access-control
token (i.e., the aforementioned mutex object). Then, it
pushes the serialized data message into the receiving
peer’s message queue, modifies the shared memory
block’s leading bytes to reflect the new data length, sets
the inbox’s flag event to indicate that there is a message
waiting and finally releases the token.

6) Each peer uses a thread to constantly monitor its
flag-event’s state. Whenever a ‘message waiting’ state is
detected, the thread parses the local inbox’s content
(through protected reading operations), retrieves and splits
the buffered data into separate messages, and then resets
the flag-event. The split messages are then delivered to
another buffer residing in the receiving peer’s private
memory space. Because shared memory facilitates secured
synchronous data exchange, the procedure contains
neither resynchronization step nor data validation step.

In addition to message exchange, the PTP communication
scheme also features a built-in flow control mechanism. Since
most algorithms used in a typical MHCI system are rather
time-consuming, it is not unusual for a module to lack sufficient
capacity to process all incoming data in time. In such case, the
unprocessed messages will be queued in the module’s internal

TABLE II
COMPARISON BETWEEN TCP AND SHARED MEMORY

CPU Usagea Data Rate of TCP Data Rate of Shared Memory
5% 9 MB/s 90 MB/s
20% 34 MB/s 230 MB/s
35% 40 MB/s 245 MB/s
50% 55 MB/s 225 MB/s
65% 73 MB/s 245 MB/s
80% 80 MB/s 280 MB/s

a. Conducted on a ThinkPad T43 laptop with 2.0 GHz Pentium M CPU and 1 GB of memory.

SMCB-E-2012-04-0349.R3 6

buffer. This waste of memory is not only unnecessary but also
harmful to the system’s stability. To solve this problem, we
insert a secondary buffer between each peer’s local inbox and its
output buffer, as illustrated in Fig. 2. The secondary buffer is
organized into an automatically growing queue with a fixed
maximum capacity. If the module’s message retrieval rate
cannot catch up with the input rate, the secondary buffer will be
eventually piled full and consequently block new income of
messages. Hence, the message source will be forced to wait
before subsequent messages can be successfully sent. In this
way, the message rate in each processing pipeline will converge
to an optimal level over time.

We extend this protocol to P/S communication as a collection
of individual PTP message sending sessions. Let us explain this
in more detail. In the HCI^2 Framework, channel only exists as
a logical concept. It is actually a collection of subscriptions used
to guide message routing. In practice, the runtime system
manager stores these collections of subscriptions. Whenever a
module needs to publish a message, it simply retrieves the list of
the target channel’s subscribers and then sends the message
directly to every subscriber through the PTP protocol described
above. In this way, message publishing is reduced to a number
of PTP message sending sessions, where the reliability is
guaranteed. To further improve communication reliability, the
sequence of sending operations is bound into a single
transaction. Namely, it is guaranteed that a published message
would be received by either all of the subscribers (if successful)
or none of them (otherwise). To prevent potential deadlock
caused by overlapping publishing attempts, a timeout is added
to each request.

C. Runtime System Management Protocol

In order to support dynamic system reconfiguration and
maintain consistency between the configuration information
stored in the system manager and copies of that held by the
modules, a runtime system management protocol is used. This
protocol utilizes TCP for its ease of use. Given that the
messages used for these purposes are normally short, choosing
TCP, which is shown to be suboptimal in terms of data
throughput (see Table II), should not lead to significant
performance penalty.

As explained above, each module maintains a TCP
connection to the system manager during its entire life cycle.
This connection is used by the runtime system management
protocol for message exchanging. The messages are called
runtime-system-management-messages and are transparent to

module developers. Three types of runtime system management
messages are defined:
1) Request messages include: module registration request,

remote channel creation request, remote channel
destruction request, module subscription request, and
subscription cancellation request. These messages are sent
from a module to the system manager when the module
requests a change in the system structure. The system
manager is then required to answer every request with an
acknowledgement message. Note that module logoff
request is unnecessary because shutting down the TCP
connection carries the same information.

2) Notification messages include: channel creation
notification, channel destruction notification, module
subscription notification, and subscription cancellation
notification. These messages are sent from the system
manager to all modules in order to indicate changes in the
system structure. Upon receiving, a module should update
its local copy of the channel list to reflect the new
configuration. Note that there is no module registration
notification and module logoff notification as such; the
system manager sends out appropriate subscription
cancelation notification whenever a module logs off.

3) Acknowledgement messages include: ACK (approved)
and NACK (rejected) sent by the system manager as the
answer to a module’s request.

Based on the runtime system management messages, protocol
operations are defined including module registration, channel
creation, module subscription. These operations have the form
of a standard request-process-acknowledge procedure, and a
further description of these is therefore unnecessary in our
opinion.

D. Robustness against Faulty Modules

It is not uncommon for a prototype module to crash (or being
terminated by a third-party debugger) at run-time due to
software BUGs. Assuming the aforementioned protocols are
correctly implemented by all modules, our design guarantees
the execution of other modules will not be affected by the
crashed one.

When a module crashes, its TCP connection to the runtime
system manager would be lost. Upon detecting such event, the
runtime system manager would initiate the log-off procedure on
behalf of the crashed module and send notification messages to
other modules in the same way as if the crashed module was
logging off gracefully.

If a module crashes in the middle of a message publishing
operation, the termination of the publishing thread would trigger
the automatic release of all mutex objects it holds [23], hence
transferring the access permission of the shared memory blocks
to other modules. Therefore, the potential deadlock caused by a
crashed module is eliminated. Furthermore, to prevent the
shared memory blocks from being corrupted by half-written
messages produced by crashed modules, we exploit the fact that
writing to a well-aligned 32-bit memory chunk takes only one
machine instruction and is hence atomic [24]. Therefore, as long

Fig. 2. The internal buffer layout of a receiving peer.

