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Abstract—As one of the most comprehensive and objective ways to describe facial expressions, the Facial Action Coding System
(FACS) has recently received significant attention. Over the past 30 years, extensive research has been conducted by psychologists
and neuroscientists on various aspects of facial expression analysis using FACS. Automating FACS coding would make this research
faster and more widely applicable, opening up new avenues to understanding how we communicate through facial expressions. Such
an automated process can also potentially increase the reliability, precision and temporal resolution of coding. This paper provides a
comprehensive survey of research into machine analysis of facial actions. We systematically review all components of such systems:
pre-processing, feature extraction and machine coding of facial actions. In addition, the existing FACS-coded facial expression
databases are summarised. Finally, challenges that have to be addressed to make automatic facial action analysis applicable in
real-life situations are extensively discussed. There are two underlying motivations for us to write this survey paper: the first is to
provide an up-to-date review of the existing literature, and the second is to offer some insights into the future of machine recognition of
facial actions: what are the challenges and opportunities that researchers in the field face.

Index Terms—Action Unit analysis, facial expression recognition, survey.

F

1 INTRODUCTION

SCIENTIFIC work on facial expressions can be traced back
to at least 1862 with the work by the French researcher

Duchenne [54], who studied the electro-stimulation of in-
dividual facial muscles responsible for the production of
facial expressions, followed closely by the work by Charles
Darwin who in 1872 published his second-most popular
work ‘The Expression of the Emotions in Man and Animals’ [48].
He explored the importance of facial expressions for com-
munication and described variations in facial expressions of
emotions. Today, it is widely acknowledged that facial ex-
pressions serve as the primary nonverbal means for human
beings to regulate their interactions [58]. They communicate
emotions, clarify and emphasise what is being said, and
signal comprehension, disagreement and intentions [127].

Two main approaches for facial expression measurement
can be distinguished: message and sign judgement [36].
Message judgement aims to directly decode the meaning
conveyed by a facial display (such as being happy, angry or
sad), while sign judgement aims to study the physical signal
used to transmit the message instead (such as raised cheeks
or depressed lips). Paul Ekman suggested that the six basic
emotions, namely anger, fear, disgust, happiness, sadness
and surprise, are universally transmitted through prototypi-
cal facial expressions [55]. This relation underpins message-
judgement approaches. As a consequence, and helped by
the simplicity of this discrete representation, prototypic
facial expressions of the six basic emotions are most com-
monly studied and represent the main message-judgement
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approach. The major drawback of message judgement ap-
proaches is that it cannot explain the full range of facial
expressions. Message judgement systems often assume that
facial expression and target behaviour (e.g. emotion) have
an unambiguous many-to-one correspondence, which is not
the case according to studies in psychology [7] and in
general, relations between messages and their associated
displays are not universal, with facial displays and their
interpretation varying from person to person or even from
one situation to another.

The most common descriptors used in sign-judgement
approaches are those specified by the Facial Action Coding
System (FACS). The FACS is a taxonomy of human facial
expressions. It was originally developed by [57], and revised
in [56]. The revision specifies 32 atomic facial muscle actions,
named Action Units (AUs), and 14 additional Action De-
scriptors (ADs) that account for head pose, gaze direction,
and miscellaneous actions such as jaw thrust, blow and bite.
In this survey, we will limit our discussion to AUs, because it
is they that describe the muscle-based atomic facial actions.

The FACS is comprehensive and objective, as opposed to
message-judgement approaches. Since any facial expression
results from the activation of a set of facial muscles, every
possible facial expression can be comprehensively described
as a combination of AUs [57] (as shown in Fig. 1). And while
it is objective in that it describes the physical appearance of
any facial display, it can still be used in turn to infer the
subjective emotional state of the subject, which cannot be
directly observed and depends instead on personality traits,
context and subjective interpretation.

Over the past 30 years, extensive research has been
conducted by psychologists and neuroscientists using FACS
for various aspects of facial expression analysis. For exam-
ple, it has been used to demonstrate differences between
polite and amused smiles [5], deception detection [62], facial
signals of suicidal and non-suicidal depressed patients [74],
and voluntary or evoked expressions of pain [55], [58].
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Fig. 1. Examples of upper and lower face AUs defined in the FACS.

Given the significant role of faces in our emotional and
social lives, automating the analysis of facial signals would
be very beneficial [128]. This is especially true for the anal-
ysis of AUs. A major impediment to the widespread use of
FACS is the time required both to train human experts and
to manually score videos. It takes over 100 hours of training
to achieve minimal competency as a FACS coder, and each
minute of video takes approximately one hour to score [53],
[57]. It has also been argued that automatic FACS coding can
potentially improve the reliability, precision, reproducibility
and temporal resolution of facial measurements [53].

In spite of these facts, message-judgement approaches
have been the most popular automatic approaches. This
is unsurprising, however, given the complexity of the AU
detection problem - a high number of classes (32 AUs vs. six
basic emotions), more subtle patterns, and small between-
class differences. It is also less laborious to collect a data-set
of prototypic expressions of the six basic emotions. In fact,
automatic message judgement in terms of basic emotions
is considered a solved problem nowadays, while machine
analysis of AUs is still an open challenge [184].

Historically, the first attempts to automatically encode
AUs in images of faces were reported by [17], [97] and
[131]. The focus was on automatic recognition of AUs in
static images picturing frontal-view faces, showing facial
expressions that were posed on instruction. However, posed
and spontaneous expressions differ significantly in terms of
their facial configuration and temporal dynamics [6], [127].
Recently the focus of the work in the field has shifted
to automatic AU detection in image sequences displaying
spontaneous facial expressions (e.g. [127], [184], [207]). As
a result, new challenges such as head movement (including
both in-plane and out-of-plane rotations), speech and subtle
expressions have to be considered. The analysis of other
aspects of facial expressions such as facial intensities and
dynamics has also attracted increasing attention (e.g. [174],
[186]). Another trend in facial action detection is the use
of 3D information (e.g. [153], [176]). However, we limit the
scope of this survey to 2D, and refer the reader to [148] for
an overview of automatic facial expression analysis in 3D.

Existing works surveying methods on automatic facial
expression recognition either focus on message-judgement
approaches [60], [130], or contain just a limited subset of
works on automatic AU detection [171], [207], or focus on
the efforts of particular research groups [50], [128]. Further-
more, during the last 5-7 years, the field of automatic AU
detection produced a dramatic number of publications, and

the focus has turned to spontaneous expressions captured in
naturalistic settings. More recent surveys include [151] and
[43]. However, Sariyanidi et al. [151] focus mostly on face
representation methodologies, and touch only lightly on the
inference problems and methodologies. Furthermore, their
work is not AU-specific since it comprises different affect
models. Similarly, [43] includes different data modalities,
different affect models and historical considerations on the
topic. Other works providing an overview include [35] and
[107], which focus primarily on applications and problems
related to facial AUs, and [50], which provides a more
in-depth explanation of a sub-set of methods rather than
a general overview. This work provides a comprehensive
survey of recent efforts in the field and focuses exclusively
on automatic AU analysis from RGB imagery.

We structure our survey into works on three different
steps involved in automatic AU analysis: 1) image pre-
processing including face and facial point detection and
tracking, 2) facial feature extraction, and 3) automatic facial
action coding based on the extracted features (see Fig. 2).

The remainder of the paper is structured as follows.
Section 2 presents a brief review of relevant issues regarding
FACS coding as introduced by [56]. Section 3 provides a
summary of research on face image pre-processing. Sec-
tion 4 contains a detailed review of recent work on facial
feature extraction. Section 5 summarises the state of the
art in machine analysis of facial actions. An overview of
the FACS-annotated facial expression databases is provided
in section 6. Finally, section 7 discusses the challenges and
opportunities in machine analysis of facial actions.

2 FACIAL ACTION CODING SYSTEM (FACS)
Here we summarise important FACS-related notions. Inter-
ested readers can find more in-depth explanations on the
FACS manuals [56], [57], which formally define them.

The Facial Action Coding System [56], [57] defines 32
atomic facial muscle actions named Action Units (AUs) (as
shown in Fig.3). Additionally it encodes a number of miscel-
laneous actions, such as eye gaze direction and head pose,
and 14 Action Descriptors for miscellaneous actions. With
FACS, every possible facial expression can be objectively
described as a combination of AUs. Table 1 shows a number
of expressions with their associated AUs.

TABLE 1
Lists of AUs involved in some expressions.

AUs
FACS: upper face: 1, 2, 4-7, 43, 45, 46;

lower face: 9-18, 20, 22-28; other: 21, 31,
38, 39

anger: 4, 5, 7, 10, 17, 22-26
disgust: 9, 10, 16, 17, 25, 26
fear: 1, 2, 4, 5, 20, 25, 26, 27
happiness: 6, 12, 25
sadness: 1, 4, 6, 11, 15, 17
surprise: 1, 2, 5, 26, 27
pain: 4, 6, 7, 9, 10, 12, 20, 25, 26, 27, 43
cluelessness: 1, 2, 5, 15, 17, 22
speech: 10, 14, 16, 17, 18, 20, 22-26, 28

Voluntary vs. Involuntary: The importance of distinguish-
ing between involuntary and deliberately displayed (often
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Pre-processing Feature Extraction Machine Analysis of Facial Actions
Image/Video

Appearance-based approaches,
Geometry-based approaches,
Motion-based approaches, 
Hybrid approaches

Face detection and tracking,
Facial point detection and tracking,
Face normalisation

AU classification,
AU recognition,
AU temporal segment detection, 
AU intensity estimation

Fig. 2. Configuration of a generic facial action recognition system.

AUdd Nasolabial Furrow 
DeepenerAU9 Nose Wrinkler AUdO  Upper Lip Raiser AUdE Lip Corner Puller AUdy Sharp Lip  Puller AUd4 Dimpler AUd5 Lip Corner DepressorAUd6 Lower Lip Depressor

cAUE5t
AUd7 Chin Raiser

AUd8 Lip Pucker AUEO Lip Stretcher AUEE Lip Funneler cAUE5tAUEy Lip Tightener AUE4 Lip Presser AUE5 Lips Part AUE6 Jaw Drop cAUE5t AUE7 Mouth Stretcher AUE8 Lips Suck

AUd Inner Brow Raiser AUE Outer Brow Raiser AU4 Brow Lowerer AU5 Upper Lid Raiser AU6 Cheek Raise AU7 Lids Tightener AU4y Eye Closure AU45 Blink AU46 Wink

Fig. 3. A list of upper and lower face AUs and their interpretation.

referred to as “posed”) facial expressions is justified by both
the different semantic content of the facial expression, and
the different physical realisation of the expressions ( [58],
[116], [139]). While one will be able to find the same AU
occurrences in both voluntary and involuntary expressions,
they will differ in terms of dynamics. In particular the
duration of temporal phases of FACS (onset, apex, offset),
the interaction between AUs (timing and co-occurrence),
and the symmetry of individual AUs is different between
the two categories of expressions.
AU intensity: AU intensity scoring is done on a five-point
ordinal scale, A-B-C-D-E, where A refers to a trace of the
action and E to maximum evidence.
Morphology and dynamics are two dual aspects of a fa-
cial display. Face morphology refers to facial configuration,
which can be observed from static frames. Dynamics reflect
the temporal evolution of one facial display to another, and
can be observed in videos only. For example, dynamics
encode whether a smile is forming or disappearing. Facial
dynamics (i.e. timing, duration, speed of activation and
deactivation of various AUs) can be explicitly analysed by
detecting the boundaries of the temporal phase (namely
neutral, onset, apex, offset) of each AU activation. They have
been shown to carry important semantic information, useful
for a higher-level interpretation of the facial signals [6], [38].

