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Abstract—Past research in analysis of human affect has focused on recognition of prototypic expressions of six basic emotions
based on posed data acquired in laboratory settings. Recently, there has been a shift towards subtle, continuous, and context-specific
interpretations of affective displays recorded in naturalistic and real-world settings, and towards multi-modal analysis and recognition
of human affect. Converging with this shift, this paper presents, to the best of our knowledge, the first approach in the literature that: (i)
fuses facial expression, shoulder gesture and audio cues for dimensional and continuous prediction of emotions in valence and arousal
space, (ii) compares the performance of two state-of-the-art machine learning techniques applied to the target problem, the bidirectional
Long Short-Term Memory neural networks (BLSTM-NNs) and Support Vector Machines for Regression (SVR), and (iii) proposes an
output-associative fusion framework that incorporates correlations and covariances between the emotion dimensions. Evaluation of
the proposed approach has been done using the spontaneous SAL data from 4 subjects and subject-dependent leave-one-sequence-
out cross-validation. The experimental results obtained show that: (i) on average BLSTM-NN outperform SVR due to their ability to
learn past and future context, (ii) the proposed output-associative fusion framework outperforms feature-level and model-level fusion
by modeling and learning correlations and patterns between the valence and arousal dimensions, and (iii) the proposed system is well
able to reproduce the valence and arousal ground truth obtained from human coders.

Index Terms—dimensional affect recognition, continuous affect prediction, valence and arousal dimensions, facial expressions,
shoulder gestures, emotional acoustic signals, multi-cue and multi-modal fusion, output-associative fusion.
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1 INTRODUCTION

MOst of the past research on automatic affect sens-
ing and recognition has focused on recognition

of facial and vocal affect in terms of basic emotions,
and then based on data that has been posed on de-
mand or acquired in laboratory settings [29], [67], [49].
Additionally, each modality has been considered in iso-
lation. However, a number of researchers have shown
that in everyday interactions people exhibit non-basic,
subtle and rather complex mental/affective states like
thinking, embarrassment or depression [4]. Such subtle
and complex affective states can be expressed via dozens
(or hundreds) of anatomically possible facial expressions
or bodily gestures. Accordingly, a single label (or any
small number of discrete classes) may not reflect the
complexity of the affective state conveyed by such a
rich source of information [54]. Hence, a number of
researchers advocate the use of dimensional description
of human affect, where an affective state is characterized
in terms of a number of latent dimensions (e.g., [54], [56],
[55]).

It is not surprising, therefore, that researchers in au-
tomatic affect sensing and recognition have recently
started exploring how to model, analyze and interpret
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the subtlety, complexity and continuity of affective be-
havior in terms of latent dimensions, rather than in terms
of a small number of discrete emotion categories [27].

The work introduced here converges with this recent
shift in affect recognition, from recognizing posed ex-
pressions in terms of discrete and basic emotion cat-
egories, to the recognition of spontaneous expressions
in terms of dimensional and continuous descriptions. It
contributes to the affect sensing and recognition research
field as follows:

• It presents the first approach in the literature to-
wards automatic, dimensional and continuous affect
prediction in terms of arousal and valence based on
facial expression, shoulder gesture, and audio cues.

• It proposes an output-associative prediction framework
that incorporates correlations between the emo-
tion dimensions and demonstrates significantly im-
proved prediction performance.

• It presents a comparison of two state-of-the-art
machine learning techniques, namely the bidirec-
tional Long Short-Term Memory neural networks
(BLSTM-NNs) and Support Vector Machines for
Regression (SVR), for continuous affect prediction.

• It proposes a set of evaluation metrics and demon-
strates their usefulness to dimensional and continu-
ous affect prediction.

The paper is organized as follows. Section 2 describes
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theories of emotion and perception of emotions from
visual and audio modalities. Section 3 summarizes the
related work in the field of automatic dimensional affect
analysis. Section 4 describes the overall methodology
employed. Section 5 presents the naturalistic database
used in the experimental studies and describes the pre-
processing of the data. Section 6 explains audio and
visual feature extraction and tracking. Section 7 describes
the learning techniques and the evaluation measures
employed for continuous emotion prediction, and intro-
duces the output-associative fusion framework. Section 8
discusses the experimental results. Section 9 concludes
the paper.

2 BACKGROUND

2.1 Theories of emotion

The description of affect has been a long standing prob-
lem in the area of psychology. Three major approaches
can be distinguished [24]: (1) categorical approach, (2) di-
mensional approach, and (3) appraisal-based approach.

According to the categorical approach there exist a
small number of emotions that are basic, hard-wired in
our brain, and recognized universally. Ekman and col-
leagues conducted various experiments and concluded
that six basic emotions can be recognized universally,
namely, happiness, sadness, surprise, fear, anger and
disgust [19].

According to the dimensional approach, affective
states are not independent from one another; rather,
they are related to one another in a systematic manner.
In this approach, the majority of affect variability is
covered by two dimensions: valence (V) and arousal
(A) [44], [54]. The valence dimension (V) refers to how
positive or negative the emotion is, and ranges from
unpleasant feelings to pleasant feelings of happiness.
The arousal dimension (A) refers to how excited or
apathetic the emotion is, and it ranges from sleepiness
or boredom to frantic excitement. Psychological evidence
suggests that these two dimensions are inter-correlated
[48],[1], [39], [41]. More specifically, there exist repeating
configurations and inter-dependencies within the values
that describe each dimension.

In the categorical approach, where each affective dis-
play is classified into a single category, complex men-
tal/affective state or blended emotions may be too dif-
ficult to handle [66]. Instead, in dimensional approach,
emotion transitions can be easily captured, and observers
can indicate their impression of moderate (less intense)
and authentic emotional expressions on several contin-
uous scales. Hence, dimensional modeling of emotions
has proven to be useful in several domains (e.g., affective
content analysis [65]).

It should be possible to describe affect in a continuous
manner in terms of any relevant dimension (or axes).
However, for practical reasons, we opted for the dimen-
sions of arousal and valence in a continuous scale due

to their widespread use in psychology and behavioral
science.

For further details on different approaches to model-
ing human emotions and their relative advantages and
disadvantages, the reader is referred to [56], [24].

2.2 Perception of emotions from audio and visual
cues

The prosodic features which seem to be reliable indi-
cators of the basic emotions are the continuous acous-
tic measures, particularly pitch-related measures (range,
mean, median, and variability), intensity and duration.
For a comprehensive summary of acoustic cues related to
vocal expressions of basic emotions, readers are referred
to [14]. There have also been a number of works focusing
on how to map audio expression to dimensional models.
Cowie et al. used valence-activation space, which is
similar to the V-A space, to model and assess emotions
from speech [14], [13]. Scherer and colleagues have also
proposed how to judge emotion effects on vocal expres-
sion, using the appraisal-based theory [56], [24].