SMCB-E-2012-04-0349.R3 7

as we do not write intermediate value to the data length indicator
residing in the first 4 bytes (which are guaranteed to be
well-aligned) of the shared memory block, all half-written
messages would be automatically discarded or overwritten by
subsequent accesses to the buffer.

Last but not least, since each module executes in its own
virtual address space, there is no danger of private-memory
corruption when another module crashes.

E. Interoperability with Other Message Passing Middleware

One limitation of the shared-memory-based data transport
protocol is all communicating modules must reside on the same
computer. However, this limitation can be overcome by
interoperating with existing TCP/IP based message passing
middleware.

Another advantage of interoperating with existing
middleware is the users of the HCI^2 Framework may
conveniently reuse the modules and / or subsystems developed
using these tools in their new system built upon the HCI^2
Framework.

Because the HCI^2 Framework does not impose any
restrictions to the behaviour of the modules as long as they are
capable of communicating with other modules through the
aforementioned protocols, special ‘bridging modules’ may be
developed by implementing the protocols defined by both the
HCI^ 2 Framework and the existing middleware to be
interoperated with. As an example, a pair of modules (a sender
and a receiver) are developed to facilitate message exchanging
between the HCI^2 Framework and ActiveMQ. In particular,
the sender module subscribes to an input channel in the HCI^2
Framework, translates all received messages to ActiveMQ
format, and publishes the messages to a specified ActiveMQ
topic, while the receiver module relays the messages along the
opposite direction.

With the inclusion of these ‘bridging modules’, new systems
developed using the HCI^2 Framework may delegate a part of
its functionality to an old system build upon an existing message
passing middleware, or simply take advantage of the
middleware’s communication capability to pass messages
between multiple subsystems running on different computers.

F. Module Class and Module Instance

Although the P/S architecture eliminates dependencies
between the modules and improves flexibility of the developed
system, it does not necessarily lead to reusable modules. The
key issue here is that of the structural dependency. Consider the
following case. Suppose that both a face detection module and
an object tracking module take input from a single video stream
related to a ‘Video_In’ channel. In this case, if the face detector
runs on greyscale images while the object tracker requires
colour information, their requirement to the ‘Video_In’
channel’s message format will be different. Consequently, these
two modules will not be able to co-exist in the same system
without being modified. The hard-coded channel ID in a
module’s implementation generates unnecessary dependency to
its local environment, hence limits its reusability.

A module developed using Psyclone [9], ActiveMQ [10], or
Fleeble [13] may contain even more hard-coded information

including module ID, algorithm parameters (e.g. classifier
coefficients), input / output message specification (e.g. video
resolution) and so on. As a remedy to this problem, we refine the
original concept of module and introduce two terms, the module
class and the module instance. The basic idea here is to
distinguish between task-specific requirements and generic
specifications of a module. This concept is lent from
object-oriented programming paradigm, hence the similar
terminology.
1) Module Class

A module class consists of a generic implementation of a
function unit. It usually contains a group of files including the
algorithm implementation, a help document, instance-invariant
data / binary files, and similar. Hence, a module class can be
called a module package. In addition, the module class provides
a template specifying which task-dependent information it
needs to create an instance for specific use.

To store module class information including the instantiation
template into what we call a module description file, a standard
XML semantics is defined. In particular, each module
description file encapsulates the following.
1) Content file list, which specifies the files included in the

module package. We define three types of files: the
algorithm (also known as the module programme), the
help document, and the miscellaneous dependencies (e.g.
DLLs, data files, etc.). The module programme is executed
each time a module class' instance is activated. All other
files are optional.

2) Input / output (I/O) specification, which defines the input /
output channels to which the module may subscribe and to
which it may publish. Instead of using a fixed ID, each
channel is identified by its local (within the scope of the
module class only) alias. During instantiation, the channel
aliases will be mapped to the IDs of the channels that are
actually used in the particular system. By using this
channel mapping mechanism, the modules no longer
display structural dependency on their local environment,
and may be reused in different systems.

3) Parameter template specifies the rest of the task-dependent
information. In terms of parameters, each parameter is
defined by its name, type, default value, and range.

Note that in this paper we use the term module as an
abbreviation of module class, unless the discussion is about a
particular system, when ‘module’ refers to a module instance.
2) Module Instance

In addition to the generic data and operations provided by its
module class, each module instance also contains task-specific
information. This information is stored in the corresponding
module configuration file. Specifically, a module configuration
file contains the following fields:
1) Registration information including the module instance’s

ID, inbox size, and secondary buffer capacity.
2) Channel mappings, which specify the correspondence

between the channel aliases and the actual channel IDs
used by the particular system.

3) Value of the parameters defined in the module class
specification.

SMCB-E-2012-04-0349.R3 8

With an appropriate module configuration file, a module may
be easily reused in any system without modification.

G. Centralized System Management

While the distributed nature of the P/S architecture brings
flexibility, as a side effect, it may also lead to potentially
counter-intuitive and cumbersome system integration and
testing process. Specifically, if all modules within the system
need to be executed as standalone applications (as is the case in
Psyclone [9] and ActiveMQ [10]), the system would be hard to
build, configure, test and redistribute. To be able to
conveniently construct a system from existing module classes,
an explicit (visual) system representation is vital. This is
achieved in the HCI^2 Framework by means of the module
warehouse and the system configuration files.

The module warehouse serves as a global storage of the
module classes to be used as the system building blocks. The
module warehouse maintains a content list in the form of a XML
file. This simple structure allows a module class to be easily
imported and / or exported, which hardly requires more
operations than copying a folder.