Dynamics are essential for the categorisation of complex
psychological states like various types of pain and mood
[194]. They improve the judgement of observed facial be-
haviour (e.g. affect) by enhancing the perception of change
and by facilitating the processing of facial configuration.
They represent a critical factor for interpretation of social
behaviours like social inhibition, embarrassment, amuse-
ment and shame ( [45], [58]). They are also a key parameter

in differentiating between posed and spontaneous facial
displays ( [64], [63], [38], [55]), and the interpretation of
expressions in general [6].
AU combinations: More than 7,000 AU combinations have
been observed in everyday life [155]. Co-occurring AUs
can be additive, in which the appearance changes of each
separate AU are relatively independent, or non-additive, in
which one action masks another or a new and distinctive
set of appearances is created [56]. When these co-occurring
AUs affect different areas of the face, additive changes are
typical. By contrast, AUs affecting the same facial area are
often non-additive. Furthermore, some AU combinations
are more common than others due to latent variables such
as emotions. For example, happiness is often expressed as a
combination of AU12 and AU6.

3 PRE-PROCESSING

Data pre-processing consists of all processing steps that are
required before the extraction of meaningful features can
commence. The most important aim of the pre-processing
step is to align faces into a common reference frame, so
that the features extracted from each face correspond to the
same semantic locations. It removes rigid head motion and,
to some extent, antropomorphic variations between people.
We distinguish three components; face localisation, facial
landmark localisation, and face normalisation/alignment.

3.1 Face Detection
The first step of any face analysis method is to detect the
face. The Viola & Jones (V&J) face detector [190] is by far the
most widely employed one. The public availability of pre-
trained models (e.g. in OpenCV or Matlab), its reliability
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Fig. 4. Green: [190] (Matlab’s implementation). Red: [125]. Blue: [220]
(bounding box definition is different for each method). [190] shows less
detection stability, and fail for non-frontal head poses. [220] fails to detect
low quality faces.

for frontal faces and its computational simplicity makes
it the reference face detection algorithm. Another popular
open-source face detector is the one provided with the dlib
library1. Current automatic AU analysis methods assume a
frontal head pose and a relatively controlled scenario. How-
ever, multi-view face detection algorithms will be necessary
for more general scenarios.

Some recent works have successfully adapted the de-
formable parts model (DPM) [61] to perform face detection.
This resulted in a much improved detection robustness and
localisation accuracy, usually to the expense of higher com-
putational cost. For example, [220] proposed an algorithm
capable of jointly performing reliable multi-view (from -90�
to 90� yaw rotation) face detection, head pose estimation
and facial point detection. Alternatively, [125] and [109]
noted that the focus on facial landmarking results in sub-
optimal performance of the face detection task, propos-
ing face-detection-specific DPM. A further speed-up was
attained in [125] by adopting a cascaded detection strat-
egy. Notably, [109] reached similar performance employing
V&J -like rigid-template detectors over feature channels.
Source code for these works is publicly available from the
respective authors’ websites. Other interesting ideas have
recently been proposed, as for example the use of deep
learning for face detection [94] or the auxiliary use of
cascaded regression-based face alignment [29]. However,
the current absence of publicly-available implementations
detracts from their interest for those focusing on facial AU
analysis. Some face detection examples are shown in Fig. 4.

3.2 Facial landmark localisation

Facial landmarks are defined as distinctive face locations,
such as the corners of the eyes, centre of the bottom lip,
or the tip of the nose. Taken together in sufficient numbers
they define the face shape. While facial expression recogni-
tion can be attained only using the face detection, further
localising the face shape results in better performance. It
allows for better face registration, as well as being necessary
to extract some types of features (see Sec. 4.2). It is common
to distinguish between generative and discriminative facial
landmarking algorithms, a distinction we keep here. We
further discuss facial landmark tracking algorithms, and
include a discussion with practical aspects and advice.

1. Available at: http://dlib.net/

3.2.1 Generative models

Generative models are tightly identified with the active
appearance models (AAM) [41], [110]. The AMM finds
the optimal parameters for both the face shape and face
appearance that optimally reconstruct the face at hand. The
landmarks are provided by the reconstructed face. To this
end, the shape is parametrised through the widely-used
Point Distribution Model (PDM) [40], which relies on a PCA
decomposition of the shape. Then, the face shape is used to
define a triangular mesh, and appearance variations within
each triangle is again encoded using PCA. Both shape
and appearance can be reconstructed back-projecting their
PCA coefficients, and the aim is to minimise the difference
between the reconstructed face and the original image.

AAMs can be very efficient due to the use of the inverse
compositional for the parameter search [110]. However,
there has been a long-standing discussion regarding the
capability of AAMs to generalise to unseen faces, i.e., faces
of subjects not included in the training set. The performance
reported is often lower than for other methods in this
setting. As a consequence, several works in the AU literature
apply AAM in person-specific scenarios and with careful
landmarking initialisation, where AAM offers excellent per-
formance (e.g. [221]). However, recent works, such as [179],
have shown that generic AAM can offer state-of-the-art
performance provided that an adequate minimisation pro-
cedure is used and a good initial shape estimate is available.
Further improvements were attained by substituting the
triangular mesh to represent appearance with a part-based
model [180], and by adopting a cascaded regression-like
minimisation procedure [178].

While AAM can be computationally efficient and pro-
vide very accurate alignments, they are not as robust as
discriminative models, and require a better initial shape es-
timate. Furthermore, if the initial shape is outside the basin
of attraction of the ground truth minimum, the algorithm
might converge to a totally wrong solution.

3.2.2 Discriminative models

Discriminative models typically represent the face appear-
ance by considering small patches around the facial land-
marks. For each of such patches, a feature descriptor such
as HOG [46] is applied, and all of the resulting descriptors
are concatenated into a single vector to create the face
representation. Discriminative methods proceed by training
either a classifier or a regressor on these features. There is
a wide variety of discriminative facial landmarking algo-
rithms. In here we distinguish three sub-families, response-
map fitting, deformable parts model and regression-based
approaches.

Response map fitting, which includes the popular Ac-
tive Shape Model [42] and its variants, have been very
popular due to their early success and the availability of
well-optimised public implementations of some of its most
popular variants [117], [150]. These methods divide the
landmarking process into two distinct steps. In the first step,
model responses are computed in the vicinity of the current
landmark location, encoding the belief of the appearance
model of each evaluated location being the true landmark
location. The second step consists of finding the valid shape
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that maximises the combined individual responses. These
two steps are alternated iteratively until convergence.

Responses have traditionally been computed using clas-
sifiers trained to distinguish between the true landmark
location and its surroundings, using either a probabilistic
output (e.g. logistic regression) or some confidence measure
like the SVM margin [150]. However, some recent works
have shown it is possible to construct similar responses from
regressors, providing better performance ( [39], [108]). This
can be done by training a regression model to predict the
displacement from the test location to the true landmark
location. Then, at test time, the regressor is evaluated on a
set of test locations (e.g. a regular grid), and the resulting
predictions are combined to create the responses.

The second step consists of finding the valid shape that
maximises the sum of the individual responses. This is
however very challenging, with frequent convergence to
local minima. Thus, much of the research drive has been
focused on improving the shape fitting step. For example,
[20] proposed a shape fitting step that used exemplars in a
RANSAC manner, while [12] proposed to use a regression
strategy to directly find increments to the shape parameters
that maximise the combined responses.

More recently, CNN methods have shown significant
success when used to produce the response maps. The
response map creation and the shape fitting can then both
be combined into an end-to-end training [76].

Regression-based methods bypass the construction of
the response maps by directly estimating the difference
between the current shape estimate and the ground truth.
This estimation is carried out by discriminative regres-
sion models, trained with large quantities of ground-truth
shape perturbations. The excellent performance attained by
regression-based methods relies on two factors. Firstly, they
incorporate the cascaded regression approach [52], so that
the shape estimation results from the application of a fixed
succession of regressors, each one tuned to the output of
the previous regressor. Secondly, the direct estimation of the
shape is targeting, bypassing the construction of response
maps. Thus, the complex constrained response map max-
imisation step is avoided.

Initially proposed by [24], [25], much of the popularity
of regression-based approaches is due to the Supervised
Descent Method (SDM) [197]. This is due to the simplicity
of the method, as the final estimate is computed using
only 4 matrix multiplications, feature computation and face
detection aside.

Other variants of this methodology subsequently at-
tained remarkable results. For example, [25], [90], [137]
proposed extremely efficient variants relying on regression
forest for inference. An extension of SDM to deal with large
head pose variation, including profile views, was proposed
in [198]. Yan et al. [199] proposed an algorithm capable of ro-
bustly combining multiple SDM-based fittings, of particular
importance on more challenging scenarios. Finally, Burgos-
Artizzu et al. [23] focused on improving performance under
partial occlusion. Tzimiropoulos [178] proposed instead to
use the discriminatively-trained regression cascade with the
generative model proposed in [180], resulting in a large
performance gain.

Deep learning methods have also been successfully ap-
plied to face alignment. For example, [165] proposed a cas-
caded regression deep-learning landmarking methodology.
Subsequently, [213] further leverages auxiliary face analysis
tasks such as smile detection and head pose estimation
to improve upon the prediction accuracy. Instead, [219]
proposed a methodology for dealing with larger non-frontal
head pose variation by probing the space shape to find a
good shape to regress from rather than using a pre-defined
mean shape as the starting point. Finally, [175] cast the
cascaded regression as a Recurrent CNN and performed
end-to-end training of the cascade.