The most widely known and used visual signals for
automatic affect sensing and recognition are facial action
units (e.g., pulling eyebrows up) and facial expressions
(e.g., producing a smile). More recently, researchers
have also started exploring how bodily postures (e.g.,
backwards head bend and arms raised forwards and
upwards) and bodily gestures (e.g., head nod) com-
municate affective information. Dimensional models are
considered important in these tasks as a single label
may not reflect the complexity of the affective state
conveyed by a facial expression, body posture or gesture.
Ekman and Friesen [20] considered expressing discrete
emotion categories via face, and communicating dimen-
sions of affect via body as more plausible. A number
of researchers have investigated how to map various
visual signals onto emotion dimensions. For instance,
[54] mapped the facial expressions to various positions
on the two-dimensional plane of arousal-valence (e.g.
joy is mapped on the high arousal - positive valence
quadrant), while [15] investigated the emotional and
communicative significance of head nods and shakes in
terms of arousal and valence dimensions, together with
dimensional representation of solidarity, antagonism and
agreement.

Ambady and Rosenthal reported that human judg-
ments of behaviors that were based jointly on face and
body cues were 35% more accurate than those based on
the face cues alone [2]. In general, however, body and
hand gestures are much more varied than face gestures.
There is an unlimited vocabulary of body postures and
gestures with combinations of movements of various
body parts. Unlike facial expressions, communication of
emotions by bodily movement and expressions is still
a relatively unexplored and unresolved area in psychol-
ogy, and further research is needed in order to obtain a
better insight on how they contribute to the perception
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and recognition of affect dimensions or various affective
states.

In this work we chose to focus on acoustic cues, facial
expressions and shoulder gestures (and their fusion)
since they have been reported as informative cues for
a number of spontaneous human nonverbal behavior
analysis tasks (e.g., automatic recognition of posed vs.
spontaneous smiles [52]).

3 RELATED WORK

Affect sensing is now a well-established field, and there
is an enormous amount of literature available on differ-
ent aspects of affect sensing. As it is virtually impossible
to include all these works, we only introduce the most
relevant literature on dimensional affect sensing and
recognition. Affect recognition using multiple cues and
modalities, and its shift from the lab to the real world
settings, are reviewed and discussed in detail in [29]. An
exhaustive survey of past efforts in audiovisual affect
sensing and recognition (e.g., facial action unit recog-
nition, posed vs. spontaneous expression recognition,
etc.), together with various visual, audio and audiovisual
databases, is presented in [67]. For a recent survey of
affect detection models, methods, and their applications,
reviewed in an interdisciplinary perspective, the reader
is referred to [8].

When it comes to automatic dimensional affect recog-
nition, the most commonly employed strategy is to
simplify the problem of classifying the six basic emotions
to a three-class valence-related classification problem:
positive, neutral, and negative emotion classification
(e.g., [66]). A similar simplification is to reduce the
dimensional emotion classification problem to a two-
class problem (positive vs. negative or active vs. passive
classification) or a four-class problem ( classification into
the quadrants of 2D V-A space; e.g., [10], [22], [23], [32],
[64]). For instance, [62] analyses four emotions, each
belonging to one quadrant of the V-A emotion space:
high arousal positive valence (joy), high arousal negative
valence (anger), low arousal positive valence (relief), and
low arousal negative valence (sadness).

Systems that target automatic dimensional affect
recognition, considering that the emotions are repre-
sented along a continuum, generally tend to quantize the
continuous range into certain levels. [37] discriminates
between high-low, high-neutral and low-neutral affec-
tive dimensions, while [42] uses the SAL database and
quantizes the V-A into 4 or 7 levels and uses Conditional
Random Fields (CRFs) to predict the quantized labels.

Methods for discriminating between more coarse cat-
egories, such as low, medium and high [38], excited-
negative, excited-positive and calm neutral [11], positive
vs. negative [45], and active vs. passive [10] have also
been proposed. Of these [10] uses the SAL (Sensitive Ar-
tificial Listener) database, similar to our work presented
in this paper, and combines information from audio
(acoustic cues) and visual (Facial Animation Parameters

used in animating MPEG-4 models) modalities. Nicolaou
et al. focus on audiovisual classification of spontaneous
affect into negative or positive emotion categories, and
utilize 2- and 3-chain coupled Hidden Markov Models
and likelihood space classification to fuse multiple cues
and modalities [45]. Kanluan et al. [34] combine facial
expression and audio cues exploiting SVM for regression
(SVR) and late fusion, using weighted linear combina-
tions and discretized annotations (on a 5-point scale, for
each dimension).

As far as actual continuous dimensional affect predic-
tion (without quantization) is concerned, four attempts
have been proposed so far, three of which deal ex-
clusively with speech (i.e., [64], [42], [26]). The work
presented in [64] utilizes a hierarchical dynamic Bayesian
network combined with BLSTM-NN performing regres-
sion and quantizing the results into four quadrants (after
training). The work by Wöllmer et al. uses Long Short-
Term Memory neural networks and Support Vector Ma-
chines for Regression (SVR) [42]. Grimm and Kroschel
use SVRs and compare their performance to that of
the distance-based fuzzy k-Nearest Neighbour and rule-
based fuzzy-logic estimators [26]. The work of [28] fo-
cuses on dimensional prediction of emotions from spon-
taneous conversational head gestures by mapping the
amount and direction of head motion, and occurrences of
head nods and shakes into arousal, expectation, intensity,
power and valence level of the observed subject using
SVRs.

For comparison purposes, in Table 1, we briefly sum-
marize the automated systems that attempt to model
and recognize affect in continuous dimensional space
using multiple cues and modalities, together with the
work presented in this paper. We also include the works
proposed in [45], [34] and [9] as they are relevant for the
current study (although classification has been reported
for a discretized rather than a continuous dimensional
affect space). Works using dimensions other than valence
and arousal have been also included. Subsequently, Ta-
ble 2 presents utilized classification methodology and the
performance attained by the methods listed in Table 1.
This overview is intended to be illustrative rather than
exhaustive, and for systems most relevant to our work.
For systems that deal with dimensional affect recognition
from a single modality or cue, the reader is referred to
[27], [67].

As can be seen from Table 1 and Table 2, the surveyed
systems use different training and testing sets (which
differ in the way emotions are elicited and annotated),
they differ in the underlying model of emotions (i.e.,
target emotional categories) as well as in the employed
modality or combination of modalities, and the applied
evaluation method. All of these make it difficult to
quantitatively and objectively evaluate the accuracy of
the V-A modeling and the effectiveness of the developed
systems.

