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Abstract—Both the configuration and the dynamics of facial expressions are crucial for the interpretation of human facial behaviour.
Yet to date, the vast majority of reported efforts in the field either do not take the dynamics of facial expressions into account or focus
only on prototypic facial expressions of six basic emotions. Facial dynamics can be explicitly analysed by detecting the constituent
temporal segments of Facial Action Coding System’s (FACS) Action Units (AUs) - onset, apex, and offset. In this work, we present
a novel approach to explicit analysis of temporal dynamics of facial actions using the dynamic appearance descriptor Local Phase
Quantisation from Three Orthogonal Planes (LPQ-TOP). Temporal segments are detected by combining a discriminative classifier for
detecting the temporal segments on a frame-by-frame basis with Markov Models that enforce temporal consistency over the whole
episode. The system is evaluated in detail over the MMI facial expression database, the UNBC-McMaster pain database, the SAL
database and the GEMEP-FERA dataset in database-dependent experiments, and in cross-database experiments using the Cohn-
Kanade and the SEMAINE databases. The comparison with other state-of-the-art methods shows that the proposed LPQ-TOP method
outperforms other approaches for the problem of AU temporal segment detection, and that overall AU activation detection benefits from

dynamic appearance information.

Index Terms—Facial dynamics, action unit detection, dynamic appearance descriptors, LPQ-TOP, temporal segment detection.

1 INTRODUCTION

Faces hold valuable clues to emotions and intentions of
a person. Facial expressions are some of the most direct,
naturally preeminent means for human beings to regu-
late interactions with each other [13]. They communicate
emotions, clarify and stress what is being said, and signal
comprehension, disagreement and intentions. Machine
understanding of facial expressions could revolutionise
user interfaces for artefacts such as robots, mobile de-
vices, cars, and conversational agents [7], [32], and has
therefore become a hot issue in Computer Vision and
Pattern Recognition communities.

There are two main approaches to facial expression
measurement in the field of psychology: message and
sign judgement [7]. Message judgement aims to infer
what underlies a displayed facial expression, such as
affect or personality, while the aim of sign judgement is
to describe the surface of the displayed behaviour, such
as facial movement or facial component shape [32].

The Facial Action Coding System (FACS) [12] is the
best known and most commonly used sign judgement
approach developed for human observers to describe
facial actions. It defines 32 atomic facial muscle actions
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Fig. 1. Examples of upper and lower face AUs defined in FACS
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named Action Units (AUs). With FACS, every possible
facial expression can be described as a combination of
AUs and a small set of Action Descriptors (as shown in
Fig. 1). The latter causes appearance changes in the face
but cannot be attributed to particular facial muscles. It
would be possible to apply message judgement interpre-
tation on the description of a facial expression in terms of
AUs. For example, expressions typically associated with
happiness contain AU6 and AU12 while those associated
with sadness contain AU1, AU4 and AU15.

Besides the configuration of facial expressions, their
dynamics play an important role in the interpretation
of human facial behaviour. For example, psychologists
have found a difference in duration and smoothness
between spontaneous and deliberate expressions, e.g.
between polite and amused smiles [8], [11]. This has been
confirmed in studies on automatic facial expression anal-
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ysis [17], [44], [49]. Facial expression dynamics are also
essential for categorisation of complex mental states such
as various types of pain and mood [2], [51]. Researchers
have only started to learn the potential discriminative
power of these dynamics.

One aspect of facial dynamics can be explicitly anal-
ysed by detecting their constituent temporal segments
(i.e., onset, apex and offset) or intensity levels (i.e., 0
to 5). Recently there were several works reporting on
automatic coding of facial dynamics and intensity of
prototypic expressions of emotions (e.g., [9], [16], [19],
[21], [24], [25], [37], [38], [40]). Given the agnostic nature
of AUs, detecting the temporal segments/intensity levels
of AUs is a more general and challenging problem. Yet,
only few works have reported targeting this problem.
We provide a detailed overview of these related works
in Section 2.