Deformable Parts Models, first introduced by [220] for
facial landmarking, are strongly related to the response-map
fitting methods. However, they boast a unique property:
they reach globally optimal fittings. This is achieved by
using a tree graph to perform a soft constraint on the
face shape, e.g. flat chain [220] or a hierarchical tree [66].
Both shape and appearance are integrated into a single loss
function which can be minimised efficiently and exactly for
inference. However, the sheer number of possible outputs
makes detection very slow if the image is large. Further-
more, the soft shape constrains results in lower detection
precision when compared to other state-of-the-art methods.
Thus, these methods can be used for initialising regression-
based landmarking methods, provided there are no real-
time performance constraints [178].

3.2.3 Facial landmark tracking

When facial landmark localisation on a full sequence is
desired, a landmark detection algorithm can be applied
on each individual frame. This however neglects impor-
tant temporal correlations between frames. The previous
detection can be used as the initial shape on the current
frame, leading to a much better estimate. Also, models
can be trained specifically for the tracking case, leading
to improved performance, as shown in for the standard
SDM case [197], and in [198] for the global SDM, which can
include up-to-profile head rotation. Furthermore, sequential
data allows for the on-line update of the appearance models.
In this way, the appearance model is incrementally adapted
to the specific characteristics of the test sequence. This was
exploited by [11], which proposed an extension of [197] ca-
pable of performing incremental learning. [135] proposed an
alternative adaptation strategy based on subspace learning.
Further advances were attained in [146], where a variant
of linear regression is used to reduce the computational
complexity of the incremental updates (making it real-time
capable) and overall to yield higher fitting accuracy. Finally,
for applications where an offline analysis is possible, tech-
niques such as image congealing can be applied in order to
remove tracking errors [144]. CNNs have also been applied
to this problem, notably in [134], which relies on Recurrent
NN. However, the performance improvement is limited for
near-frontal head poses (typical for current AU analysis
problems), so that the increased computational resources
required might be an important drawback in this case. The
300 Videos in the Wild [160] is currently the best-established
benchmark on this topic. It provides performance in three
categories corresponding to different levels of complexity.
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Fig. 5. Original face (left), AAM tracking result (centre), result of texture
warping to the mean shape (right). The right part of the nose and face
are not reconstructed properly due to self-occlusions. There is residual
expression texture (right). Images taken from UNBC-McMaster shoulder
pain database, tracking results by [87].

3.3 Face registration
Face registration aims at registering each face to a common
pre-defined reference coordinate system. The information
obtained on the face alignment stages can be used to
compute such a transformation, which is then applied to
the image to produce the registered face. The rationale
is that misalignments produce large variations in the face
appearance and result in large intra-class variance, thus
hindering learning. In here we provide a short overview
of the possible approaches. We refer the interested reader to
[151] for further details, as it already provides a complete
and adequate coverage of this topic.
Procrustes: A Procrustes transformation can be used to
eliminate in-plane rotation, isotropic scaling and translation.
While translation and scaling can be computed using only
the face bounding box, this result can be imprecise, and the
use the facial landmarks can provide much better results
(e.g. [173], [85], [221]).
Piecewise affine: After detecting the facial landmarks, they
are put in correspondence to some pre-defined shape (e.g.,
a neutral face). By defining a triangular mesh over face
shapes, each triangle can be transformed according to the
affine transformation define by its vertices. This yields a
strong registration, although it produces the loss of some
expressive information. In some cases, data corruption can
be introduced (see Fig. 5). Face frontalisation is currently
receiving a lot of attention [72], [121], [145], and some of the
novel methods might lead to improvements.

Finally, some works report performance improvements
using piecewise affine face registration when compared to a
standard Procrustes registration by combining the resulting
appearance with some geometric information capturing the
landmark configuration prior to the registration (see Sec. 4)
[10], [31], [32].

3.4 Discussion
Very recent advances on face detection can yield much better
performance than the Viola and Jones algorithm. For exam-
ple, [109] is publicly available from the authors’ web pages
and offers excellent performance and is computationally
light. When it comes to facial landmarking, a tracking algo-
rithm is desired, as it can offer much more stable detections.
Regression-based methods are nowadays the most robust
ones. While other methods can achieve better performance
in more complex scenarios, [197] offers an excellent trade-off
of implementation simplicity and effective inference for up
to 30 degrees of head rotation. The authors of [11] also offer

a publicly available implementation of their incremental
tracking algorithm. If extremely low computational cost is
desired, then [137] can yield reliable detection at up to 3000
fps, although its implementation is far from straightforward.

Implementing a Procrustes registration is straightfor-
ward. More complex models aiming to remove non-frontal
head poses are more complex and artefact prone. It is
however an interesting component for ongoing research.

Constructing an integrated and robust system that per-
forms real facial landmark tracking in (near) real time
was the most recently solved problem. Notably, iCCR has
presented a faster than real-time tracker with incremental
learning, code for which is available for research [146].
OpenFace [14] also constitutes an effort along these lines.
It is an open source real-time software implementing the
full pipeline for facial AU recognition from video, including
face alignment and head pose estimation.

Temporally smoothing the predictions, and model adap-
tation are other interesting aspects that require more atten-
tion. A working system under occlusions is also an open
problem. While some landmarking methods are robust to
occlusions, further work is required in this direction. The
ideal method would not only be accurate under occlusions,
but also explicitly detect them, so that this information can
be taken into account by subsequent processing layers.

4 FEATURE EXTRACTION

Feature extraction converts image pixel data into a higher-
level representation of motion, appearance and/or the spa-
tial arrangement of inner facial structures. It aims to reduce
the dimensionality of the input space, to minimise the
variance in the data caused by unwanted conditions such
as lighting, alignment errors or (motion) blur, and to reduce
the sensitivity to contextual effects such as identity and head
pose. Here, we group the feature extraction methods into
four categories: appearance-based, geometry-based, motion-
based and hybrid methods. Another thorough survey of face
features was presented by Sariyanidi et al. [151].

4.1 Appearance features
Appearance features describe the colour and texture of
a facial region and are nowadays the most commonly
used features. They can be used to analyse any given AU,
and they encompass a wide range of designs of varying
properties. This offers researchers flexibility and room
for methodological improvements. However, appearance
features can be sensitive to non-frontal head poses and
to illumination changes. Appearance features can be
characterised in terms of the representation strategy (what
part of the face they represent), the feature type (which
features are used to represent it), and whether the features
are static (encode one single frame) or dynamic (encode a
spatio-temporal volume).

Representation strategy: Appearance features can be ex-
tracted from the whole face (holistic features) or from spe-
cific face regions defined by inner facial structures (local
features). More precisely, we define holistic features as those
that extract information according to a coordinate system
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Whole Face Block-based RAPs ROIs

Fig. 6. Different ways to apply appearance descriptors. Left to right:
whole face, block-based, Region Around Points (RAPs) and Region Of
Interests (ROIs) defined by points. The first two representations are
holistic, while the second two are local.

relative to the entire face (e.g. [208]). In contrast, local
methods consider locations relative to a coordinate system
defined by inner-facial features such as facial components
or facial points (e.g. [174]).

The most typical local approach considers small patches
centred around each of the facial landmarks or a subset of
them. Then, for each of the patches, a feature descriptor
is applied, and the resulting descriptors are concatenated
into the final feature vector. Instead, holistic approaches
represent the whole face region, for example as given by
the bounding box. However, many approaches use a block-
based representation, by which the face region is divided
into a regular grid of non-overlapping blocks, and features
are then extracted from each block and concatenated into
a single vector (e.g. [85]). This process is sometimes also
referred to as tiling. Many feature descriptors use his-
tograms taken over the contents of the blocks to increase
shift robustness, as histograms eliminate the spatial arrange-
ments. However, histogramming over the whole face region
would eliminate too much information regarding spatial
arrangements of the features, thus the resorting to tiling. It
is interesting to note that according to our definition, block-
based methods are still holistic, as they do not use inner
facial structures to define what to represent. Fig. 6 shows an
illustration of the different approaches.

The desired properties of the features vary when using
holistic or local approaches. For holistic methods, the level
of correspondence between two faces is relatively poor, i.e.,
each feature dimension will typically relate to a different
point in the face. Instead, local methods show better regis-
tration properties. Thus, robustness to misalignment is more
important for the former. Local representations have other
important advantages; illumination changes can locally be
approximated as homogeneous, which enables them to be
normalised easily, and non-frontal head poses can be locally
approximated by an affine transformation. Instead, holistic
approaches have the more complex task of dealing with the
global effect of these changes. With face registration now
being very accurate, local representations are generally to
be preferred.
Appearance feature types in the automatic AU analysis
literature can be divided into five categories: intensity, filter
banks, binarised local texture, gradient-based, and two-layer
descriptors. Each comprises several different related feature
types, and shares important properties.

Image intensity: Some works have advocated for the use
of raw pixel intensities as the preferred appearance feature
(e.g. [32], [103], [105]). They proposed to overcome the
sensitivity to head-pose variation by performing precise

facial landmarking, and then applying a piecewise affine
transformation, obtaining a strong registration (e.g. by [31])
(see Sec. 3.3). An extension was proposed in [118], where
a feature representation based on pixel intensities was
learnt. To this end, the authors used a discriminative sparse
dictionary learning technique based on a piecewise affine
strong registration for intensity estimation. However, pixel
intensities are sensitive to all kinds of distractor variation.
While reported experiments show that image intensity of-
fers competitive performance, the evaluation datasets used
do not contain illumination variations and these results
might not generalise (something forewarned by [31]). Non-
frontal head poses are in this case problematic as the regis-
tration often produces artefacts. Since the piecewise affine
registrations eliminates important shape information, the
authors advise combining intensity and geometric features
(see below) to compensate the information loss.

Filter banks: These features result from convolving every
location of a region with a set of filters. While they have
strong expressive power, they lack some robustness to affine
transformations and illumination changes.

Gabor wavelets are common in the field of automatic AU
analysis (especially in early works), as they are sensitive to
fine wave-like image structures such as those corresponding
to wrinkles and bulges. Only Gabor magnitudes are typi-
cally used (i.e., Gabor orientation is discarded), as they are
robust to small registration errors. Being sensitive to finer
image structures, they can be a powerful representation,
provided that the parametrisation is correct, i.e., filters have
to be small enough to capture more subtle structures. How-
ever, the resulting dimensionality is very large, especially
for holistic approaches and the high computational cost is
a burden for real-time applications2. A typical parametrisa-
tion consists of 8 orientations, and a number of frequencies
ranging from 5 to 9. Due to their representational power,
Gabor filters have recently been used as a component of
two-layer feature representations (see below).