Compared to the works introduced in Table 1 and Ta-
ble 2, and surveyed in [27], the methodology introduced
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TABLE 1
Overview of the systems for dimensional affect recognition from multiple modalities in terms of modality/cue,

database employed, number of samples used, features extracted and dimensions recognized. This work is also
included for comparison.

System modality/cue database # of samples features dimensions
Caridakis et
al. [9]

audiovisual SAL, 4 subjects not reported various visual and acoustic
features

neutral & 4 V-A quad-
rants (quantized)

Kanluan et al.
[34]

audiovisual VAM corpus recorded
from the German TV
talk show Vera am
Mittag, 20 subjects

234 sentences
&1600 images

prosodic & spectral features,
2-dimensional Discrete Co-
sine Transform applied to
blocks of a predefined size in
facial images

valence, activation &
dominance (5-level
annotation, mapped to
continuous)

Forbes-Riley
& Litman
[21]

audio and text student emotions from
tutorial spoken dialogs

not reported acoustic and prosodic, text-
based, and contextual fea-
tures

negative, neutral & pos-
itive

Karpouzis et
al. [35]

audiovisual SAL, 4 subjects 76 Passages, 1600
tunes

various visual & acoustic fea-
tures

negative vs. positive, ac-
tive vs. passive

Kim [36] speech & physio-
logical signals

data recorded using a
version of the quiz
Who wants to be a mil-
lionaire?, 3 subjects

343 samples EMG, SC, ECG, BVP, Temp,
RSP & acoustic features

4 A-V quadrants (quan-
tized)

Nicolaou et
al. [45]

audiovisual (facial
expression,
shoulder, audio
cues)

SAL, 4 subjects 30,000 visual,
60,000 audio
samples

trackings of 20 facial feature
points, 5 shoulder points for
video; MFCC and prosody
features for audio

negative vs. positive va-
lence (quantized)

This work audiovisual (facial
expression,
shoulder, audio
cues)

SAL, 4 subjects 30,000 visual,
60,000 audio
samples

trackings of 20 facial feature
points, 5 shoulder points for
video; MFCC and prosody
features for audio

valence and arousal
(continuous)

TABLE 2
The utilized classification methodology and the performance attained by the methods listed in Table 1.

System Classification Explicit fusion Results
Caridakis et
al. [9]

a feed-forward back-propagation net-
work

not reported reduced MSE for every tune

Kanluan et al.
[34]

Support Vector Regression for 3 continu-
ous dimensions

model-level fusion by a
weighted linear combina-
tion

average estimation error of the fused result was 17.6%
and 12.7% below the individual error of the acoustic
and visual modalities, the correlation between the pre-
diction and and ground truth was increased by 12.3%
and 9.0%

Forbes-Riley
& Litman
[21]

AdaBoost to boost a decision tree algo-
rithm

not reported 84.75% recognition accuracy for a 3 class problem

Karpouzis et
al. [35]

a Recurrent Network that outputs one of
the 4 classes

not reported 67% recognition accuracy with vision, 73% with
prosody, 82% after fusion (whether on unseen data is
not specified)

Kim [36] modality-specific LDA-based classifica-
tion

hybrid fusion by integrat-
ing results from feature-
and model-level fusion

51% for bio-signals, 54% for speech, 55% for feature
fusion, 52% for decision fusion, 54% for hybrid fusion,
subject independent validation

Nicolaou et
al. [45]

HMM and Likelihood Space via SVM model-level fusion and
likelihood space fusion

over 10-fold cross validation, best mono-cue result is
91.76% from facial expressions, best fusion result is
94% by fusing facial expressions, shoulder and audio
cues

This work SVR and BLSTM-NNs feature-level, decision-
level, and output-
associative fusion

over leave-one-sequence-out cross validation, best re-
sult is attained by fusion of face, shoulder and au-
dio cues, RMSE=0.15 and COR=0.796 for valence and
RMSE=0.21 and COR=0.642 for arousal.

in this paper (i) presents the first approach towards
automatic, dimensional and continuous affect prediction
based on facial expression, shoulder gesture, and au-
dio cues, and (ii) proposes a framework that integrates
temporal correlations between continuous dimensional
outputs (valence and arousal) to improve regression pre-
dictions. Our motivation for the latter is twofold. Firstly,
there is strong (theoretical and experimental) psycho-
logical evidence reporting that the valence and arousal
dimensions are inter-correlated (i.e., repeated configu-
rations do manifest between the dimensions) [48],[1],

[39], [41]. Despite this fact, automatic modeling of these
correlations has not been attempted yet. Secondly, there
is a growing interest in the pattern recognition field
in modeling not only the input but also the output
covariances (e.g. [7], [63], [6]).

Additionally, as pointed out in [35], (dis)agreement
between human annotators affects the performance of
the automated systems. The system should ideally take
into account the inter-observer (dis)agreement level and
correlate this to the level of (dis)agreement attained be-
tween the ground truth and the results provided by the
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Fig. 1. Methodology employed: Pre-processing, segmentation, feature extraction and prediction.

system. To address the aforementioned issue, this work
introduces novel evaluation measures and demonstrates
their usefulness to dimensional and continuous affect
prediction.

4 OUTLINE OF THE PROPOSED METHODOL-
OGY

The methodology proposed in this paper consists of pre-
processing, segmentation, feature extraction, and predic-
tion components, and is illustrated in Fig. 1.

The first two stages, that of pre-processing and seg-
mentation, depend mostly on the set of annotations
provided with the SAL database (in terms of valence
and arousal dimensions). We introduce various proce-
dures to (i) obtain the ground-truth corresponding to
each frame by maximizing inter-coder agreement, and
(ii) to determine the audiovisual segments that capture
the transition from one emotional state to another (and
back). Essentially, these procedures automatically seg-
ment spontaneous multi-modal data in terms of nega-
tive and positive audiovisual segments that contain an
offset before and after (i.e., the baseline) the displayed
expression (Section 5.3).

During the feature extraction stage, the pre-segmented
audiovisual segments from the SAL database are used.
For the audio modality, the Mel-frequency Cepstrum
Coefficients (MFCC) [33], as well as prosody features,
such as pitch and energy features are extracted. To
capture the facial and shoulder motion displayed during
a spontaneous expression we use the Patras - Pantic
particle filtering tracking scheme [50] and the standard
Auxiliary Particle Filtering (APF) technique [53], respec-
tively.

The final stage, that is based on all the aforemen-
tioned steps, consists of affect prediction, multi-cue and
multi-modal fusion, and evaluation. SVRs and BLSTM-
NNs are used for single-cue affect prediction. Due to
the their superior performance, BLSTM-NNs are further

used for feature and model-level fusion of multiple cues
and modalities. An output-associative fusion framework,
that employs a first layer of BLSTM-NNs for predicting
V-A values from the original input features, and a second
layer of BLSTM-NN using these predictions jointly as in-
termediate features to learn the V-A inter-dependencies
(correlations), is introduced next. Performance compar-
ison shows that the proposed output-associative fusion
framework provides a significantly improved prediction
accuracy compared to feature- and model-level fusion
via BLSTM-NNs.