The system configuration files are used to represent the actual
systems. Each such file specifies the channels, the module
instances, and the P/S relations between them. Similar to the
module description files and the module configuration files, we
define a standard XML semantics for the system configuration
files as well. In essence, a system configuration file consists of
concatenated module configuration files specifying the system’s
constituent module instances and a list of the channels it uses.
Since each system configuration file serves as a self-contained
repository of all information defining a given system, the
procedure for system reconfiguration and redistribution are
reduced to mere file operations.

By using the module warehouse and the system configuration
files, building a GUI-enabled IDE becomes a rather easy task.
An intuitive visual display (in the form of a dynamic block
diagram) of a given system’ structure can be easily produced
based on the relevant system configuration file. Activating a
system or a part of it is also straightforward. The IDE merely
needs to split the system configuration file into module
configuration files, pass them as command-line parameters, and
execute the appropriate module programmes stored in the
module warehouse.

III. HCI^2 FRAMEWORK IMPLEMENTATION

The HCI^2 Framework is implemented as a self-contained
open-source software development tool (currently build for
Windows only). The overall architecture of the HCI^2
Framework is illustrated in Fig. 3. The software package is
divided into two major parts: the HCI^2 Framework SDK and
the HCI^2 Framework IDE.

The HCI^2 Framework SDK comes as a set of libraries
implementing the protocols described in section II. The HCI^2
Framework IDE is divided into three parts: the module
packaging tools for module debugging and packaging, the
system construction workbench for system integration and

testing, and the system redistribution tools for exporting the
developed systems as self-contained readily-deployable
application packages.

As shown in Fig. 3, the entire HCI^2 Framework is directly
built upon Windows Platform SDK (and C++ Standard
Template Library) with no additional dependency on any other
software. Moreover, the HCI^2 Framework is delivered in both
source-code and binary form.1 Both features greatly simplify
the installation of the framework and the redistribution
procedure of the systems developed using it.

A. HCI^2 Framework SDK

The HCI^2 Framework SDK is a set of libraries facilitating
module development. It includes several C++ classes
implementing all protocols described in Section II. These
classes are categorized into the following six groups.
1) Exception hierarchy used to represent various runtime

errors. In addition to textual description, these classes also
implement call stack tracing and cross-thread exception
handling (i.e., allowing an exception thrown from one
thread to be handled by another thread) to provide
developers with more accurate information about the
nature of the error.

2) Basic communication adapters implementing the data
transport protocol and the runtime system management
protocol.

3) File handler classes for parsing and composing module
description files, module configuration files, and system
configuration files.

4) Integrated plug-in component to further simplify the
development of HCI^2 Framework IDE-compatible
modules by integrating the module-side communication
adapter and the module configuration file parser into a
single component.

5) Module development helper classes providing additional
functionalities including enhanced flow control and data
synchronisation between multiple input streams.

6) System redistribution helper classes facilitating module
warehouse management, file system object management,
and console output redirection. These classes are useful for
developing task-specific system controller / configuration
utilities.

1 Available at: http://ibug.doc.ic.ac.uk/resources/hci2-framework/

Fig. 3. Architecture of the HCI^2 Framework.

SMCB-E-2012-04-0349.R3 9

Note that most classes included in the HCI^2 Framework
SDK follow the design pattern of interface / implementation
separation. This allows us to eliminate references to OS-specific
datatypes from the SDK’s exported classes, thus resulting in a
platform-independent interface. Consequently, all module
programmes developed using the HCI^2 Framework SDK are
naturally platform-independent on source-code level. Therefore,
these modules may be easily migrated to another operating
system as soon as the framework is re-implemented on that
platform.

B. HCI^2 Framework IDE

The HCI^2 Framework IDE is a GUI-enabled, easy-to-use
integrated development environment for module development
and system integration. The IDE is divided into the module
packaging tools, the system construction workbench, and the
system redistribution tools.
1) Module Packaging Tools

Since every module class is fully specified by its module
description file, creating such a file is the only step of module
packaging. Hence, the central component of the module
packaging tools is the module description file editor, which
enables users to create and edit module description files using
an easy-to-understand GUI. Other programmes included in the
module packaging tools are provided to support early-stage
module debugging, that is, testing the module programme
before importing it into the module warehouse. Specifically, the
module configuration file editor enables users to create example
module configuration file for the module programme under
testing, and the module programme debugger facilitates console
output redirection and enables the module programme to be
tested in a simulated environment.

2) System Construction Workbench
The system construction workbench provides an intuitive GUI

for system integration, testing, and redistribution. Its main
window (see Fig. 4) is split into three areas: the system editing
area (top-left), the status area (bottom-left), and the module
class list (right).

The system editing area displays the visual representation of
the system under construction and enables users to easily
modify its structure (e.g., adding / removing module instances /
channels, establishing / cancelling channel mappings, etc.)
using mouse clicks. As shown in Fig. 4, every module instance
is represented by a button, which can be pressed to activate or
deactivate it. Toolbar buttons are also provided to enable users
to activate or deactivate the whole system using a single mouse
click. The activation state of the module is indicated by the
button’s colour (green means active, while purple means
inactive). Subscriptions are represented by the lines linking
modules to the channels they are subscribed to.

The status area displays the details of the currently selected
module instance, including the module’s redirected console
output and its parameters. If no module instance is selected, a
log of system events will be presented in this area.

The module class list shows all available module classes
stored in the module warehouse. Each module class is
represented by a button with a popup menu facilitating module
instantiation, removal, exporting, and updating. Module
updating is particularly useful for module testing. Since the
system construction workbench allows a module class to be
updated without affecting the current system structure and the
activation state of the module instances, users may efficiently
fine-tune a module class without being required to reconfigure
or restart the whole system before testing each revision. All
accesses to the module warehouse are synchronized. Hence,

Fig. 4. The main window of the system construction workbench.