Other filters within this category include the Discrete
Cosine Transform (DCT) features [1] and Haar-like features
[133]. DCT features encode texture frequency using prede-
fined filters that depend on the patch size. DCTs are not
sensitive to alignment errors, and their dimensionality is
the same as the original image. However, higher frequency
coefficients are usually ignored, therefore potentially losing
sensitivity to finer image structures such as wrinkles and
bulges. Furthermore, they are not robust to affine transfor-
mations. Haar-like filters, employed in [193] for facial AU
detection, fail to capture finer appearance structures, and
their only advantage is their computational efficiency. Thus,
their use should be avoided, or limited to detecting the most
obvious AUs (e.g. AU12).

Binarised local texture: Local Binary Patterns (LBP) [122]
and Local Phase Quantisation (LPQ) [124] are popular for
automatic AU analysis. Their properties result from two de-
sign characteristics: 1) real-valued measurements extracted
from the image intensities are quantised to increase robust-
ness, especially to illumination conditions, 2) histograms are
used to increase the robustness to misalignment, at the cost

2. If only inner products of Gabor responses are needed, then very
important speed ups can be attained [9]



1949-3045 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAFFC.2017.2731763, IEEE
Transactions on Affective Computing

JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 8

of some spatial information loss. Their strong robustness to
illumination changes and misalignment makes them very
suitable for holistic representations, and they are typically
used in a block-based manner.

The standard LBP descriptor [122] is constructed by
considering, for each pixel, an 8-dimensional binary vector.
Each binary value encodes whether the intensity of the
central pixel is larger than each of the neighbouring pixels.
A histogram is then computed, where each bin corresponds
to one of the different possible binary patterns, resulting in a
256-dimensional descriptor. However, the so called uniform
LBP is often used. It results from eliminating a number of
pre-defined bins from the LBP histogram that do not encode
strong edges [123].

Many works successfully use LBP features for automatic
facial AU analysis in a block-based holistic manner (e.g.
[196], [30], [85]), and the latter found 10 ⇥ 10 blocks to be
optimal in their case for uniform LBPs. The main advantages
of LBP features are their robustness to illumination changes,
their computational simplicity, and their sensitivity to local
structures while remaining robust to shifts [159]. They are,
however, not robust to rotations, and a correct normalisation
of the face to an upright position is necessary. Many variants
of the original LBP descriptor exist, and a review of LBP-
based descriptors can be found in [77].

The LPQ descriptor [124] uses local phase information
extracted using 2D short-term Fourier transform (STFT)
computed over a rectangular M-by-M neighbourhood at
each pixel position. It is robust to image blurring produced
by a point spread function. The phase information in the
Fourier coefficient is quantised by keeping the signs of the
real and imaginary parts of each component. LPQs were
used for automatic AU analysis in [85], which found that
when applied in a block-based holistic manner, 4⇥ 4 blocks
performs the best.
Gradient-based descriptors, such as HOG [46], SIFT [101] or
DAISY [172], use a histogram to encode the gradient in-
formation of the represented patch. Each image patch is
divided into blocks, and a histogram represents the orien-
tation and magnitude of gradients within each block. The
resulting histogram is normalised to 1, thus eliminating the
effect of uniform illumination variations. These features are
robust to misalignment, uniform illumination variations,
and affine transformations. However, larger gradients cor-
responding to facial component structures can be grouped
together with smaller gradients such as those produced by
wrinkles and bulges. Therefore, these features should be
applied locally to avoid larger gradients dominating the
representation. They offer very good robustness properties
when used as local features, make them one of the best (and
preferred) choices in the literature [33], [161], [217], [221]).
As an exception, [32] used HOG features in a holistic man-
ner, showing comparable performance to Gabor filters and
raw pixel information. However, the face was normalised
to 48 ⇥ 48 pixels in this study, meaning smaller structures
could not be captured by the alternative representations.

Two-layer appearance descriptors result from the
application of two traditional feature descriptors, where the
second descriptor is applied over the response of the first
one. For example, [158] and [4] used Local Gabor Binary
Pattern (LGBP) [209]. They result from first calculating

Gabor magnitudes over the image and then applying an
LBP operator over the multiple resulting Gabor response
maps. Gabor features are applied first to capture local
structures, while the LBP operator increases the robustness
to misalignment and illumination changes and reduces the
feature dimensionality. In fact, [158] won the FERA2011
AU detection challenge with a combination of LGBP and
geometric features [184], making a strong case for their use.
Alternatively, [196] used two layers of Gabor features (G2)
to encode image textures that go beyond edges and bars.
They also compared single layer (LBP, Gabor) and dual
layer (G2, LGBP) architectures for automatic AU detection,
and concluded that two-layer architectures provide a small
but consistent improvement.

Spatio-temporal appearance features encode the appear-
ance information of a set of consecutive frames rather than
only that of a single frame. Such features can be used to rep-
resent a single frame, typically the frame in the middle of the
spatio-temporal window [85]. This results in an enhanced
representation of the frame including its temporal context.
This strategy has been shown to work well in practice, and
its use is particularly justifiable since the inference target
is an action. Note that this category is distinct from motion
features, which are described in Sec. 4.3.

Different spatio-temporal extensions of frame-based fea-
tures have been devised. Notably, LBPs were extended
to represent spatio-temporal volumes by [215]. To make
the approach computationally simple, a spatio-temporal
volume is described by computing LBP features only on
Three Orthogonal Planes (TOP): XY, XT, and YT. The so-
called LBP-TOP descriptor results from concatenating these
three feature vectors. The same strategy was subsequently
followed to extend other features, such as LPQ [85] and
LGBP features [4]. The resulting representations tend to
be more effective, as shown by the significant performance
improvement consistently reported [4], [85], [215]. A notable
property of TOP features is that the spatio-temporal features
are computed over fixed-length temporal windows, so that
different speeds of AUs produce different patterns.

An alternative strategy was used to extend Haar-like
features to represent spatio-temporal volumes in [202]. In
this case, a normal distribution models the values of each
Haar-like feature per AU. Then the Mahalanobis distance for
each feature value in a temporal window is computed and
thresholded to create a binary pattern. The authors showed
a significant performance increase when using dynamic
descriptors compared to the static Haar features. However,
the AU dataset used to report their results is not publicly
available and is of unknown characteristics.

It is possible to abandon the frame-based representation
and use spatio-temporal descriptors to analyse full facial
actions, in a strategy often called segment-level analysis.
This implies representing the event as a fixed length feature
vector, which constrains the representation. For example,
[161] and [51] use a histogram of temporal words [120], a
temporal analogy to the classical bag-of-words representa-
tion [162]. In particular, [51] successfully combines feature-
level and segment-level classifiers, arguing that both models
are likely to behave in a complementary manner. Segment-
level features have the potential to capture more global
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patterns. However, it is not clear how to effectively represent
a video segment of varying length, despite some recent
efforts regarding temporal alignment [81], [84].

4.2 Geometric features
Geometric features capture statistics derived from the lo-
cation of facial landmarks, with most facial muscle acti-
vations resulting in their displacement. For example, fa-
cial actions can raise/lower the corner of the eyebrows
or elongate/shorten the mouth. Reliably obtaining facial
point locations has traditionally been a major problem when
using geometric features. However, recent breakthroughs on
facial landmarking mean that geometric features in realistic
scenarios can now be computed reliably.

Geometric features are easy to register, independent
of lighting conditions, and yield particularly good perfor-
mance for some AUs. However, they are unable to cap-
ture AUs that do not cause landmark displacements. Thus,
combining geometric features with appearance features nor-
mally results in improved performance (see Sec. 4.5).

4.3 Motion features
Motion features capture flexible deformations in the skin
generated by the activation of facial muscles. As opposed to
geometric features, they are related to dense motion rather
than to the motion of a discrete set of facial landmarks.
They are also different from (dynamic) appearance features
as they do not capture appearance but only appearance
changes, so they would not respond to an active AU if
it is not undergoing any change (e.g. at the apex of an
expression). Motion features are less person specific than
appearance features. However, they require the full elimi-
nation of rigid motion. This means that they can be affected
by misalignment and varying illumination conditions, and it
is unclear how to apply them in the presence of non-frontal
head poses.

We distinguish two classes of motion-based features:
those resulting from image subtraction, and those where a
dense registration at the pixel level is required.
Image subtraction: ��images are defined as the difference
between the current frame and an expressionless-face frame
of the same subject. In the early AU literature, ��images
were commonly combined with linear manifold learning
to eliminate the effect of noise; for example [16], [53],
[59], and [19] combined ��images with techniques such
as PCA or ICA. Alternatively, [53] and [19] used Gabor
features extracted over ��images. More recently, [92] and
[153] combined ��images with variants of Non-negative
Matrix Factorization (NMF). Finally, [189] used head-pose-
normalised face images to construct the �-images. Again,
the use of ��images relies on the first frame of the sequence
being neutral, which was a common bias in early databases.
Some very recent works have given a spin to this idea
and introduce a module predicting the neutral face at test
time [13], [70]. This approach [13] won the FERA 2015 pre-
segmented AU intensity estimation sub-challenge.

Motion History/Energy Images (MHI/MEI) [22] use im-
age differences to summarise the motion over a number
of frames. MEIs are binary images that indicate whether
any pixel differences have occurred over a given fixed

Fig. 7. Example of MHI and FFD techniques. (a) First frame. (b) Last
frame. (c) MHI for the entire sequence. (d) The motion field sequence
from the FFD method applied to a rectangular grid. (e) The motion field
sequence from the FFD method applied to the first frame. (f) Difference
between (b) and (e). [91]

number of frames. In MHI, recent motion is represented by
high intensity values, while the pixels where motion was
detected longer ago fade to zero intensity linearly over time.
This was first applied to AU analysis in [187], where MHI
summarised window-based chunks of video. An extension
of MHI-based representation was applied for automatic AU
analysis in [91], where the authors approximate the motion
field by finding the closest non-static pixel. The authors
claim that this results in a more dense and informative
representation of the occurrence and the direction of motion.
The main advantage of MHI-based methods is that they are
robust to the inter-sequence variations in illumination and
skin colour. However they cannot extract motion directions,
and are very sensitive to errors in face registration.
Non-rigid registration: Methods based on non-rigid image
registration consider the direction and intensity of the mo-
tion for every pixel. Motion estimates obtained by optical
flow (OF) were considered as an alternative to ��images
in early works ( [53], [98]). Koelstra et al. substituted the
OF by a free form deformation (FFD, [91]), and used a
quadtree decomposition to concentrate on the most relevant
parts of the face region, resulting in a large performance
increase. However, non-rigid registration approaches rely
on the quality of the registration, they are complex to
implement, and have very high computational cost. Their
use in practical applications is thus not straightforward.