5 DATASET AND PRE-PROCESSING

5.1 Dataset

We use the Sensitive Artificial Listener Database (SAL-
DB) [17] that contains spontaneous data capturing the
audiovisual interaction between a human and an opera-
tor undertaking the role of an avatar with four person-
alities: Poppy (happy), Obadiah (gloomy), Spike (angry)
and Prudence (pragmatic).

The audiovisual sequences have been recorded at a
video rate of 25 fps (352 x 288 pixels) and at an audio rate
of 16 kHz. The recordings were made in a lab setting,
using one camera, a uniform background and constant
lighting conditions. The SAL data has been annotated
by a set of coders who provided continuous annotations
with respect to valence and arousal dimensions using the
FeelTrace annotation tool [13]. Feeltrace allows coders
to watch the audiovisual recordings and move their
cursor, within the 2-dimensional emotion space (valence
and arousal) confined to [−1, 1], to rate their impression
about the emotional state of the subject. Although there
are approximately 10 hours of footage available in the
SAL database, V-A annotations have only been obtained
for two female and two male subjects. We used this
portion for our experiments.
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5.2 Challenges
Using spontaneous and naturalistic data that have been
manually annotated along a continuum presents us
with a set of challenges which essentially motivate the
adopted methodology.

The first issue is known as reliability of ground truth. In
other words, achieving agreement amongst the coders
(or observers) that provide annotations in a dimensional
space is very challenging [27]. In order to make use
of the manual annotations for automatic recognition,
most researchers take the mean of the observers ratings,
or assess the annotations manually. In Section 5.3, we
describe the process of producing the ground-truth with
respect to the coders’ annotations, in order to maximize
the inter-coder agreement.

The second issue is known as the baseline problem. This
is also known as the concept of having ‘a condition to
compare against’ in order for the automatic recognizer
to successfully learn the recognition problem at hand
[27]. For instance, in the context of acted (posed) facial
expression recognition, the subjects are instructed to
express a certain emotional state starting (and ending)
with an expressionless face. Thus, posed affect data
contain all the temporal transitions (neutral - onset -
apex - offset - neutral) that provide a classifier with a
sequence that begins and ends with an expressionless
display: the baseline. Since such expressionless states are
not guaranteed to be present in spontaneous data [27],
[40], we use the transition to and from an emotional state
(i.e., the frames where the emotional state changes) as the
baseline to compare against.

The third issue refers to unbalanced data. In naturalistic
settings it is very difficult to elicit balanced amount
of data for each emotion dimension. For instance, [9]
reported that a bias toward quadrant 1 (positive arousal,
positive valence) exists in the SAL database. Other re-
searchers (e.g., [12]) handle the issue of unbalanced
classes by imposing equal a priori probability. As classi-
fication results strongly depend on the a priori probabil-
ities of class appearance, we attempt to tackle this issue
by automatically pre-segmenting the data at hand. More
specifically, the segmentation stage consists of producing
(approximately equal number of) negative and positive
audiovisual segments with a temporal window that con-
tains an offset before and after the displayed expression
(i.e., the baseline).

5.3 Data Pre-processing and Segmentation
The data pre-processing and segmentation stage consists
of (i) producing ground-truth by maximizing inter-coder
agreement, (ii) eliciting frames that capture the transition
to and from an emotional state, and (iii) automatic seg-
mentation of spontaneous audiovisual data. A detailed
description of these procedures is presented in [46].

In general, the V-A annotations of each coder are not
in total agreement, mostly due to the variance in human
observers’ perception and interpretation of emotional

Fig. 2. Illustration of tracked points of (left) the face (Tf1–
Tf20) and (right) the shoulders (Ts1–Ts5).

expressions. Thus, in order to deem the annotations
comparable, we normalized the data and provided some
compensation for the synchronization issues. We ex-
perimented with various normalization techniques and
opted for the one that minimized the inter-coder MSE.
To tackle the synchronization issues, we allow the time-
shifting of the annotations for each specific segment up
to a threshold of 0.5 secs given that this increases the
agreement between coders.

In summary, achieving agreement from all partici-
pating coders is difficult and not always possible for
each extracted segment. Thus, we use the inter-coder
correlation to obtain a measure of how similar one
coder’s annotations are to the rest. This is then used as
a weight to determine the contribution of each coder to
the ground truth.

More specifically, the averaged correlation cor′S,cj as-
signed to coder cj is defined as follows:

cor′S,cj =
1

|S| − 1

∑
i∈S,ci ̸=cj

cor(ci, cj) (1)

where S is the relevant session annotated by |S| number
of coders, and each coder annotating S is defined as ci ∈
S.

Typically, an automatically produced segment consist
of a single interaction of the subject with the avatar
(operator), starting with the final seconds of the avatar
speaking, continuing with the subject responding (and
thus reacting and expressing an emotional state) and
concluding where the avatar starts responding. Given
that in naturalistic data, emotional expressions are not
generally preceded by neutral emotional states [27], [40],
we considered this window to provide the best baseline
possible. For more details, we refer the reader to [46].
It should be noted that this method is purely based on
the annotations, unlike other methods which are based
on features, e.g. turn-based segmentation based on voice
activity detection [42].

6 FEATURE EXTRACTION

In this section we describe the audio and visual features
that have been extracted using the automatically seg-
mented audiovisual SAL data.
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6.1 Audio Features

Our audio features include Mel-frequency Cepstrum Co-
efficients (MFCC) [33] and prosody features (the energy
of the signal, the Root Mean Squared Energy and the
pitch obtained by using a Praat pitch estimator [51]).
Mel-frequency Cepstrum (MFC) is a representation of
the spectrum of an audio sample which is mapped onto
the nonlinear mel-scale of frequency to better approxi-
mate the human auditory system’s response. The MFC
coefficients (MFCC) collectively make up the MFC for
the specific audio segment.

We used 6 cepstrum coefficients, thus obtaining 6
MFCC and 6 MFCC-Delta features for each audio frame.
We have essentially used the typical set of features used
for automatic affect recognition [67], [52]. Along with
pitch, energy and RMS energy, we obtained a set of
features with dimensionality d = 15 (per audio frame).
Note that we used a 0.04 second window with a 50%
overlap (i.e. first frame 0-0.04, second from 0.02-0.06 and
so on) in order to obtain a double frame rate for audio
(50 Hz) compared to that of video (25 fps). This is an
effective and straightforward way to synchronise the
audio and video streams.