SMCB-E-2012-04-0349.R3 10

there is no danger of data corruption when two or more
instances of the system construction workbench are running at
the same time.

The system construction workbench enables developers to
save / load the current system structure into / from a system
configuration file. This file can be copied to another machine
for system redistribution.
3) System Redistribution Tools

To deploy a system on a machine which does not have the
HCI^2 Framework installed, the following items must be
included in the redistribution package.
1) The system configuration file.
2) All module classes used by the system.
3) A system controller for parsing the system configuration

file and managing the system at runtime.
4) A system configuration utility enabling users to adjust the

system’s parameters.
The system configuration file and the module classes can be

produced by the system construction workbench, while the
system redistribution tools provide a generic implementation of
the other two items. Since the programmes included in the
system redistribution tools do not rely on any task-specific
knowledge, they can be used in all system redistribution
packages.

IV. MIDDLEWARE PERFORMANCE EVALUATION

This section provides a quantitative comparison between the
HCI^2 Framework, Psyclone, and ActiveMQ in terms of
maximum data throughput and average message latency.

The experiment was conducted using a mock-up system
running on a single computer. The system contains several data
sources and data sinks. A variety of data sources were used
during the experiment, each outputting at a specific data-rate to
simulate a typical type of audio or video stream. The data rate
we considered include 8 KB/s (8 kHz / 8-bit / 1 channel audio),
187.50 KB/s (48 kHz / 16 bit / 2 channel audio), 7.25 MB/s
(352x288 / 3 channel / 25 FPS video), 26.37 MB/s (640x480 / 3
channel / 30FPS video) and many other values within the range
between 8KB/s and 26.37 MB/s. In order to simulate the
behaviour of real-time audio and / or video sources, the data
sources were allowed to drop messages. We then added a
number of data sinks into the systems to simulate data
processing modules. By changing the number of these modules
and the data sources’ output data rate, we were able to adjust the
overall communication workload in the mock-up system. We
then measured the actual data rate (which can be lower than the
overall source data rate due to message dropping) and average
message latency in the mock-up system under different levels of
communication workload. The test was repeated five times,
each time for a different type of dispatcher (HCI^2 Framework
channel, ActiveMQ topic / queue, or Psyclone whiteboard /
stream) provided by the three tested frameworks.

Results of this experiment (conducted on a Dell Inspiron
N5010 laptop with Intel Core i5 M430 CPU @ 2.27 GHz and 4
GB of memory) are shown in Fig. 5 - Fig. 7. Fig. 5 indicates that
both ActiveMQ and Psyclone dispatchers start to cause the data
sources to drop messages when the overall source data rate is
above 102.4 MB/s. This is because these dispatchers are no

longer capable of delivering all messages produced by the
sources at these rates. In comparison, the average message
dropping rate for the data sources running in the HCI^2
Framework is constantly zero during the entire experiment.

The same trend is also visible in Fig. 6. As shown in the figure,
only the HCI^2 Framework is able to achieve the same actual
data rate (up to 818.4 MB/s) as the overall source data rate in
the mock-up system during the whole test. All other frameworks
/ dispatchers reach their maximum data throughput when the
overall source data rate is 204.8 MB/s. Specifically, the
maximum data throughput is 138.1 MB/s for Psyclone (when
using streams as dispatchers) and 94.8 MB/s for ActiveMQ
(when using queues as dispatchers), respectively. Note that the
maximum data throughput of both Psyclone and ActiveMQ,
which are 5.24 and 3.59 times the data rate of a 30FPS 640x480
RGB video stream, respectively, may not be high enough to
meet the requirement of MHCI systems for it is not uncommon
for such systems to capture several high-resolution video
streams simultaneously from multiple views.

Regarding the message latency (shown in Fig. 7), if we
consider only values obtained when all frameworks were
performing well (i.e., when no message dropping occurs), the
HCI^2 Framework outperforms all tested frameworks but
ActiveMQ. The HCI^2 Framework also outperforms ActiveMQ
if heavier workload situations are taken into consideration.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.
1

0.
2

0.
4

0.
8

1.
6

3.
2

6.
4

12
.8

25
.6

51
.2

10
2

20
5

41
0

81
9

Overall Source Data Rate (MB/s)

M
es

sa
ge

 D
ro

pp
in

g
R

at
e HCÎ 2

Framework

Psyclone
(Whiteboard)

Psyclone
(Stream)

ActiveMQ
(Topic)

ActiveMQ
(Queue)

Fig. 5. Message dropping rate of the data sources in HCI^2 Framework,
Psyclone, and ActiveMQ at different levels of overall source data rate.

0
100
200
300
400
500
600
700
800
900

0.
1

0.
2

0.
4

0.
8

1.
6

3.
2

6.
4

12
.8

25
.6

51
.2

10
2

20
5

41
0

81
9

Overall Source Data Rate (MB/s)
A

ct
ua

l D
at

a
R

at
e

(M
B

/s
) HCÎ 2

Framework

Psyclone
(Whiteboard)

Psyclone
(Stream)

ActiveMQ
(Topic)

ActiveMQ
(Queue)

Fig. 6. Actual data rate achieved by HCI^2 Framework, Psyclone, and
ActiveMQ at different levels of overall source data rate.

0.01

0.1

1

10

100

1000

10000
0.