In general, a facial expression recognition system con-
sists of three steps: pre-processing, feature extraction and
classification. The pre-processing step usually relates to
face localisation, tracking and registration to remove the
variability due to changes in head pose and illumination.
Feature extraction is a crucial step for successful facial
expression recognition. Consequently this has become
a major focus of research in the field. The traditional
goal of feature extraction is to convert pixel data into a
higher-level representation of shape, motion, colour and
texture, which minimises within class variations whilst
maximising between class variations. Additionally this
higher-level representation often grants some robustness
to environmental conditions such as illumination or
colour sensitivity variation in cameras.

Two traditional approaches for face image representa-
tion are geometry-based methods and appearance-based
methods. Geometry-based methods employ the geomet-
ric properties of a face such as the positions of facial
fiducial points, the distances between pairs of facial
points or the velocities of particular facial points (e.g.,
[34], [48]). Appearance features aim to capture changes
in face texture such as those created by wrinkles and
bulges, as well as changes caused by facial motion (e.g.,
[4], [18], [54]). Typical examples include Gabor filters,
Haar-like filters, and other image filters. Appearance
feature extraction methods can be applied to the whole
face, specific face regions, or local patches around some
fiducial points. The latter two approaches effectively
combine geometric-based and appearance-based meth-
ods and are referred to as hybrid methods.

Facial expression recognition is by definition about
recognising changes in the face, ie., it is essentially
facial action detection. To date, most appearance-based
facial expression recognition systems use only static
appearance descriptors, which means the appearance
changes and their associated temporal information are
completely ignored. This paper addresses this limitation
of the state of the art by extending the static appear-
ance descriptor Local Phase Quantisation (LPQ) [31] to
temporal Three Orthogonal Planes (TOP), inspired by
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Fig. 2. Outline of the proposed fully automated system for
recognition of AUs and their temporal activation models.

a similar extension of Local Binary Patterns, LBP-TOP
[54]. The resulting spatio-temporal appearance descrip-
tor LPQ-TOP is applied to detect the latent temporal
information representing facial appearance changes and
explicitly model facial dynamics of AUs in terms of their
temporal segments. In this work we further show that
spatio-temporal appearance descriptors are suitable for
capturing the temporal segments of AUs, and they add
valuable information with respect to static appearance
descriptors.

Fig. 2 shows an overview of our proposed system.
Faces are detected and registered using the automatic
point detector presented in [29]. The registered frames
are used to extract dynamic appearance features in a
holistic manner from the full face region. More specifi-
cally, a block-based representation is used. The resulting
features are analysed by a set of classifiers, either trained
to detect the activation of a target AU, or to detect
its temporal segments. When dealing with temporal
segments, a Markov Model (MM) is applied to impose
temporal consistency on the assigned labels.

In this work we also investigate various approaches
to select data to learn from. Specifically, creating a
representative training data set to learn from is by no
means a trivial task when it comes to AU detection and
AU temporal segmentation. In this work we present a
novel heuristic method and compare its efficiency with
two standard methods of training-data selection: random
sampling and bootstrapping. Our proposed heuristic
training-data-selection approach gives comparable re-
sults to other approaches at a low computational cost.

To summarise, the contributions of this paper are as
follows:

o We propose the use of spatio-temporal features
for AU analysis. We show that this outperforms
both the use of spatial only and temporal only
(i.e. motion-based) approaches. This is consistent
over multiple databases and for two appearance
descriptors;

o We show that dynamic appearance descriptors en-
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able the detection of AU temporal segments. Until
now, only motion-based and geometric-based fea-
tures could be used successfully for this task;

o We propose a heuristic training-data selection ap-
proach and demonstrate that it outperforms other
standard data-selection techniques.

The remainder of this paper is organised as follows.
Section 2 provides an overview of the related research
on facial dynamics analysis. Section 3 presents a detailed
explanation of the methodologies used in our approach.
Section 4 describes the utilised data sets, the evaluation
setup and parameter optimisation. Section 5 discusses
the evaluation results. Section 6 concludes the paper.

2 RELATED WORK

In this section, we explore the existing approaches for
automatic analysis of AUs and their dynamics.