6.2 Facial Expression Features

To capture the facial motion displayed during a sponta-
neous expression we track 20 facial feature points (FFP),
as illustrated in Fig. 2. These points are the corners
of the eyebrows (4 points), eyes (8 points), nose (3
points), the mouth (4 points) and the chin (1 point).
To track these facial points we used the Patras - Pantic
particle filtering tracking scheme [50]. Prior to tracking,
initialization of the facial feature points has been done
using the method introduced in [61]. For each video
segment containing n frames, we obtain a set of n vectors
containing 2D coordinates of the 20 points tracked in n
frames (Tf = {Tf1 . . . Tf20} with dimensions n ∗ 20 ∗ 2).

6.3 Shoulder Features

The motion of the shoulders is captured by tracking 2
points on each shoulder and one stable point on the
torso, usually just below the neck (see Fig. 2). The
points to be tracked are initialized manually in the
first frame. We then use the standard Auxiliary Particle
Filtering (APF) [53] to track the shoulder points. This
scheme is less complex and faster compared to the Patras
- Pantic particle filtering tracking scheme, it does not
require learning the model of prior probabilities of the
relative positions of the shoulder points, while resulting
in sufficiently high accuracy. The shoulder tracker results
in a set of points Ts = {Ts1 . . . Ts5} with dimensions of
n ∗ 5 ∗ 2.

The SAL database consists of challenging data with
sudden body movements and out-of-plane head rota-
tions. As the focus of this paper is on dimensional and
continuous affect prediction, we would like to minimize

the effect of imperfect and noisy point tracking on
the automatic prediction. Therefore, both facial point
tracking and shoulder point tracking has been done in
a semi-automatic manner (with manual correction when
tracking is imperfect).

7 DIMENSIONAL AFFECT PREDICTION

7.1 Bidirectional Long Short-Term Memory Neural
Networks
The traditional Recurrent Neural Networks (RNN) are
unable to learn temporal dependencies longer than a
few time steps due to the vanishing gradient problem
[31]. LSTM Neural Networks (LSTM-NNs) were intro-
duced by Graves and Schmidhuber [25] to overcome
this issue. Analysis of the error flow [30] has shown
that the backpropagated error in RNNs either grows
or decays exponentially. LSTMs introduce recurrently
connected memory blocks instead of traditional neural
network nodes, which contain memory cells and a set
of multiplicative gates. The gates essentially allow the
network to learn when to maintain, replace or reset the
state of each cell. As a result, the network can learn when
to store or relate to context information over long periods
of time, while the application of non-linear functions
(similar to transfer functions in traditional NN) enables
learning non-linear dependencies.

Traditional RNNs process input in a temporal order,
thus learning characteristics of the input by relating
only to past context. Bidirectional RNNs (BRNNs) [58],
[3] instead modify the learning procedure to overcome
the latter issue of the past and future context: they
present each of the training sequences in a forward and
a backward order (to two different recurrent networks,
respectively, which are connected to a common output
layer). In this way, the BRNN is aware of both future
and past events in relation to the current time step. The
concept is directly expanded for LSTMs, referred to as
Bidirectional Long Short-Term Memory neural networks
(BLSTM-NN).

BLSTM-NN have been shown to outperform unidirec-
tional LSTM-NN for speech processing (e.g., [25]) and
have been used for many learning tasks. They have been
successfully applied to continuous emotion recognition
from speech (e.g., [42], [64]) proving that modeling the
sequential inputs and long range temporal dependencies
appear to be beneficial for the task of automatic emotion
prediction.

To the best of our knowledge, to date, BLSTM-NNs
have only been used for affect prediction from the audio
modality (e.g., [42]). No effort has been reported so far
on using BLSTM-NNs for prediction of affect from visual
modality, or multiple cues and modalities.

7.2 Support Vector Regression
SVM for regression [18] is one of the most dominant
kernel methods in machine learning. A non-linear func-
tion is learned by the model in a mapped feature space,
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induced by the kernel used. An important advantage
of SVMs is the convex optimization function employed
which guarantees that the optimal solution is found.
The goal is to optimize the generalization bounds for
regression by a loss function which is used to weight
the actual error of the point with respect to the distance
from the correct prediction.

Various loss functions could be used to this aim (e.g.,
quadratic loss function, Laplacian loss function, and ϵ-
insensitive loss function). The ϵ-insensitive loss function,
introduced by Vapnik, is an approximation of the Huber
loss function and enables a more reliable generalization
bound [16]. This is due to the fact that unlike the Huber
and quadratic loss functions (where all the data will be
support vectors) the support vectors can be sparse with
the ϵ-insensitive loss function. Sparse data representa-
tions have been shown to reduce the generalization error
[60] (see Chapter 3.3 of [57] for details).

In this work we employ ϵ-insensitive regression that
is based on the idea that all points that fall within the ϵ-
band have a zero cost. The ones outside the band have a
cost assigned which is relative to their distance measured
by the variables.

We choose to use SVRs in our experiments due to
the fact that they are commonly employed in works
reporting on continuous affect prediction (e.g., [42], [26],
[34]).

7.3 Evaluation Metrics

Finding optimal evaluation metrics for dimensional and
continuous emotion prediction and recognition remains
an open research issue [27]. The mean squared error
(MSE) is the most commonly used evaluation measure
by related work in the literature (e.g., [42], [26], [34])
while correlation coefficient is also employed by several
studies (e.g., [26], [34]).

MSE evaluates the prediction by taking into account
the squared error of the prediction from the ground
truth. Let θ̂ be the prediction and θ be the ground truth.
MSE is then defined as:

MSE =
1

n

n∑
f=1

(θ̂(f)− θ(f))2 = σ2
θ̂
+ E([θ̂ − θ])2 (2)

As can be seen from the equation, MSE is the sum of the
variance and the squared bias of the predictor, where
E is the expected value operator. Therefore, the MSE
provides an evaluation of the predictor based on its
variance and bias. This also applies for other MSE-based
metrics, such as the root mean squared error (RMSE),
defined as:

RMSE =
√
MSE

In this work we use the RMSE since it is measured in
the same units as our actual data (as opposed to the
squared units measuring MSE). MSE-based evaluation
has been criticized for heavily weighting outliers [5].
Most importantly, it is unable to provide any structural

information regarding how θ and θ̂ change together, i.e.
the covariance of these values. The correlation coefficient
(COR), that we employ for evaluating the prediction and
ground truth, compensates for the latter, and is defined
as follows:

COR(θ̂, θ) =
COV {θ̂, θ}

σθ̂σθ
=

E[(θ̂ − µθ̂)(θ − µθ)]

σθ̂σθ
(3)

where σ stands for the standard deviation, COV stands
for the covariance while µ symbolises the mean (ex-
pected value).