1

0.
2

0.
4

0.
8

1.
6

3.
2

6.
4

12
.8

25
.6

51
.2

10
2

20
5

41
0

81
9

Overall Source Data Rate (MB/s)

M
es

sa
ge

 L
at

en
cy

 (m
s)

HCÎ 2
Framework

Psyclone
(Whiteboard)

Psyclone
(Stream)
ActiveMQ
(Topic)

ActiveMQ
(Queue)

Fig. 7. Average message latency in HCI^2 Framework, Psyclone, and
ActiveMQ at different levels of overall source data rate.

SMCB-E-2012-04-0349.R3 11

V. DEMONSTRATION OF USAGE

To demonstrate the ease of use of the HCI^2 Framework for
integrating heterogeneous modules, we developed a number of
example modules working with a variety of hardware and
software. We then integrated some of the modules into a
readily-applicable system called the CamGame. This
open-source demo system2 is an interactive system allowing
users to play a computer game using hand-held marker(s) and
low-cost camera(s) instead of keyboard and mouse.

A. Inclusion of Modules

The implemented example modules are summarized in Table
III. Two of these modules – the Video Capturer and the Video
File Reader – are built upon Microsoft DirectShow. This
decision was made because DirectShow is considered the
optimal choice for developing Windows applications dealing
with video and / or audio streams. Note, however, that due to its
complex architecture, using DirectShow is not a trivial task.
This is often the reason for developers to use simpler tools such
as OpenCV and / or Windows Platform SDK’s video accessing
interfaces, which are less powerful than DirectShow and often
suffer from compatibility issues. By incorporating the
DirectShow-based video capturing and decoding into our
modules, we effectively enable future users of the HCI^2
Framework to utilize DirectShow for their system development
while freeing them from the workload of getting knowledgeable
in using DirectShow.

The ActiveMQ Receiver / Sender and Psyclone Receiver /
Sender are the ‘bridging modules’ used to facilitate message
exchanging between HCI^2 Framework and ActiveMQ and
Psyclone, respectively. Specifically, the sender module relays
messages from a HCI^2 Framework channel to an ActiveMQ
topic (or a Psyclone whiteboard) while the receiver module
delivers messages in the opposite direction. One application of
these modules is to pass (high level) messages between multiple
subsystems residing on different computers through ActiveMQ
or Psyclone, hence to compensate for the limitation of our
shared-memory-based data transport protocol. In addition, these
modules also encourage developers to reuse and extend existing
systems built upon ActiveMQ and / or Psyclone by eliminating
the need for rebuilding every existing component in the HCI^2
Framework.

Two other modules worth mentioning are the Tobii Eye
Tracker and the MS Kinect Adapter. Built upon Tobii SDK, the
Tobii Eye Tracker module tracks the user’s gaze movement in
real-time using the Tobii Eye Tracker X120 device with a
sample rate of either 60 or 120 Hz. Apart from the gaze tracking
algorithm, the module also delivers a GUI-based ‘initialization
wizard’ tool which helps the user to choose, initialize, calibrate,
and test the eye tracker device in a step-by-step manner before
starting the gaze tracking process. Similar to DirectShow, the
Tobii SDK is a powerful and comprehensive tool, yet rather
hard to use (especially when it comes to the functions and
classes related to calibration). With the inclusion of the Tobii
Eye Tracker module, future HCI^2 Framework users may
ignore the cumbersome details of the Tobii SDK altogether and

2 Available at: http://ibug.doc.ic.ac.uk/resources/hci2-framework/

only focus on their system development and the analysis of the
captured gaze data.

The MS Kinect Adapter module is based on the ‘Kinect for
Windows’ SDK. Using Kinect and the SDK, the module
captures real-time colour video with per-pixel depth
information. The depth information can be delivered as either
greyscale images (which are more suitable for subsequent
analysis) or colour-coded images (which may be preferable for
recording). In order to minimize the temporal misalignment
between the colour video stream the depth field stream caused
by frame dropping (which is an inherent problem of the Kinect
device), the module buffers several raw frames captured from
both streams and pairs them based on the frames’ time-stamp.
This solution helps to set up an upper bound, which is 17ms
(half of the camera’s frame interval), for the temporal disparity
between the two image streams.

B. CamGame: A Demo System

To demonstrate the usage of the HCI^2 Framework IDE and
to provide a tutorial example for future users, we have
developed an open-source demo system called the CamGame
(see Fig. 8). The baseline CamGame system enables one or two
players to play a computer game using low-cost camera(s) (e.g.,
USB webcams) and hand-held marker(s) (any brightly-coloured
rigid object may be used) instead of keyboard and mouse. The

TABLE III
A LIST OF EXAMPLE MODULES

Module Name Purpose Hardware
Dependencies

Software
Dependencies

Video Capturer Captures realtime
video from a USB
webcam

USB webcam DirectShow and
OpenCV 2.3.1

Video File
Reader

Extracts video frames
from an offline video
file

None DirectShow,
CODECs and
OpenCV 2.3.1

CMS Receiver /
Sender

Exchanges messages
between HCI^2
Framework and
ActiveMQ

None ActineMQ 5.3.2
and ActiveMQ /
CMS SDK

Psyclone
Receiver /
Sender

Exchanges messages
between HCI^2
Framework and
Psyclone

None Psyclone AIOS
1.1.7 and
OpenAIR SDK

Message Relay Implements a variaty
of flow cotrol
mechanisms

None None

Video
Synchroniser

Synchronises input
video stream to a
trigger signal

None None

Tobii Eye
Tracker

Tracks the user’s gaze
movement in realtime

Tobii Eye
Tracker X120

Tobii SDK
2.4.12 [20]

MS Kinect
Adapter

Captures realtime
video with per-pixel
depth information

Microsoft
Kinect

‘Kinect for
Windows’ SDK
1.0.3.190 [21]

Video Renderer Renders realtime
video

None None

Viola Jones
Face Detector

Detects faces from
the input video
stream

None OpenCV 2.3.1

Colour Based
Object Tracker

Tracks a user-selected
object in the input
video stream

None OpenCV 2.3.1

Image
Converter

Converts input
frames to a different
format

None OpenCV 2.3.1

.