4.4 Deeply learnt features
While most CV problems have seen revolutionary perfor-
mance increases from adopting deep learning, automatic
AU analysis has only seen moderate benefits. Potential
explanations include the lack of large quantities of training
data, and that there is no standard face-specific ImageNet-
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like pre-trained model to start fine-tuning from. The fact
that deep learning has been successful for prototypical fa-
cial expression recognition [86] is promising. However, this
success relied on the authors annotating very large amounts
of data. An alternative to dealing with a low quantity of
labelled examples is the use of transfer learning techniques
[119]. While dealing with prototypical expressions, these
works underpin both the potential of deep learning methods
for AU analysis and the associated challenges.

Yet, some recent works have leveraged deep learning
for AU analysis with increasing success. For example, [69]
attained reasonable performance on the FERA 2015 chal-
lenge using standard deeply learnt features, and Jaiswal et
al.that presented a novel deep learning-based representation
encoding dynamic appearance and face shape [79] attained
state-of-the-art results on that database.

4.5 Combining different features
Several works investigate whether geometric or appearance
features are more informative for automatic AU analysis
[188], [214]. However, both types convey complementary
information and would therefore be best used together, and
experimental evidence consistently shows that combining
geometric and appearance features is beneficial [71], [92],
[221]. In particular, [157] won the FERA 2011 AU detection
challenge with this approach. Combining these features is
even more important when using a piecewise-affine image
registration (see Sec. 3.3), which eliminates the shape infor-
mation from registered face image. Geometric features can
then add back some of the information eliminated by the
registration [103], [105].

Different approaches can be used to combine features of
a diverse nature. Feature-level fusion is the most common
[68], [71], [105], [189], [217]. It consists of concatenating
different feature vectors containing different feature types
into a single vector, which is then directly used as input
to the learning algorithm. Decision-level fusion (e.g. [103])
proceeds instead by applying a learning algorithm to each
type of features independently, and then combining the
different outputs into a final prediction. For example, [103]
trained two linear SVMs, over appearance and geometric
features respectively, and then used the SVM margins and
linear logistic regression to fuse the two outputs.

Instead, [158] recently applied the Multi-Kernel SVM
framework for automatic AU analysis, and combined LGBP
features with AAM shape coefficients. In this framework a
set of non-linear classification boundaries are computed for
each of the feature types, and the resulting scores are com-
bined linearly in a manner typical of decision-level fusion.
However, the parameters of the classifiers and the linear
combination of the individual outputs are jointly minimised.
In the absence of overfitting, the resulting performance will
be equal or higher to that of a single feature type for every
AU. This is a great advantage over feature-level fusion or
decision-level fusion, where an under-performing feature
type will most likely penalise the combined performance.

4.6 Discussion
Fuse heterogeneous features: It is in general advised to use both
appearance and geometric features. Simple strategies like

feature-level fusion or even decision-level fusion perform
well in practice. The Multiple Kernel Learning framework
is particularly well-suited for their combination.

Best appearance features: LBP or LPQ as a holistic repre-
sentation, or HOG as a local representation are both good
choices. Gabor can be used in either of the representations,
but they are more computationally expensive. LGBP fea-
tures can be very effective too. Spatio-temporal appearance
features provide a consistent and significant advantage, and
they can be relatively efficient too.

Best geometric features: Little evidence has been presented
about this. Geometric features do not offer much room for
new feature types. Thus, optimising the set of geometric
features has received very little attention in the literature.
After face tracking, geometric features are inexpensive to
compute, so they can be attractive for problems requiring
low computational cost solutions.

Opportunities and directions: Further use of Deep Learn-
ing, in particular CNNs, is an obvious current research
focus. Some of the new directions on feature design point to
the inclusion of spatio-temporal context (and other sources
of context) in the feature construction. How to best combine
different features, including mixtures of learned and hand-
crafted features is an open question. Finally, what features
are best for low-intensity expressions is another interesting
open question.

5 MACHINE ANALYSIS OF FACIAL ACTIONS
In this section we review different machine learning tech-
niques applied to various AU-related problems. We distin-
guish four problems: AU detection, AU intensity estimation,
AU temporal segment detection and AU classification (see
Table 2). The aim of AU detection methods is to produce a
binary frame-level label per target AU, indicating whether
the AU is active or not. Both AU intensity estimation and
temporal segment detection aim at inferring frame-level la-
bels of these concepts as described in the FACS manual (see
Sec. 2). AU classification was a problem targeted early in the
field, uncommon nowadays, and deals with sequences con-
taining pre-segmented AU activation episodes. The problem
is then simplified to performing per-sequence labelling.

AU problems are characterised by important temporal
and spatial correlations. Spatial correlations refer to the
well-known fact that some AUs tend to co-occur. Temporal
correlations instead relate to the constraints resulting from
the temporal nature of the data. However, most techniques
capturing these correlations build on frame-level inference
methods. Thus, we first review frame-based learning tech-
nique (Sec. 5.1), listing problem-specific approaches. We
devote section 5.2 to techniques that harness the temporal
correlations in the output space derived from analysing
video sequences. Methods that capture the so-called spatial
relations are the subject of Sec. 5.3. Some techniques propose
a single model capturing both spatial and temporal relations
(Sec. 5.4). We further review some techniques that do not
align with this taxonomy as they tackle complementary
aspects, devoting a subsection to dimensionality reduction
(Sec. 5.5), transfer learning (Sec. 5.6) and unsupervised
learning of facial events (Sec. 5.7). A broad overview of
different learning methodologies for AU analysis can be
found in Fig. 3 in [43].
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TABLE 2
Division of methods according to their output. k indicates the number of

AUs considered.

Problem Variants Output space

Class.
No AU Co-ocur. Y = {1 : k} per seq.

AU Co-ocurence Y = {±1}k per seq.

Detection
Frame-based inf.

Y = {±1}k per fr.
Segment-based inf.

Intensity

Multiclass
Y = {0 : 5}k per fr.

Ordinal reg.

Regression Y = [0, 5]k per fr.

Temp. seg. Class. Y = {0 : 3}k per fr.

5.1 Analysis of Individual AU

Contemporary datasets are composed of video sequences,
and we consider the analysis of still images to be a sub-
optimal approach. In truly challenging data videos are not
pre-segmented, so that the target AU can occur at any time
in the video, or may not appear at all. Two approaches can
be distinguished for detecting and temporally localising an
AU: frame-level approaches and segment-level approaches.

Frame-level labelling methods perform inference at each
frame of the sequence, assigning one of the target labels to
each of them. However, labels obtained through frame-level
inference typically result in temporally inconsistent label se-
quences (e.g., isolated single frames labelled as active are in
all likelihood incorrect). Thus, a performance improvement
can be attained by combining frame-level information with
temporal consistency information, which is typically done
through the use of graphical models.

Segment-based approaches focus instead on localising
events as a whole, taking as input a representation of a
spatio-temporal data segment. If this is deemed to be a
positive instance, then each frame within it is assigned
the associated label. This approach has an inherent mech-
anism for producing temporally-consistent predictions. Yet,
segment-based approaches are uncommon, mostly due to
the complex nature of this type of algorithms, and the
challenge of representing video segments of variable length.

We start by describing how to deal with frame-level
inference, considering the different AU-related problems in
the literature. Then we describe different approaches for
incorporating temporal consistency on the predicted labels.
Finally, we describe works in segment-based learning.
Frame-based AU detection aims to assign a binary label
per target AU indicating activation to each of the frames
in the sequence. Common binary classifiers applied to
this problem include Artificial Neural Networks (ANN),
Boosting techniques, and Support Vector Machines (SVM).
ANNs were the most popular method in earlier works,
e.g. [19], [53], [170]. However, ANNs are hard to optimise.
While the scalability of ANN to large datasets is one of
its strongest aspects, the amount of available data for AU
analysis remains relatively scarce. It would nonetheless be
interesting to study their performance given the recent

resurgence of ANN, specially as some promising works
have recently appeared [69], [79]. Boosting algorithms, such
as AdaBoost and GentleBoost, have been a common choice
for AU recognition, e.g. [71], [202]. Boosting algorithms are
simple and quick to train. They have fewer parameters than
SVM or ANN, and can be less prone to overfitting. They
implicitly perform feature selection, which is desirable for
handling high-dimensional data and speeding up inference,
and can handle multiclass classification. However, SVM are
nowadays the most popular choice, e.g. [32], [105], [196],
[203]. SVMs provide good performance, can be non-linear,
parameter optimisation is relatively easy, efficient imple-
mentations are readily available (e.g. the libsvm library,
[26]), and a choice of kernel functions provides extreme
flexibility of design.
AU Intensity estimation: Estimating AU intensity is of
interest due to its semantic value, allowing higher level in-
terpretation of displayed behaviour for which the intensity
of facial gesture is informative (e.g. discrimination between
polite and joyful smiles). The goal in this scenario is to
assign, for each target AU, a per-frame label representing an
integer value from 0 to 5. This problem can be approached
using either a classification or a regression.

Some approaches use the confidence of a binary frame-
based AU detection classifier to estimate AU intensity. The
rationale is that the lower the intensity is, the harder clas-
sifying the example will be. For example, [15] used the dis-
tance of the test sample to the SVM separating hyperplane,
while [71] used the confidence of the decision given by
AdaBoost. It is however more natural to treat the problem as
6-class classification. For example, [105] employed six one-
vs.-all binary SVM classifiers. Alternatively, a single multi-
class classifier (e.g. ANN or a Boosting variant) could be
used. The extremely large class overlap means however that
such approaches are unlikely to be optimal.

AU intensity estimation is nowadays most often posed
as a regression problem. Regression methods penalise in-
correct labelling proportionally to the difference between
ground truth and prediction. Such structure of the label
space is absent in the most common classification meth-
ods. The large overlap between classes also implies an
underlying continuous nature of intensity that regression
techniques are better equipped to model. Examples include
Support Vector Regression, [83], [154], or Relevance Vector
Regression so that a probabilistic prediction is obtained [87].
Furthermore, [67] shows performance comparisons between
binary classification-based, multi-class and regression-based
intensity estimation, showing that the latter two attain
comparable performance, but improve significantly over the
former for the task of smile intensity estimation. An alter-
native is the use of Ordinal Regression. Ordinal regression
maps the input feature into a one dimensional continuous
space, and then finds some binning thresholds tasked with
splitting the n classes. During training, both the projection
and the binning values are estimated jointly [141].

5.2 Temporal Consistency
Temporal phase modelling: Temporal consistency can be
enforced through the modelling and prediction of AU tem-
poral phases (neutral, onset, apex or offset) and their transi-
tions (see Sec. 2 for their definition). It constitutes an analysis
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of the internal dynamics of an AU episode. Temporal phases
add important information about an AU activation episode,
as all labels should occur in a specific order.