COR provides an evaluation of the linear relationship
between the prediction and the ground truth, and sub-
sequently, an evaluation of whether the model has man-
aged to capture linear structural patterns inhibited in the
data at hand. As for the covariance calculation, since the
means are subtracted from the values in question, it is
independent of the bias (and differs from the MSE-based
evaluation).

In addition to the two aforementioned metrics, we
propose the use of another metric which can be seen
as emotion-prediction-specific. Our aim is to obtain an
agreement level of the prediction with the ground truth
by assessing the valence dimension, as being positive
(+) or negative (-), and the arousal dimension, as being
active (+) or passive (-). Based on this heuristic, we define
a sign agreement metric (SAGR) as follows:

SAGR =
1

n

n∑
f=1

δ(sign(θ̂(f)),sign(θ(f))) (4)

where δ is the Kronecker delta function, defined as:

δ(a,b) =

{
1, a = b

0, a ̸= b.
(5)

As a proof of concept, we provide two cases from
our experiments that demonstrate how each evaluation
metric contributes to the evaluation of the prediction
with respect to the ground truth. In Figure 3 we present
two sub-optimal predictions from audio cues, for the
valence dimension, using two BLSTM-NNs with differ-
ent topologies. Notice how each metric informs us of a
specific aspect of the prediction. The MSE of Fig. 3(a)
is smaller than Fig. 3(b), demonstrating that the first
case is numerically closer to the ground truth than the
second case. Despite this fact, the first prediction does
not seem to follow the ground truth structurally, it rather
fluctuates around the mean of the prediction (generating
a low bias). This is confirmed by observing COR which
is significantly higher for the second prediction case
(0.566 vs. 0.075). Finally, SAGR demonstrates that the
first prediction case is in high agreement with the ground
truth, in terms of classifying the emotional states as
negative or positive. In summary, we conclude that a
high COR accompanied by a large MSE is undesirable,
as well as a high SAGR accompanied by a large MSE
(such observations also apply to the RMSE metric).
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Fig. 3. Illustration of how MSE-based (both MSE and
RMSE), COR and SAGR evaluation metrics provide dif-
ferent results for two different predictions on the same
sequence (gt: ground truth, pd: prediction).

Our empirical evaluations show that there is an inher-
ent trade off involved in the optimization of these met-
rics. By using all three metrics simultaneously we attain
a more detailed and complete evaluation of predictor vs.
ground truth, i.e., (i) a variance-and-bias-based evalua-
tion with MSE (how much prediction and ground truth
values vary), (ii) a structure-based evaluation with COR
(how closely the prediction follows the structure of the
ground truth), and (iii) emotion-prediction-specific eval-
uation with SAGR (how much prediction and ground
truth agree on the positive vs. negative, and active vs.
passive aspect of the exhibited expression).

7.4 Single-cue Prediction

The first step in our experiments consists of prediction
based on single cues. Let D = {V,A} represent the set
of dimensions, C the set of cues consisting of the facial
expressions, shoulder movement and audio cues. Given
a set of input features xc = [x1c , . . . ,xnc ] where n is the
training sequence length and c ∈ C, we train a machine
learning technique fd, in order to predict the relevant
dimension output, yd = [y1, . . . , yn], d ∈ D.

fd : x 7→ yd (6)

LSTM

VAL

LSTM

VAL

LSTM

VAL

Final valence predic!on

Facial Expression Cues

Audio Cues

valence predic!ons

(a)

LSTM

VAL

LSTM

VAL Final valence 

(or arousal) predic!on

Facial Expression Cues valence predic!ons

arousal predic!ons

LSTM

VAL

Audio Cues

LSTM

AR

Facial Expression Cues

LSTM

AR

Audio Cues

(b)

Fig. 4. Illustration of (a) model-level fusion and (b) output-
associative fusion using facial expression and audio cues.
Model-level fusion combines valence predictions from
facial expression and audio cues by using a third network
for the final valence prediction. Output-associative fusion
combines both valence and arousal values predicted from
facial expression and audio cues, again by using a third
network which outputs the final prediction.

This step provides us with a set of predictions for each
machine learning technique, and each relevant dimen-
sion employed.

7.5 Feature-level Fusion
Feature-level fusion is obtained by concatenating all the
features from multiple cues into one feature vector which
is then fed into a machine learning technique.

In our case, the audio stream has a double frame
rate with respect to the video stream (50 Hz vs. 25
fps). When fusing audio and visual features (shoulder
or facial expression cues) at the feature-level, each video
feature vector is repeated twice, and the ground truth for
the audio cues is then used for training and evaluation.
This practice is in accordance with similar works in the
field that focus on human behavior understanding from
audiovisual data (e.g., [52]).

7.6 Model-level Fusion
In the decision-level data fusion, the input coming from
each modality and cue is modeled independently, and
these single-cue and single-modal recognition results
are combined in the end. Since humans display multi-
cue and multi-modal expressions in a complementary
and redundant manner, the assumption of conditional
independence between modalities and cues in decision-
level fusion can result in loss of information (i.e. mutual
correlation between the modalities). Therefore, we opt
for model-level fusion of the continuous predictions
as this has the potential of capturing correlations and
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structures embedded in the continuous output of the
regressors (from different sets of cues). This is illustrated
in Figure 4(a).

More specifically, during model-level fusion, a func-
tion learns to map predictions to a dimension d from
the set of cues as follows:

fmlf : fd(x1)× · · · × fd(xm) 7→ yd (7)

where m is the total number of fused cues.

7.7 Output-associative Fusion

In the previous sections, we have treated the prediction
of valence or arousal as a 1D regression problem. How-
ever, as mentioned in Section 2, psychological evidence
shows that valence and arousal dimensions are corre-
lated [48],[1],[65].

In order to exploit these correlations and patterns, we
propose a framework capable of learning the dependen-
cies that exist amongst the predicted dimensional values.
We use BLSTM-NN as the basis for this framework as
they appear to outperform SVR in the prediction task
at hand (see Section 8). Given the setting described in
Section 7.4, this framework learns to map the outputs
of the intermediate predictors (each BLSTM-NN as for-
mulated in Eq. 6) onto a higher (and final) level of
prediction by incorporating cross-dimensional (output)
dependencies (see Figure 4(b)). This method, that we call
output-associative fusion, can be represented by a function
foaf :

foaf : fAr(x1)× fV al(x1) · · · × fAr(xm)× fV al(xm) 7→ yd
(8)

where m is again the total number of fused cues.
As a result, the final output, taking advantage of

the temporal and bidirectional characteristics of the re-
gressors (BLSTM-NNs), depends not only on the entire
sequence of input features xi but also on the entire
sequence of intermediate output predictions fd of both
dimensions (see Figure 4(b)).