SMCB-E-2012-04-0349.R3 12

CamGame system is customizable to exploit other input
modalities as well, such as face position and eye gaze. In
addition, since the overall structure of the system is independent
from the game being controlled, the CamGame system can be
reconfigured to control any conventional computer game with
few modifications to the command mapper module.

The baseline system requires three processing stages: video
capturing, marker tracking, and command mapping. We have
developed a separate module class for each of the three tasks.

Video capturing is performed by the Video Capturer module,
a console programme which captures real-time video stream
using DirectShow. The video capturer defines three parameters
enabling users to specify the source (the camera) and the frame
size (width and height) of the captured video stream.

There are many object tracking algorithms available today [29]
[30]. We intended to keep the actual processing as simple as
applicable. Thus we used the mean-shift based algorithm
described in [22], which is relatively easy to implement while
yielding good tracking results. A brief description of the object
tracking algorithm is as follows.
1) Initialization: We model the target object as a Gaussian

distribution based on the colour histogram extracted from
the region of interest. In order to keep the algorithm simple,
we assume that the target is a uniformly coloured object.
Hence, the object model is only based on the predominant
hue.

2) Tracking: in each new frame, we calculate every pixel’s
likelihood of belonging to the target object (based on the
target object colour model). We then apply the
CAMSHIFT algorithm [22] to the resulting probability
map to obtain an estimate of the target object position in
the current frame (i.e., its centre, size, and orientation).

3) Updating: To be able to handle gradual change in
illumination, the object colour model is continuously
updated (with a small learning rate) using the histogram
extracted from the image patch within the area of the
tracking result obtained in the latest frame.

In practice, the marker tracker has been built as a module (the
Colour Based Object Tracker module) that takes input from a
video channel and displays the tracking results indicated by an
ellipse. It requires the player to initialize the tracking process by
selecting the marker in the first input video frame. Once
initialized, the module will continuously produce tracking

results (including the marker’s position, size, and orientation)
and output them to an appropriate output channel. The module
also allows the player to refine the target model by manually
adjusting the track box on-the-fly.

A command mapper is used to map the input object position
into an appropriate keyboard message as to control the game
(note that we did not develop a game but a game controller).
Since the assumption is that the game itself is only controlled by
two keys, which are ‘left’ and ‘right’, the mapping scheme is
rather simple, which merely maps the marker position to ‘left’
and ‘right’ according to its horizontal orientation.

The actual structure of the baseline system is illustrated in Fig.
8. It consists of 3 module instances, one of each class introduced
above, connected by 2 channels. This version is used to play the
game in the single-player mode. The system can be easily
upgraded to enable two players to play the game in a
cooperative-mode. Fig. 9 and Fig. 10 illustrate two possible
versions of such an upgraded system. In the first version, a
single camera is used to capture both players, while in the
second version, two cameras are used, one per player. In both
versions, there are two instances of the marker tracker and
marker-position channel as to enable the production and
delivery of the control messages for both players.

Since the game controlling mechanism and the input
acquisition method are decoupled, the CamGame system can be
further customized to incorporate other input modalities by
reconfiguring the front-end multimodal input acquisition
subsystem. As examples, the system configurations of
CamGame variants using face position and eye gaze position are
shown in Fig. 11 and Fig. 12, respectively. In the first variant,
the object tracker is replaced by the Viola & Jones face detector
[16]. This is the most commonly used face detector in the field
[5] [31] [32]. Here it is used to detect the largest face in the
scene and output the face position to the command mapper's

Fig. 8. The baseline CamGame system in thesingle-player mode.

Fig. 10. The baseline CamGame system in a cooperative-mode using two
cameras, one for each player.

Fig. 9. The basline CamGame system in a cooperative-mode using a single
camera.

SMCB-E-2012-04-0349.R3 13

input channel. In the second variant, the entire front-end
subsystem is substituted by a Tobii eye tracker [33] to track
user's eye gaze position in real-time [34]

Currently, the CamGame system is bond to a particular game
called NS-SHAFT (freely available at:
http://www.nagi-p.com/eng/nsshaft.html). A more general
command mapper module can be developed to enable
keyboard- and mouse-free control for an arbitrary game. This
can be achieved by enabling the player to customize the
mapping relations between input object positions and the
underlying Windows messages used to control the game of his /
her choice. More complex scheme may be proposed by taking
temporal information into account (i.e., how long is the object
on a certain location and / or how fast it changes the location).
Nonetheless, according to our preliminary tests, the simple
method we described here tends to produce satisfactory results
for many games that do not feature intense action (e.g., Super
Mario and other classic arcade games of the kind).

Last but not least, the 3rd-party software used in the
CamGame system is not limited to games. With few
modifications, any software accepting standard Windows
keyboard and / or mouse messages can be used. Hence, the
CamGame system may be easily modified for integration into
various (existing) human-computer interaction systems.

VI. CONCLUSION

We have proposed a software framework to facilitate the
development of multimodal human-computer interaction
systems. This software framework, which is called the HCI^2

Framework, consists of a combination of SDK and GUI-enabled
utilities to provide complete support for the system
development procedure, including module programme
development, system construction, testing, and redistribution.