2.1

Historically, the first attempts to automatically detect
AUs in face images were reported by Bartlett et al.
[5], Lien et al. [23] and Pantic et al. [35]. The focus
in the field was first on automatic recognition of AUs
in static images and then image sequences picturing
facial expressions produced on command. A number of
promising prototype systems that can recognise AUs in
either (near-) frontal view face videos or profile face
videos were reported (e.g., [42], [4] and [46]). This focus
has shifted to automatic AU detection in spontaneous
facial expressions [15], [52]. A number of methods have
been proposed for AU detection in facial displays of
pain [19], [24], [25]. For example, [25] uses geometric,
appearance and hybrid features from Action Appearance
Model (AAM) to detect AUs and pain at a frame-by-
frame level; [19] combined different shape (facial land-
marks), appearance (DCT and LBP) features and their
fusion with regression techniques for the same problem.

Recently the first facial expression recognition chal-
lenge was organised, to take stock of how far the AU
detection field has come. The challenge results indicated
that the field still has some way to come before AU
detection can be performed effectively on real world data
in a robust manner [45].

Automatic Action Unit detection

2.2 Automatic Action Unit dynamics analysis

To the best of our knowledge, only five studies reported
on automatic detection of AU temporal segments in
frontal- [48], [22], [33], [36] and profile-view [34] face
videos. The works presented in [33], [34] employ rule-
based reasoning and geometric based features to en-
code AUs and their temporal segments. In [22], the
authors use motion-based features and combine Gentle-
Boost classifiers and Markov Models. More specifically,
the authors use a nonrigid dense registration based on
Free-Form Deformations to capture the facial motion
between frames. [48] combined Support Vector Machine

and Markov Models with geometric-based features. The
authors detect and track a set of 20 facial points, of which
the relative positions and displacements are calculated
and used as features. As in [22], Markov Models are used
to enforce temporal consistency on the assigned labels
throughout the sequence. Recently, [36] used appear-
ance features and their proposed model the Laplacian-
regularised Kernel Conditional Ordinal Random Field
model (Lap-KCORF) for the recognition of AUs’ tem-
poral segments. This model takes into account ordinal
relations between the segments.

There is a small number of works that focus on the
intensity estimation of AUs. Bartlett et al. [4] proposed
to measure the AU intensity in posed and spontaneous
facial expressions. They use distances to the SVM sep-
arating hyperplane as a direct measure of the intensity
levels of AUs. Mahoor et al. [27] treat this problem as
a multi-label classification problem. Hence they trained
six one-vs-all SVM to classify a specific frame into one of
the six FACS intensity levels. Savran et al. [3] proposed
a novel intensity estimation scheme using 2D and 3D
images. The scheme is based on regression of selected
image features. In [19], the authors proposed a three-step
approach to continuous pain intensity estimation based
on Relevance Vector Regression.

There are other works that use aspects of the temporal
dynamics of facial expression such as the speed of a
facial point displacement or the persistence of facial
parameters over time. However, this was mainly done
either in order to increase the performance of facial
expression analysis (e.g., [43], [53], [18]) or in order to
report on the intensity of the shown facial expression
(e.g., [53]). To date, the work by Tong et al. [43] is the
only one that models the semantic and temporal relation-
ships between AUs forming a facial expression, although
it does not explicitly exploit AU facial dynamics in terms
of temporal segments.

3 METHODOLOGY

This chapter presents the details of our approach,
an outline of which is shown in Fig. 2. The
implementation of the method described in this
work, to wit the LPQ-TOP-based AU detector,
is freely available and can be downloaded from
http:/ /ibug.doc.ic.ac.uk/resources/temporal-based-
action-unit-detection/.

3.1

In order to locate the face in an input frame and remove
unwanted transformations such as rotation and transla-
tion, a version of the point detector described in [50] is
adopted. A Procrustes transformation (i.e. a combination
of translation, rotation and isotropic scaling) is computed
by aligning the coordinates of the left eye, right eye,
nose and mouth to a set of anchor points. The anchor
points correspond to the location of the same facial
components in a prototypical frontal face. The input

Preprocessing



JOURNAL OF IATEX CLASS FILES, VOL. 6, NO. 1, JUNE 2011

Fig. 4. The concatenated feature vector that extracted from
each face block

frame is subsequently cropped to be 200 x 200 pixels
(see Fig. 3). This step eliminates in-plane head rotation
and addresses individual differences in face shapes. No
effort was made to address illumination issues.