7.8 Experimental Setup

Prior to experimentation, all features used for training
the machine learning techniques have been normalized
to the range of [-1,1], except for the audio ones, which
have been found to perform better with z-normalization
(i.e., normalizing to mean=0 and standard deviation=1).

For validation purposes we use a subset of the SAL-
DB that consists of 134 audiovisual segments (a to-
tal of 30,042 video frames) obtained by the automatic
segmentation procedure (see [46]). We employ subject-
dependent leave-one-out-validation evaluation as most
of the works in the field report only on subject-
dependent dimensional emotion recognition when the
number of subjects and data are limited (e.g., [42]).

For automatic dimensional affect prediction we em-
ploy two state-of-the-art machine learning techniques:

Support Vector Machines for Regression (SVR) and bidi-
rectional Long Short-Term Memory Neural Networks
(BLSTM-NN). Experimenting with SVR and BLSTM-NN
requires that various parameters within these learning
methods are configured and the interaction effect be-
tween various parameters is investigated. For SVR we
experiment with Radial Basis Function (RBF) kernels
(e(−γ∥x−x′∥2)) as the results outperformed our initial
polynomial kernel experiments. To this aim, kernel spe-
cific parameters, such as the γ RBF kernel parameter
(which determines how closely the distribution of the
data is followed) and the polynomial kernel degree as
well as generic parameters, including the outlier cost C,
the tolerance of termination and the ϵ of the loss function
need to be optimized. We perform a grid search (using
the training set) and select the best performing set of
parameters to be used.

The respective parameter optimization for BLSTM-
NNs refers to mainly determining the topology of the
network along with the number of epochs, momentum
and learning rate. Our networks typically have one hid-
den layer and a learning rate of 10−4. The momentum is
varied in the range of [0.5, 0.9]. All these parameters can
be determined by optimizing on the given training set
(e.g., by keeping a validation set aside) while avoiding
overfitting.

8 EXPERIMENTAL RESULTS

8.1 Single-cue Prediction
To evaluate the performance of the employed learning
techniques for continuous affect prediction, we firstly
experiment with single cues. Table 3 presents the results
of applying BLSTM-NN and SVR (with radial basis
function (RBF) kernels) for the prediction of valence and
arousal dimensions.

We initiate our analysis with the valence dimension.
From both BLSTM-NNs and SVR, it is obvious that the
visual cues appear more informative than audio cues.
Facial expression cues provide the highest correlation
with the ground truth (COR=0.71) compared to shoul-
der cues (COR=0.59) and audio cues (COR=0.44). This
fact is also confirmed by the RMSE and SAGR values.
Facial expression cues provide the highest SAGR (0.84)
indicating that the predictor was accurate in predicting
an emotional state as positive or negative for 84% of the
frames.

Works on automatic affect recognition from audio
have reported that arousal can be much better predicted
than valence using audio cues [26], [59]. Our results are
in agreement with such findings, for prediction of the
arousal dimension audio cues appear to be superior to
visual cues. More specifically, audio cues (using BLSTM-
NNs) provide COR=0.59, RMSE=0.24, and AGR=0.76.
The facial expression cues provide the second best results
with COR=0.49, while the shoulder cues are deemed less
informative for arousal prediction. These findings are
also confirmed by the SVR results.
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TABLE 3
Single-cue prediction results for valence and arousal

dimensions (F: Facial Expressions, S: Shoulder Cues, A:
Audio)

BLSTM-NN SVR

RMSE COR SAGR RMSE COR SAGR

Valence
F 0.17 0.712 0.841 0.21 0.551 0.740
S 0.21 0.592 0.781 0.25 0.389 0.718
A 0.22 0.444 0.648 0.25 0.146 0.538

Arousal
F 0.25 0.493 0.681 0.27 0.418 0.700
S 0.29 0.411 0.687 0.27 0.388 0.667
A 0.24 0.586 0.764 0.26 0.419 0.716

From Table 3 we also obtain a comparison of the
performance of the employed learning techniques. We
clearly observe that BLSTM-NNs outperform SVRs. In
particular, COR and SAGR metrics provide better results
for BLSTM-NNs (for all cues and all dimensions). The
RMSE metric also confirms these findings except for
the prediction of arousal from shoulder cues. Overall,
we conclude that capturing temporal correlations and
remembering the temporally distant events (or storing
them in memory) is of utmost importance for continuous
affect prediction.

8.2 Multi-cue and Multi-modal Fusion
The experiments in the previous section have demon-
strated that using BLSTM-NNs provide better results (for
all cues and all dimensions) than using SVRs. There-
fore, BLSTM-NNs are employed for feature-level and
model-level fusion, as well as output-associative fusion
(described in Section 7.7). Experimental results are pre-
sented in Table 4, along with the statistical significance
test results. We performed statistical significance tests (t-
test) using alpha = 0.05 (95% confidence interval). We
performed t-tests to compare the RMSE results of the
proposed output-associative fusion to that of the best
of model-level or feature-level fusion result (for each
cue combination). Table 4 shows the significant results
marked with a †. Overall, the output-associative fusion
appears to be significantly better than the other fusion
methods, except for prediction of valence from face-
shoulder and shoulder-audio cue combinations.

Looking at Table 4, feature-level fusion appears to be
the worst performing fusion method for the task and
data at hand. Although in theory the cross-cue temporal
correlations can be exploited by feature-level fusion, this
does not seem to be the case for the problem at hand.
This is possibly due to the increased dimensionality
of the feature vector along with synchronicity issues
between the fused cues.

In general model-level fusion provides better results
than feature-level fusion. This can be justified by the
fact that the BLSTM-NNs are able to learn temporal
dependencies and structural characteristics manifesting
in the continuous output of each cue. Model-level fusion
appears to be much better for predicting the valence

dimension rather than the arousal dimension. This is
mainly due to the fact that the single-cue predictors
for valence dimension perform better, thus containing
more correct temporal dependencies and structural char-
acteristics (while the weaker arousal predictors contain
less of these dependencies). Both fusion techniques re-
confirm that visual cues are more informative for valence
dimension than audio cues. Finally, the fusion of all cues
and modalities provides us with the best (most accurate)
results.

Regarding the arousal dimension, we observe that the
performance gap between model-level and feature-level
fusion is smaller compared to that of valence dimension.
For instance, for the fusion of face and shoulder cues,
the feature-level fusion provided better COR and SAGR
results (but a worse RMSE) than model-level fusion.

Facial expression and audio cues have been the best
performing single cues for continuous emotion predic-
tion (see Section 8.1). Therefore it is not surprising that
fusion of these two cues provides the best feature-level
fusion results. For model-level fusion instead, the best
results are obtained by combining the predictions from
all cues and modalities.