Internally, the HCI^2 Framework adopts a P/S architecture to
support flexible system structures while uses a shared-memory
based data transport to guarantee reliable delivery of high
data-rate message stream with low latency. The protocol is
robust against crash-prone faulty modules and ensures the
execution of other modules will not be affected by crashed ones.
In addition, with the introduction of ‘bridging modules’, the
HCI^2 Framework is interoperable with some existing message
passing middleware including ActiveMQ and Psyclone.

To facilitate module reusing, we have refined the concept of
module into two related terms, which are the module class and
the module instance. Based on the design of module warehouse
and the XML semantics for system configuration files, we have
proposed a centralized system management scheme, which
greatly simplifies system construction, testing, and
redistribution.

The HCI^2 Framework is implemented as a self-contained
open-source software development tool. It consists of the
HCI^2 Framework SDK, which implements the aforementioned
protocols, and the HCI^2 Framework IDE, which provides a
complete GUI-enabled environment facilitating module
development and system integration.

The quantitative comparison shows that our framework
outperforms the other similar tools including Psyclone and
ActiveMQ in terms of maximum data throughput and message
latency under a typical single PC scenario.

To demonstrate the HCI^2 Framework’s ease of use in
integrating heterogonous modules, we have developed a
number of example modules interacting with a variety of
hardware and software, including Microsoft DirectShow,
OpenCV, Tobii Eye Tracker, and Microsoft Kinect. Using
these modules, we further built a readily-applicable demo
system called the CamGame, which enables players to play a
computer game using hand-held marker(s) and ordinary
low-cost camera(s) instead of keyboard and mouse.

The redistribution package of the HCI^2 Framework
(including the CamGame system) is now publicly available at:
http://ibug.doc.ic.ac.uk/resources/hci2-framework/ (under BSD
licence: http://opensource.org/licenses/BSD-3-Clause).

ACKNOWLEDGEMENT

The authors would like to thank Wenzhe Shi of Imperial
College London for his involvement in the development and
testing of the CamGame system. We would also like to thank all
members of the Intelligent Behaviour Understanding Group for
testing the HCI^2 Framework. This work has been supported by
the European Research Council under the ERC Starting Grant
agreement no. ERC-2007-StG-203143 (MAHNOB). The
current work by Jie Shen is also supported by the European
Union’s 7th Framework Programme [FP7/2007-2013] under
grant agreement no. 288235 (FROG).

Fig. 11. The CamGame variant using face position.

Fig. 12. The CamGame variant using eye gaze position.

SMCB-E-2012-04-0349.R3 14

REFERENCES
[1] M. Pantic, and L. J. M. Rothkrantz, “Towards an affect-sensitive

multimodal human-computer interaction”, Proceedings of the IEEE, vol.
91, no. 9, pp. 1370-1390, September 2003.

[2] A. Jaimes, and N. Sebe, "Multimodal human–computer interaction: a
survey", Computer Vision and Image Understanding, vol. 108, no.1-2, pp.
116-134, 2007.

[3] M. Pantic, A. Pentland, A. Nijholt and T.S. Huang, “Human computing
and machine understanding of human behavior: a survey”, Artificial
Intelligence For Human Computing, T.S. Huang, A. Nijholt, M. Pantic
and A. Pentland, Eds. Springer, Lecture Notes in Artificial Intelligence,
vol. 4451, pp. 47-71, 2007.

[4] M. Pantic, A. Nijholt, A. Pentland and T. Huang, “Human-centred
intelligent human-computer interaction (HCI2): how far are we from
attaining it?”, Int’l Journal of Autonomous and Adaptive
Communications Systems, vol. 1, no. 2, pp. 168-187, 2008.

[5] Z. Zeng, M. Pantic, G.I. Roisman and T.S. Huang, “A survey of affect
recognition methods: audio, visual, and spontaneous expressions”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 1,
pp. 39-58, 2009.

[6] A. Pentland, “Looking at People: Sensing for Ubiquitous and Wearable
Computing”, Transactions on Pattern Analysis and Machine Intelligence,
vol. 22, no. 1, pp. 107-119, 2000.

[7] L. Maat, and M. Pantic, “Gaze-X: adaptive affective multimodal interface
for single-user office scenarios”, Artificial Intelligence for Human
Computing, T. S. Huang, A. Nijholt, M. Pantic, and A. Pentland, Eds.
Springer, Lecture Notes in Artificial Intelligence, vol. 4451, pp. 251-271,
2007.

[8] “MSDN: DirectShow (Windows)”, Dec. 4, 2008. [Online]. Available:
http://msdn.microsoft.com/en-us/library/dd375454(VS.85).aspx.

[9] “Communicative Machines: Pscylone”, 2007. [Online]. Available:
http://www.cmlabs.com/psyclone/.

[10] “Apache ActiveMQ”, 2009. [Online], Available:
http://activemq.apache.org/.

[11] J-Y. Lawson, J. Vanderdonckt, and B. Macq, “Rapid prototyping of
multimodal interactive applications based on off-the-shelf heterogeneous
components”, Adjunct Proceedings of the 21st Annual ACM Symposium
on User Interface Software and Technology, pp. 41-42, 2008.

[12] J. Shen, and M. Pantic, “A Software Framework for Multimodal
Human-Computer Interaction Systems”, Proceeding of IEEE
Inrernational Conference on Systems, Man and Cybernectis, pp.
2038-2045, 2009.

[13] M. Pantic, R.J. Grootjans, and R. Zwitserloot, “Fleeble agent framework
for teaching an introductory course in AI”, IADIS International
Conference Cognition and Exploratory Learning in Digital Age, pp.
525-530, 2004.

[14] K. R. Thorisson, H. Benko, D. Abramov, A. Arnold, S. Maskey, and A.
Vaseekaran, “Constructionist design methodology for interactive
intelligences”, AI Magazine, vol. 25, no. 4, pp.77-90, 2004.