Temporal segment detection is a multi-class problem,
and is typically addressed by either using a multi-class clas-
sifier or by combining several binary classifiers. Early work
used a set of heuristic rules per AU based on facial landmark
locations [129]. More recent approaches use discriminative
classifiers learnt from data. Among them, [186] uses one-
vs.-one binary SVMs (i.e. six classifiers) and a majority vote
to decide on the label, while [85], [91] trained GentleBoost
classifiers for each temporal segment ( [91] excluded apex
as it used motion-based features). These works use a score
measure provided by the classifier to represent the confi-
dence of the label assignments.

It is important to note however that reliably distinguish-
ing the temporal segments based on the appearance of a
single frame is impossible. Appearance relates to the AU in-
tensity, and apex, onset or offset frames can be of practically
any intensity. Temporal segments are characterised instead
by the intensity evolution (i.e., its derivatives). Therefore,
the use of temporal information is mandatory. The afore-
mentioned works encode this information at the feature
level and through the use of graphical models (see below).
Graph-based methods: In frame-based approaches, tempo-
ral consistency is typically enforced by employing a graphi-
cal model. Some methods divide the problem into two steps.
First a frame-level ML method of choice is used to obtain
soft per-frame predictions, and then a (typically Markov
chain) transition model is used to encode how likely each
label change is. Then, the Viterbi decoding algorithm can
be used to find the most likely sequence of predictions [85],
[91], [182], [186]. This approach can be used irrespective of
the problem targeted, and has for example been used for AU
detection using the margin of an SVM classifier to perform
the soft assignment [186], and for AU temporal segment
detection using the probability yielded by a GentleBoost
algorithm [85], [91]. This model is similar to an HMM, but
a discriminative classifier substitutes the generative model
relating data and labels. This results in the topology of
the Maximum Entropy Markov model (MEMM, [113], see
Fig. 8), where the classifier and the temporal consistency
models are trained independently.

It can however be advantageous to jointly optimise the
transition model and the frame-level classifier. For example,
[111] propose to use a Hidden Markov Model for AU inten-
sity estimation. Discriminative methods such as Conditional
Random Fields (CRF) (see Fig. 8) might however be more
effective [189]. CRF is an undirected graph, and the asso-
ciated potentials are discriminatively trained. A chain CRF
is its simplest topology. Each label node indicates the per-
frame output label. The state of the label node depends on
the immediate future and past labels and on the data term.
CRFs restrict the frame-level learning algorithm to log-linear
models. Several extensions of CRF have been applied to AU-
related problems, aiming to incorporate even more infor-
mation in the model. For example, the kernel Conditional
Ordinal Random Fields was applied to the AU temporal
segment detection problem in [141], and makes use of the
temporal ordering constraints of the labels. Another exten-
sion was proposed in [191], where the authors proposed a

Latent CRF where the latent variables can switch between
nominal to ordinal types. Instead, [27] proposed a modified
version of the Hidden Conditional Random Field (HCRF,
see Fig. 8). This model assumes known AU labels for the
start and end frame. Observations provide evidence of AU
activation (the hidden variables), while facial expressions
are simultaneously inferred from the binary information
on AU activations. In this way, the detection of AU and
prototypical expressions is learnt jointly.

Most graphical models are trained by maximising the
empirical log-likelihood. However, some AU-related prob-
lems (specially AU intensity estimation) suffer greatly from
label unbalance. Introducing label-specific weights on the
loss function is complicated in this case, and models may
suffer from a bias towards more common classes. The
most immediate way to tackle this problem is to train a
frame-level discriminative classifier beforehand using class
weights, and to feed the output of this model to the graph
(hence the success of the two-step approach). A more com-
plex solution might involve using alternative graph formu-
lations, e.g. Max-margin graphs [167].
Segment-based methods: Early datasets were composed of
short (10-100 frames) pre-segmented sequences with well-
defined AU activations. This particular case can be ad-
dressed by using a sequence classifier, for example an HMM
(see Fig. 8). For example, [98] trained a different HMM
per class. At test time, each HMM is evaluated and the
class assigned is the one yielding the highest likelihood.
Alternatively, all frames of the sequence can be analysed
using a per-frame binary classifier (see Sec. 5.1), and a ma-
jority vote is cast to assign a sequence label [188]. However,
the availability of pre-segmented AU episodes at test time
is unrealistic in any practical scenario and nowadays this
problem is basically discontinued.

Most segment-based methods deal instead with un-
segmented data, and the problem consists of finding the
starting and end point to the event maximising a score.
As opposed to frame-based methods, learning uses patterns
representing the whole event at once. This is also different
in nature to graph-based models, which typically relate
data and labels through frame-level patterns. The need to
describe segments of varying length through a feature of
the same dimensionality imposes a strong restriction on the
possible data representations used. Furthermore, features
should be robust against variations on the action temporal
patterns such as the speed of execution. The output of
segment-based methods consists of a single label for a whole
section of the test sequence, but it can be directly translated
into frame-level labelling.

One such approach was proposed by [161]. The authors
proposed a segment-based classifier, coined kSeg-SVM, that
uses a bag of temporal words to represent the segments.
The structured-output SVM framework [177] is used for
inference and learning, drawing a clear parallelism with the
work in [21]. Alternatively, [51] proposed to combine frame-
level with segment-level methodologies in what they call a
cascade of classifiers. They show that the use of segment
information in a step subsequent to frame-based inference
leads to better performance. While these methods are com-
pared against frame-level equivalents, the authors omit a
comparison with graph-based models, which constitutes the
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most logical alternative.
An alternative problem formulation is that of perform-

ing weakly-supervised learning. In this scenario, training
instances are sequences, and the labels indicate whether
an AU occur within the sequence but without indicating
where exactly. This problem was considered by [168], where
a Multiple Instance Learning (MIL) approach was used to
tackle AU detection. A similar problem was tackled in [142],
where the authors propose a new MIL framework to deal
with multiple high-level behaviour labels. The interest in
these techniques stems from the ease of manual sequence-
based annotation, and from its use for problems where
labelling is more subjective.

5.3 Spatial relations
It is well-known that some AUs frequently co-occur (see
Sec. 2). Thus, it is only natural to exploit these correlations
and to perform joint inference of multiple AUs. In here we
distinguish between methods that exploit correlations by
learning a joint feature representation, and methods that
impose correlations among labels, typically by employing
graphs. Finally, temporal correlations can also be taken into
account to extend frame-level models, thus incorporating
both co-occurrence and temporal consistency correlations.
Joint representation: The early seminal work by [169] al-
ready exploited the flexibility of ANN, defining the output
layer to have multi-dimensional output units. Each output
can fire independently, indicating presence of a specific AU,
but all AUs share an intermediate representation of the
data (the values on the hidden layer). More recently, [222]
used a Multi-Task Feature Learning technique to exploit
commonalities in the representation of multiple AUs. The
same strategy was followed by [210], but in this case the
tasks are organised in a hierarchical manner, with AU at the
leaf nodes and groups of AU at higher levels (the hierarchy
is hand-crafted rather than data driven).
Label-space correlations: Graphical models can be em-
ployed in a similar manner as for temporally-structured
inference. However, the graph topology in the latter case
arise more naturally from the temporal ordering. In this
case, which AU correlations are considered by the topol-
ogy will result in different performances, and there is no
standard way of selecting them. Approaches include [174],
which proposed to use a directed graph, Bayesian networks
(BN). BN capture pairwise correlations between AUs, do
not need to explicitly select the AU correlations to be mod-
elled, and they can scale to a large number of correlations.
Alternatively, [147] presented a methodology for joint AU
intensity estimation based on Markov random fields (MRF).

Firstly, frame-based regression models were trained for each
AU, and their outputs were used as inputs to a MRF with
pairwise potentials. Since MRF is an undirected graph, the
topology is restricted to a tree structure to achieve fast
and exact inference. Loopy graphs could be used too, but
then they would require approximate inference, and thus it
is unclear whether it would result in a performance gain.
Several different hand-crafted topologies were evaluated.

While capturing pairwise relations can significantly im-
prove performance, some of the relations involve larger sets
of AU. For example, some AUs are connected due to their
co-occurrence in frequently occurring facial expressions (e.g.
AU6 and AU12 in smiles). Thus, capturing higher-order
relations (beyond pairwise) can yield further benefits. One
such model was proposed in [192], where a variant of
Restricted Boltzmann Machines (RBM, [75]) was used to
capture more complex relations, and to jointly incorporate
reasoning regarding prototypical facial expressions. Instead,
[143] proposed to combine the learning of AU and facial
expressions together. Prior knowledge of the correlations
between AU and expressions (found through manual la-
belling) are also incorporated. A hierarchical approach was
followed in [88], which greedily constructed a generative
tree with labels and features at the leaf nodes. Each node
on the upper layer joins a pair of lower-level nodes. The
resulting trees are used to perform AU intensity estimation.
Finally, [163] employed a graphical model, a variant of the
Bayesian compressed sensing framework, capable of group-
ing AU (where an AU can be on more than one group),
and imposing sparsity so few AU can be active at a time.
While this captures correlations beyond pairwise, they need
to resort to complex variational inference.

An alternative encoding which avoided the use of graph-
ical models was proposed in [216]. Label correlations were
imposed in a discriminative framework. Regularisation
terms for each of the AU pairs considered were introduced
in the learning loss function, penalising either disagreement
between positively correlated AU, or agreement among
negatively correlated AU.

5.4 Spatio-temporal relations
Capturing both spatial and temporal correlations has the
potential for further performance benefits. Factors such as
facial expressions, head or body movements and poses,
or higher-level interpretations of the data, can also be
integrated into a single inference framework. If directed
graphs are used, the complexity of the inference grows very
quickly due to the appearance of loops in graphs, leading to
approximate inference and a potential performane loss. It is
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thus only natural that works within this category focus on
directed graphs.

Existing efforts include [174], where temporal correla-
tions were captured by means of a Dynamic Bayesian Net-
work (DBN). DBNs extend BNs by incorporating temporal
information, with each time slice of a DBN being a BN.
Similarly, DBNs extend HMMs by being able to handle
multiple interacting variables at a given time frame. There-
fore, this model combines both the temporal correlations of
HMM-like methods, and the joint AU estimation of BN. A
further extension was presented in [173], where the authors
integrate “non-AU” factors, such as head pose, into a joint
probabilistic model. The same approach was followed by
[96], but in this case the DBN was applied to perform AU
intensity estimation. One-vs-one SVMs were used as input
to the DBN.

5.5 Dimensionality reduction
Due to the typically high dimensionality of the input fea-
tures, it is often recommended (but not strictly necessary) to
reduce the input dimensionality prior to the application of
other learning techniques. This can be done through feature
selection, manifold learning or pooling. Feature selection
aims to find a subset of the original features that are repre-
sentative enough, and it is typically a supervised approach.
Manifold learning methods, such as PCA, find underlying
lower-dimensional structures that preserve the relevant in-
formation from the original data. Pooling combines features
from neighbouring (spatial) locations into a single feature,
for example by computing their average or their maximum.
These techniques have been well covered in a recent survey
on facial AU analysis, and we refer the reviewer to it for
further discussion [151].