Finally, the proposed output-associative fusion pro-
vides the best results, outperforming both feature-level
and model-level fusion. Similar to the model-level fusion
case, the best results (for both dimensions) are obtained
when predictions from all cues and modalities are fused.

We denote that the performance increase of output-
associative fusion is higher for the arousal dimension
(compared to the valence dimension). This could be
justified by the fact that the single-cue predictors for
valence perform better than for arousal (Table 3) and
thus, more correct valence patterns are passed onto the
output-associative fusion.

Table 4 also shows the average agreement level be-
tween human coders in terms of RMSE, COR and SAGR
metrics (calculated for each dimension separately). It
is interesting to note that when predicting the valence
dimension, the proposed output-associative fusion (i)
appears to outperform the average human coder in terms
of SAGR criterion, and (ii) provides prediction results
that are relatively close to human coders (in terms of
RMSE and COR).

In Fig.5, we illustrate a set of predictions obtained via
output-associative fusion. As can be observed from the
figure, the prediction results closely follow the structure
and the values of the ground truth.

Overall, the temporal dynamics of spontaneous multi-
modal behavior (e.g., when a facial or a bodily expres-
sion starts, reaches an apex, and ends) have not received
much attention in the affective and behavioral science
research fields. More specifically, it is virtually unknown
whether and how the temporal dynamics of various
communicative cues are inter-related (e.g., whether a
smile reaches its apex while the person is shrugging his
shoulders). The facial, shoulder and audio cues explored
in this paper possibly have different temporal dynamics.
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TABLE 4
Fusion results for the three methods employed. The best results are obtained by employing output-associative fusion.

Significant results are marked with a †. For comparison purposes, the average agreement level between human
coders is also shown in terms of RMSE, COR and SAGR metrics.

output-associative model-level feature-level
RMSE COR SAGR RMSE COR SAGR RMSE COR SAGR

Valence
FS 0.15 0.777 0.89 0.16 0.774 0.890 0.19 0.676 0.845
SA 0.18 0.664 0.825 0.19 0.653 0.830 0.21 0.583 0.733
FA 0.16† 0.760 0.892 0.17 0.748 0.856 0.20 0.604 0.790

FSA 0.15† 0.796 0.907 0.16 0.782 0.892 0.19 0.681 0.856
coders 0.141 0.85 0.86 0.141 0.85 0.86 0.141 0.85 0.86

Arousal
FS 0.24† 0.536 0.719 0.25 0.479 0.666 0.27 0.508 0.731
SA 0.23† 0.602 0.763 0.26 0.567 0.637 0.28 0.461 0.685
FA 0.22† 0.628 0.800 0.23 0.605 0.800 0.24 0.589 0.763

FSA 0.21† 0.642 0.766 0.22 0.639 0.763 0.26 0.500 0.700
coders 0.145 0.87 0.84 0.145 0.87 0.84 0.145 0.87 0.84
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Fig. 5. Example valence (5(a), 5(b)) and arousal (5(c), 5(d)) predictions obtained by output-associative fusion. (gt:
ground truth, pd: prediction)

Accordingly, the BLST-NN are able to incorporate and
model the temporal dynamics of each modality inde-
pendently (and appropriately) in the output-associative
and model-level fusion schemes. This may be one reason
why output-associative and model-level fusion appear to
perform better than feature-level fusion.

9 CONCLUSIONS
Affect sensing and recognition field has recently shifted
its focus towards subtle, continuous, and context-specific
interpretations of affective displays recorded in natu-
ralistic and real-world settings, and towards combining
multiple modalities for automatic analysis and recog-
nition. The work presented in this paper converges
with this recent shift by (i) extracting audiovisual seg-
ments from databases annotated in dimensional affect

space and automatically generating the ground truth, (ii)
fusing facial expressions, shoulder and audio cues for
dimensional and continuous prediction of emotions, (iii)
experimenting with state-of-the-art learning techniques
such as BLSTM-NNs and SVRs, and (iv) incorporating
correlations between valence and arousal values via
output-associative fusion to improve continuous predic-
tion of emotions.

Based on the experimental results provided in Sec-
tion 8 we are able to conclude the following:

• Arousal can be much better predicted than valence
using audio cues. For valence dimension instead,
visual cues (facial expressions and shoulder move-
ments) appear to perform better. This has also been
confirmed by other related work on dimensional
emotion recognition [42], [26], [59]. Whether such
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conclusions hold for different context and different
data remain to be evaluated.

• Emotional expressions change over the course of
time, and usually have start, peak, and end points
(temporal dynamics). It appears that such temporal
aspects (dynamics) are crucial in predicting both
valence and arousal dimensions. A learning tech-
nique, such as the BLSTM-NNs, that can exploit
these aspects, appears to outperform SVR (the static
learning technique at hand).

• When working with temporal and structured emo-
tion data, choosing predictors that are able to opti-
mize not only the variance (of the predictor) and the
bias (to the ground truth), but also the covariance
of the prediction (with respect to the ground truth),
is crucial for the prediction task at hand. Emotion-
specific metrics (such as SAGR), that carry valuable
information regarding the emotion-specific aspects
of the prediction, is also desirable.

• As confirmed by the psychological theory, valence
and arousal are correlated. Such correlations appear
to exist in our data where fusing predictions from
both valence and arousal dimensions (via output-
associative fusion) improves the results compared
to using predictions from either valence or arousal
dimension alone (both for feature-level and model-
level fusion).

• In general, multi-modal data appear to be more
useful for predicting valence than for predicting
arousal. While arousal is better predicted by using
audio features alone, valence is better predicted by
using multi-cue and multi-modal data.

Overall, we conclude that compared to an average
human coder, the proposed system is well able to ap-
proximate the valence and arousal dimensions. More
specifically, for valence dimension our output-associative
fusion framework approximates the inter-coder RMSE
(≈ 0.141) and inter-coder correlation (0.84) by obtaining
a RMSE =0.15 and COR ≈ 0.8 (see Table 4). It also
achieves a higher SAGR (≈ 0.91) than the inter-coder
SAGR (0.86).

As future work, the proposed methodology remains
to be evaluated on extensive datasets (with a larger
number of subjects) annotated using a richer emotional
expression space with other continuous dimensions such
as power, expectation and intensity (e.g., the newly
released Semaine Database [43]). Moreover, it is possible
to exploit the correlations between valence and arousal
dimensions inherent in naturalistic affective data uti-
lizing other machine learning techniques. For instance,
Nicolaou et al. in [47] introduce an output-associative
Relevance Vector Machine regression framework that
augments the traditional Relevance Vector Machine re-
gression by learning non-linear input and output de-
pendencies inherent in the affective data. We will focus
on exploring such output-associative regression frame-
works using unsegmented audiovisual sequences.
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