[15] S. Meyers, “Minimize compilation dependencies between files”. Efective
C++: 50 Specific Ways to Improve Your Programs and Designs 2nd
Edition, pp. 140-148, Addison Wesley, October, 1997.

[16] P. Viola, and M. J. Jones, “Robust real-time face detection”, International
Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.

[17] D. Comaniciu, V. Ramesh, P. Meer, “Real-time tracking of non-rigid
objects using mean-shift”, IEEE Conference on Computer Vision and
Pattern Recognition, vol. 2, pp. 438-445, 2000.

[18] “MSDN: Inter-Process Communications”, Feb. 12, 2009. [Online].
Available:http://msdn.microsoft.com/en-us/library/aa365574(VS.85).as
px.

[19] P. Dabak, S. Phadke, and M. Borate, “Local procedure call”,
Undocumented Windows NT, Foster City: M&T Books, 1999, pp.
143-189.

[20] Tobii SDK, 2010. [Online]. Available:
http://www.tobii.com/en/assistive-technology/global/products/partner-so
ftware/third-party-program/sdk/

[21] Microsoft Kinect for Windows SDK, Feb. 01, 2012. [Online]. Available:
http://www.microsoft.com/en-us/kinectforwindows/develop/overview.as
px.

[22] G. R. Bradski, "Computer Vision Face Tracking for Use in a Perceptual
User Interface", Intel Technology Journal, No. Q2, 1998. [Online].
Available:
ftp://download.intel.com/technology/itj/q21998/pdf/camshift.pdf

[23] “MSDN: Mutex Objects”, Mar. 07, 2012. [Online]. Available:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684266(v
=vs.85).aspx.

[24] “MSDN: Interlocked Variable Access”, Mar. 07, 2012. [Online].
Available:
http://msdn.microsoft.com/en-us/library/windows/desktop/ms684122(v
=vs.85).aspx.

[25] A. Camurri, S. Hashimoto, M. Ricchetti, A. Ricci, K. Suzuki, R. Trocca
and G. Volpe, “Eyesweb: Toward gesture and affect recognition in
i.nteractive dance and music systems”, Computer Music Journal vol. 24,
no. 1, pp. 57-69, 2000.

[26] M. Schröder, “The SEMAINE API: Towards a Standards-Based
Framework for Building Emotion-Oriented Systems,” Advances in
Human-Computer Interaction, vol. 2010, Article ID 319406, 21 pages,
2010. doi:10.1155/2010/319406.

[27] M. Schroder, E. Bevacqua, R. Cowie, F. Eyben, H. Gunes, D. Heylen, M.
Maat, G. Mckeown, S. Pammi, M. Pantic, C. Pelachaud, B. Schuller, E.
Sevin, M. F. Valstar and M. Woellmer, “Building Autonomous Sensitive
Artificial Listeners”, IEEE Transactions on Affective Computing, vol. 3,
no. 2, pp. 165-183, 2011

[28] W. Richard Stevens, “Chapter 12. Shared Memory Introduction”. Unix
Network Programming: Interprocess Communicattion, pp. 303-323,
Prentice Hall PTR, 1999.

[29] A. Yilmaz, O. Jamed and M. Shah, “Object Tracking: A Survey”, ACM
Computing Surveys, vol. 38, no. 4, article 13, 45 p., 2006.

[30] H. Yang, L. Shao, F. Zhen and L. Wang and Z. Song, “Recent advances
and trends in visual tracking: A review”, Neurocomputing, vol. 74, no. 18,
pp. 3823-3831, 2011.

[31] M. Pantic, “Machine Analysis of Facial Behaviour: Naturalistic and
Dynamic Behaviour”, Philosophical Transactions of the Royal Society B:
Biological Sciences, vol. 364 no. 1535, pp. 3505-3513, 2009.

[32] MF Valstar, M Mehu, B Jiang, M Pantic and K Scherer, “Meta-Analysis
of the First Facial Expression Recognition Challenge”, IEEE Transaction
on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, no. 4: pp.
966-979, 2012.

[33] Tobii T60 & T120 Eye Tracker. [Online]. Available:
http://www.tobii.com/en/eye-tracking-research/global/products/hardwar
e/tobii-t60t120-eye-tracker/

[34] J. Lichtenauer, J. Shen, M. F. Valstar and M. Pantic, "Cost-Effective
Solution to Synchronised Audio-Visual Data Capture Using Multiple
Sensors", Image and Vision Computing, vol. 29, no. 9, pp. 666-680,
2011.

Jie Shen is a Ph.D. candidate at Imperial College
London, Department of Computing, U.K. He received
B.Eng. in Electric Engineering in 2005 from Zhejiang
University, China, and M.Sc. in Advanced Computing
in 2008 from Imperial College London, U.K. He worked
as a research assistant, in intelligent video surveillance,
at Institute of Automation, Chinese Academy of
Sciences from 2005 to 2007. His current research
interests include affect-sensitive human-computer

interaction and software / hardware platform for HCI systems. He is a student
member of IEEE.

Maja Pantic is Professor in Affective and Behavioural
Computing at Imperial College London, Department of
Computing, UK, and at the University of Twente,
Department of Computer Science, the Netherlands. She
received various awards for her work on automatic
analysis of human behaviour including the European
Research Council Starting Grant Fellowship 2008 and
the Roger Needham Award 2011. She currently serves
as the Editor in Chief of Image and Vision Computing

Journal and as an Associate Editor for both the IEEE Transactions on Systems,
Man, and Cybernetics Part B and the IEEE Transactions on Pattern Analysis
and Machine Intelligence. She is a Fellow of the IEEE.