5.6 Transfer learning
One of the important aspects of AU-related data is that nui-
sance factors can greatly affect AU representation and thus
hinder the generalisation capability of the models learnt.
One way of dealing with this problem is to use transfer
learning or domain adaptation. These are most commonly
applied when there is a significant difference between the
distribution of the training data and the test data, so that
models learnt on the training data (e.g. containing frontal
head pose videos only) might be sub-optimal for the test
data (e.g. presenting multiple head poses).

Transfer learning encompasses a wide range of tech-
niques designed to deal with these cases [126]. In the
transfer learning literature, inductive learning refers to the
case where labelled data of the target domain (where we
want to apply the learnt methods) is available. Transductive
learning makes no such assumption, with the target domain
data being purely unsupervised [126]. Transfer learning has
only very recently been applied to automatic AU analysis.
For example, [33] proposed a new transductive learning
method, referred to as Selective Transfer Machine (STM).
Because of its transductive nature, no labels are required
for the test subject. At test time, a weight for each training
example is computed as to maximise the match between
the weighted distribution of training examples and the test
distribution. Inference is then performed using the weighted

distribution. The authors obtained a remarkable perfor-
mance increase, beating subject-specific models. However,
reduced availability of subject-specific training examples
might partially explain this. [149] and [205] proposed a
discriminative regression method tasked with predicting
subject-specific model parameters. The input consisted of
the distribution of frame-level features corresponding to the
subject (e.g. extracted from a video), and different measures
for comparing distributions are studied. Instead, [206] de-
coupled the problem of AU detection into the detection for
easy and hard frames. The easy detector provides a set of
confident detections on easy frames, which are then used to
adapt a second classifier to the specific test-time subject in
order to facilitate the finder-grained detection task.

In contrast, [30] evaluated standard methodologies for
both inductive and transductive transfer learning for AU
detection, finding that inductive learning improved the per-
formance significantly while the transductive algorithm led
to poor performance. Multi-task learning (MTL) can also be
used to produce person-specific AU models. For example,
[140] proposed an inductive tensor-based feature learning
MTL method simultaneously capturing correlations among
AU and correlations among subjects. Alternatively, [3] built
upon a MTL algorithm capable of estimating tasks relat-
edness. The task relations were designed to encode subject
similarity, being thus shared across AU, and AU-specific
dictionaries translating these latent relations into model
parameters were learnt. Current Deep Learning methodolo-
gies rely systematically on transfer learning, typically using
ImageNet pre-trained models and typically fine-tuning the
models to the task at hand. Features at lower layers are
shown to be of general applicability and well-posed for
transfer to other tasks. This allows successful training with
much less training data. See Section 4.4 for further discus-
sion on deep learning for AU analysis.

Transfer learning is a promising approach when it comes
to AU analysis. Appearance variation due to identity are
often larger than expression-related variations. This is ag-
gravated by the high cost of AU annotation and the low
number of subjects in datasets. Therefore, techniques that
can capture subject-specific knowledge and transfer it at test
time to unseen subjects are highly suitable for AU analysis.

5.7 Unsupervised discovery of facial events

In order to overcome the scarcity of training data, which
impedes development of robust and highly effective ap-
proaches to machine analysis of AUs, some recent efforts
focus on unsupervised approaches. The aim is in this case
to segment a previously unsegmented input sequence into
relevant facial events, but without the use of labels during
training [49], [217]. The facial events might not be coincident
with AU, although some correlation with them is to be
expected, as AUs are distinctive spatio-temporal events.
Existing works apply a sequence-based clustering algorithm
to group events of similar characteristics. For example, [217]
used a dynamic time alignment kernel to compare sub-
sequences in a manner invariant to the speed of the facial
action. Instead, [204] used Slow Feature Analysis to learn,
in an unsupervised manner, a latent space that correlates
with the AU temporal segments. In this case, a quantitative
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performance evaluation of this correlation was provided.
Despite its interesting theoretical aspects, the practical ap-
plicability of purely unsupervised learning is not clear. A
semi-supervised learning setting [28], [208] might result in a
more sensible approach, as it uses all the annotated data
together with potentially useful unannotated data. Such
an approach is not immediate and has not been explored
yet. Finally, [34] proposed an unsupervised methodology
for, given two or more video streams containing persons
interacting, detecting events of synchrony between the sub-
jects, understood as overlapping segments of the video
where the subjects present similar facial behaviour. Another
interesting discussion on the topic, including references to
similar works on different domains, can be found in [93].

5.8 Discussion

What model works best?: Techniques requiring little training
data are still useful for AU problems. The scarcity of data
means that high-capacity models, with more flexible ker-
nels, hidden layers or model variables might not necessary
perform better. Using the temporal and spatial structure of
the problem is more likely to yield a performance gain.
A graphical depiction of the relations between different
methods depending on the correlations considered is shown
in Fig. 9. Moving in any direction on the graph shown
adds (or removes) a new source of correlations. We further
sketch a third dimension: the correlation with “non-AU”
information. Performing an adequate feature fusion strategy
can also yield solid performance. Models capable of creating
personalised models are very interesting, although they are
at an early stage of research.

How can correlations be used in practice?: The most effective
and studied way is to use graphs. Temporal correlations are
easy to obtain and provide important performance improve-
ments. Due to severe label imbalance, it is a good idea to
pre-train your (typically discriminative) frame-based model
of choice, and then use a graphical model taking the output
confidence as the input to the graph.

Why not include everything in one graph?: This approach
was the one followed by [173], although they were restricted
to using directed graphs. Instead, adding spatial and tem-
poral correlations together in an undirected graph can lead
to loops. Loopy graphs result in slow and approximate
inference. How to include all of this information into an
undirected graph and yet attain fast and exact solution (or
even a good approximation) is not clear. Thus, more com-
plex graphs do not necessarily lead to better performances.

Opportunities and directions An important direction of re-
search is the aforementioned problem of how to incorporate
more information in graphs without resorting to slow and
approximate inference. Furthermore, transfer learning and
domain adaptation are well suited to AU-related problems,
and are very relevant nowadays in the CV and ML fields
in general. Temporal models are often restricted to Markov
chains. This might result in a lot of missing temporal cor-
relations, and non-Markov (e.g. multi-scale) models could
be of use. However, temporal patterns might be domain
dependent and much more data would be needed to obtain
models generalisable to unseen test conditions. Graphs cap-
turing higher-order correlations (involving more than two
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nodes), or the design of discriminative graphs capable of
handling data imbalance, could be interesting steps too.

Combining ML models: Given the subtle signals that AU
analysis depends on, and given the low number of train-
ing examples available, the use of specialized ML models
focusing on easier, better-posed problems seems like a nat-
ural research direction. For example, [51] used frame-level,
segment-level and onset/offset detector models in combina-
tion (a similar approach was successfully proposed for facial
expression recognition in [47]). Alternatively, other methods
focused on combining ML models trained to respond to
specific parts of the face, e.g. [78], [100]. In this way, the
spatially localized nature of AUs can be exploited, and the
features used for learning contain less variation than when
encoding the whole face.

6 DATA AND DATABASES

The need for large, AU labelled, publicly available data-
bases for training, evaluating and benchmarking has been
widely acknowledged, and a number of efforts to address
this need have been made. In principle, any facial expression
database can be extended with AU annotation. However,
due to the very time-consuming annotation process, only
a limited number of facial expression databases are FACS
annotated, and even fewer are publicly available. They
can be divided into three groups: Posed facial expression
databases, spontaneous facial expression databases and 3D
facial expression databases. Although the scope of this sur-
vey is restricted to automatic 2D AU analysis, 3D databases
enable the rendering of 2D examples in arbitrary head poses.

For completeness, we provide a summary of existing
facial AU-annotated databases in Table 3. However, a more
in-depth coverage of this topic can be found in [43].

6.1 Training Set Selection
The choice of training examples is a relatively neglected
problem when it comes to automatic AU analysis. Most
of the existing works use one of two simple approaches.
One approach assigns fully expressive frames to the positive
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TABLE 3
FACS-annotated facial expression databases. Elicitation method: On command/Acted/Induced/Interview. Size: number of subjects. Camera view:
frontal/profile/3D. S/D: static (image) or dynamic (video) data. Act: AU activation annotation (number of AUs annotated, F-fully annotated). oao:

onset/apex/offset annotation. Int: intensity (A/B/C/D/E) annotation.

Database Elicitation
method

Size Camera View S/D Act oao Int

Cohn-Kanade [89] On command 97 subjects Frontal D F Y N
Cohn-Kanade+ [102] Naturally occur 26 subjects Frontal & 15� side view D 8 N N
MMI (Part I-III) [132] On command 210 subjects Frontal & Profile SD F Y N
MMI (Part IV-V) [185] Induced 25 subjects Frontal D F N N

ISL Frontal [174] On command 10 subjects Near frontal D 14 Y N
ISL Multi-view [173] On command 8 subjects Frontal, 15� & 30� side D 15 Y N

SEMAINE [115] Induced 150 subjects Frontal & Profile D 6 N N
GEMEP-FERA [183] Acted 10 subjects Significant head movement D 12 N N

UNBC-McMaster [104] Induced(Pain) 129 subjects Frontal D 10 N Y
DISFA [112] Induced 27 subjects Near-frontal D 12 N Y

AM-FED [114] Induced N/A Various head poses D 10 N N
CASME [201] Induced (micro) 35 subjects Near frontal D F Y N

CASME II [200] Induced (micro) 26 subjects Near frontal D F Y N
Bosphorous [152] On command 105 subjects 3D multi-pose S 25 N Y
ICT-3DRFE [44] On command 23 subjects 3D multi-pose S F N Y
D3DFACS [164] On command 10 subjects 3D multi-pose D F N N

BP4D [211] Induced 41 subjects 3D multi-pose D 27 N Y

class and frames associated with other AUs to the negative
class. This approach maximises the differences between
positive and negative classes, but results in a large imbal-
ance between them, especially for infrequent AUs [221].
In this case, peak frames may provide too little variability
to achieve good generalisation, and faces with active but
not fully expressive AUs might have patterns unseen in
the training set. The other approach reduces imbalance
between classes by including all target frames from onset
to offset in the positive class (e.g. [32], [158], [65]). However,
because frames near the beginning of the onset and the end
of the offset phases often differ little from neutral ones,
separability of classes is compromised and the number of
false positives might increase accordingly.

Apart from these standard approaches, [85] proposed
a heuristic approach for training example selection. They
take the first apex frame of each target AU, plus any apex
frames where any other AUs are active independently of
its current temporal phase. The idea is that appearances of
AU combinations are different than those of AUs happening
in isolation, so they should be properly represented on the
training set. However, in order to avoid repetitive patterns,
the training set only includes one frame where all AUs are in
their apex phase. An adapted version of this heuristic was
used in [183], as no annotations of the temporal segments
were available. [85] also defines a different heuristic to ex-
tract dynamic appearance features. They first define salient
moments, to wit, the transition times between the different
temporal segments and the midpoint of every AU phase.
Then a temporal window centred at these points is used to
compute the training patterns.

[221] propose dynamic cascades with bidirectional boot-
strapping, which combines an Adaboost classifier with
a bootstrapping strategy for both positive and negative
examples. Wrongly classified negative examples are re-
introduced in the training set, and the set of positives is
enhanced with less obvious examples correctly detected by
the classifier (what the authors call spreading). The classifier
is then retrained, leading to an iterative procedure that is

repeated until convergence.

6.2 Discussion

While researchers now have a much wider range of AU
annotated databases at their disposal than 10 years ago,
when basically only the Cohn-Kanade and MMI databases
were available [89], [185], lack of high-quality data remains a
major issue. Recent advances in statistical machine learning
such as CNNs require data volumes orders in magnitude
larger than currently available. In addition, there is an issue
with the reliability of manual AU labelling in a number of
databases. While FACS is touted to be an objective human
measurement system, there remain subjective interpreta-
tions, and the quality of labelling is highly dependent on
the amount of experience a FACS annotator has. Ideally, the
inter-rater reliability of AU annotation should be reported
for each database.

Another issue is related to ethical considerations. Some
excellent spontaneous facial action databases are not pub-
licly available due to human-use considerations (e.g. [2],
[37], [156]). In general, many contemporary issues for which
automatic AU detection would be a great benefit (e.g. au-
tomatic analysis of depression or other medical conditions)
will require manual AU labelling that will be hard to share
with other researchers. These datasets represent a poten-
tially valuable trove of training and testing data. Developing
methods to allow other researchers benefit from these data
without having direct access to them would greatly benefit
the community.

7 CHALLENGES AND OPPORTUNITIES

Although the main focus in machine analysis of AUs has
shifted to the analysis of spontaneous expressions, state-
of-the-art methods cannot be used in fully unconstrained
environmental conditions effectively. Challenges preventing
this include handling occlusions, non-frontal head poses, co-
occurring AUs and speech, varying illumination conditions,
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and the detection of low intensity AUs. Lack of data is
another nagging factor impeding progress in the field.

Non-frontal head poses occur frequently in naturalistic
settings. Due to the scarceness of annotated data, building
view-specific appearance-based approaches for automatic
AU analysis is impractical. The existence of 3D databases
may ease this problem, although rendering examples of AU
activations at multiple poses is challenging as it involves
simulating realistic photometric variance. Using head-pose-
normalised images for learning and inference is a more fea-
sible alternative. However, many challenges are associated
with this approach. For example, the learning algorithms
should be able to cope with partially corrupted data re-
sulting from self-occlusions. More importantly, head-pose
normalisation while preserving facial expression changes is
still an open problem that needs to be addressed.

Because AUs cause only local appearance changes, even
a partial occlusion of the face can be problematic. So far, very
limited attention has been devoted to this problem [99]. A
possible solution is to rely on the semantics of AUs so that
occluded AUs can be inferred from the visible ones or from
models of AU temporal co-occurrence and consistency.

It is rare that AUs appear in isolation during spon-
taneous facial behaviour. In particular, the co-occurrences
of AUs become much harder to model in the presence of
non-additive AUs (see Sec. 2). Treating these combinations
as new independent classes [106] is impractical given the
number of such non-additive AU combinations. On the
other hand, when treating each AU as a single class, the
presence of non-additive combinations of AUs increases the
intra-class variability, potentially reducing the performance
[85]. Also, the limited number of co-occurrence examples
in existing AU-coded databases makes this problem really
difficult. Hence, the only way forward is by means of
modelling the “semantics” of facial behaviour, i.e., temporal
co-occurrences of AUs. This is an open problem that has not
received proper attention from the research community. Be-
yond data-driven approaches, it is a well-known anatomical
fact that some AU cannot co-occur together. Incorporating
this domain knowledge can help constrain the problem
further [192]. An interesting associated problem is learning
with annotations of a subset of AU [195], as most datasets
annotate different AU subsets.

While the importance of facial intensities and facial
dynamics for the interpretation of facial behaviour has
been stressed in the field of psychology (e.g. [64], [5]), it
has received limited attention from the computer science
community. The detection of AU temporal segments and the
estimation of their intensities are unsolved problems. There
is some degree of class overlap due to unavoidable labeller
noise and unclear specifications of the class boundaries.
Clearer annotation criteria to label intensity in a continuous
real-valued scale may alleviate this issue. Building tools
to improve performance in the presence of inter-labeller
disagreement is therefore important.

All AU-coded databases suffer from various limitations,
the most important being the lack of realistic illumination
conditions and naturalistic head movements. This might
mean that the field is driving itself into algorithmic lo-
cal maxima [193]. Creating publicly available “in-the-wild”
dataset is therefore of importance.

TABLE 4
Performance on the FERA 2017 challenge benchmark dataset.

Occurrence performance is measured in terms of F1, and intensity in
terms of ICC (see [181] for details).

Team Occurrence de-
tection

Intensity esti-
mation

Amirian et al. [8] - 0.295
Batista et al. [18] 0.506 0.399
He et al. [73] 0.507 -
Li et al. [95] 0.495 -
Tang et al. [166] 0.574 -
Zhou et al. [218] - 0.445
Baseline [181] 0.452 0.217

The absence of an adequate widely used benchmark
dataset has also been a detrimental factor for the evolution
of the field. The facial expression and analysis challenge
(FERA), organised in 2011, was the very first such attempt
[183], [184]. A protocol was set in [183] where the training
and testing sets were pre-defined and a performance metric
was defined. This was followed by the FERA 2015 and
2017 challenges, focussing on intensity estimation and AU
detection under varying head-pose. The performance of the
participants for FERA 2017 is shown in Table 4. Researchers
can continue to submit their systems for evaluation on
FERA 2017 to the organisers, who will update their web-
site with new scores for as long as that remains relevant.
The extended CK+ database has a similar function [102].
Reporting performance of proposed methodologies on these
databases should be encouraged and other benchmarks with
different properties (e.g. more variation in environmental
conditions) are needed. Furthermore, the inclusion of cross-
database experiments in the benchmarking protocol should
be considered.

While many papers do report performance measures on
publicly available datasets, this does not necessarily lead to
a true comparison between methods. The way in which sys-
tems are trained and evaluated can differ significantly, lead-
ing to incomparable results. FERA and CK+ have helped
somewhat by providing detailed evaluation procedures,
but both datasets suffer from limited size and/or non-
spontaneous expressions. Finally, the issue of unbalanced
data makes comparisons harder even further, as detailed by
[82]. For all the above reasons, this survey does not include
a quantitative performance comparison of existing systems.

Building personalised models using online and transfer
learning methodologies ( [33], [30]) is the way forward in
our opinion. This is due to several reasons, as the lack of
training data, the large subject differences, and the depen-
dency of the displayed expressions on a large number of
factors such as the environment, the task or the mood, which
would be hard to cover exhaustively even if much larger
amount of training data was available.

Low intensity AUs might be of special importance for
situations where the subject is intentionally controlling his
facial behaviour. Scenarios as deceit detection would benefit
greatly from the detection of subtle facial movements. The
first research question relates to features that capture such
changes [136].

Existing work deals mostly with classification or process-
ing of the currently observed facial expressive behaviour.
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Being able to predict the subject’s future behaviour given
the current observations would be of major interest. This is
a novel problem that can be seen as a long-term aim in the
field. It is closely related to the already mentioned problem
of modelling the semantics of AUs (facial behaviour) and
should be studied in conjunction with it.

An interesting variant to the problem of AU detection
was proposed in [138]. The authors propose to predict facial
AU, but solely based on acoustic information. The authors
use a Recurrent Neural Network to effectively capture tem-
poral information, and test their models on a subset of the
GEMEP database. This is an interesting idea, and opens up
the possibility of tackling the AU problem from the audio-
visual fusion perspective.

Another interesting problem relates to the use of non-
RGB modalities to either attain AU recognition, or to aid
RGB-based AU recognition. For example, [80] performs AU
recognition from thermal imagery by capturing differences
in temperature related to muscle activation. Similarly, audio
information can complement RGB-based recognition by dis-
tinguishing some sound-related expressions, like blowing or
laughter. Depth information obtained from structured light
or time of flight sensors forms another obvious opportunity
for non-RGB based AU detection. Databases for analysis of
this are now starting to come out [212].

Overall, although a major progress in machine recogni-
tion of AUs has been made over the past years, this field of
research is still underdeveloped and many problems are still
open waiting to be researched. Attaining a fully automatic
and real-time AU recognition system capable of dealing
with unconstrained environmental conditions would open
up tremendous potential for new applications in games,
security, and health industries and investing in this filed is
therefore worthy all the effort. We hope that this survey will
provide a set of helpful guidelines to all those carrying out
the research in the field now and in the future.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete cosine trans-
form. IEEE Trans. Computers, 23:90–93, 1974.

[2] S. Alghowinem, R. Goecke, M. Wagner, J. Epps, M. Breakspear,
G. Parker, et al. From joyous to clinically depressed: Mood
detection using spontaneous speech. In FLAIRS Conference, 2012.

[3] T. Almaev, B. Martinez, and M. F. Valstar. Learning to transfer:
transferring latent task structures and its application to person-
specific facial action unit detection. In Int’l Conf. on Computer
Vision, 2015.

[4] T. Almaev and M. Valstar. Local Gabor binary patterns from three
orthogonal planes for automatic facial expression recognition. In
Affective Comp. and Intelligent Interaction, 2013.

[5] Z. Ambadar, J. F. Cohn, and L. I. Reed. All smiles are not created
equal: Morphology and timing of smiles perceived as amused,
polite, and embarrassed/nervous. J. Nonverbal Behavior, 33:17–
34, 2009.

[6] Z. Ambadar, J. W. Schooler, and J. F. Cohn. Deciphering the
enigmatic face: The importance of facial dynamics in interpreting
subtle facial expressions. Psychological Science, 16(5):403–410,
2005.

[7] N. Ambady and R. Rosenthal. Thin slices of expressive behavior
as predictors of interpersonal consequences: a meta-analysis.
Psychol. Bulletin, 111(2):256–274, 1992.
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