3.2 Appearance-based feature extraction
3.2.1 Local Phase Quantisation

The Local Phase Quantisation (LPQ) operator is a texture
descriptor robust to image blurring [31]. The descriptor
uses local phase information extracted using the 2-D DFT
or, more precisely, a short-term Fourier transform (STFT)
computed over a rectangular M-by-M neighbourhood
N, at each pixel position x of the image f(x) defined
by

Flux)= Y fxy)e ™Y = wlf, )

YyEN

where wy, is the basis vector of the 2-D DFT at frequency
u, and f, is the vector containing all A 2 samples from
N,.
The STFT is efficiently evaluated for all image posi-
tions = € {x1, ..., zx} using simply 1-D convolutions for
the rows and columns successively. The local Fourier
coefficients are computed at four frequency points: u; =
[a,017, ug = [0,a]T, uz3 = [a,a]”, and uy = [a,—a]T,
where a is a sufficiently small scalar (¢« = 1/M in our
experiments). For each pixel position this results in a
vector F, = [F(uy,z), F(ug,x), F(us,x), F(u4,z)]. The
phase information in the Fourier coefficients is recorded
by examining the signs of the real and imaginary parts

XT
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Fig. 5. Concatenated histogram from three planes

of each component in F;. This is done by using a simple
scalar quantiser

1
%=9 0

where g;(z) is the jth component of the vector G, =
[Re{F,},Im{F,}]. The resulting eight bit binary coef-
ficients ¢;(x) are represented as integers using binary
coding:

if g; > 0 is true
otherwise

@

5
firg() = ¢ 277" (©)
j=1

As a result, a histogram of these values from all
positions is composed resulting in a 256-dimensional
feature vector.

Histograms discard all information regarding the spa-
tial arrangement of the patterns. In order to preserve
some of this information, we divide the face region
into m local regions, from which LPQ histograms are
extracted and then concatenated into a single feature
histogram (see Fig. 4). Originally proposed in [1], block-
based representations have been adopted in most ex-
isting studies using holistic histogram-based face repre-
sentation (e.g., [18], [39]). An image divided into m x n
blocks will produce a feature vector with dimension of
256 x m X n.

322 LPQ-TOP

To extend the LPQ descriptor to the temporal domain,
the basic LPQ features are extracted independently from
three sets of orthogonal planes: XY, XT and YT, con-
sidering only the co-occurrence statistics in these three
directions, and stacking them into a single histogram (see
Fig. 5) [54]. The XY planes provide the spatial domain
information while the XT and YT planes provide tempo-
ral information. This method results in 256 x 3 = 753 bins
per space-time volume. Note that features are extracted
from all possible XY, XT, and YT planes, not just the three
central planes depicted in Fig. 5. A similar approach has
been adopted to extend LBP descriptor to the temporal
domain [54], and this motivated our current work (see
also [18]).

One important parameters for the LPQ descriptor is
the neighbourhood size V,. It is not reasonable to use
the same rectangular neighbourhoods size of the spatial
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Fig. 6. The concatenated feature vector that extracted from
each block to represent the whole sequence

plane and the two temporal planes. For example, we
work with a face resolution of 200 x 200 pixels, while
the frame rate is 25 fps. As these magnitudes are not
directly comparable, we set a different rectangular size
N, for the different planes, denoted by W,, W, and W..
That is to say, the XY descriptor is computed using a W,
by W, rectangular neighbourhood at each pixel position.
Finally, the histograms from each plane are normalised
independently so that each adds to 1.

3.3 Classification

In this paper, two problems are addressed: AU activation
detection and AU temporal segment detection. Note that
AU activation detection is a binary classification prob-
lem, with highly unbalanced data. Temporal segment
detection, on the other hand, is a multi-class problem.
In this section, we will present the methodologies we
use to deal with these two problems.

3.3.1 Action Unit Activation Detection

For this problem, a SVM is used as the binary classifier,
while a GentleBoost algorithm is adopted preceding the
SVM training for selecting the most relevant features.
That is to say, we first train a GentleBoost classifier for
each AU, and keep the subset of features used by it.
Then, the SVM classifier for each AU is trained only on
the feature subset selected by the GentleBoost classifier.
This gives a reasonable balance between speed and
complexity [22].

The SVM requires the optimisation of the error-
insensitive margin (typically denoted by e¢), the slack
variable (typically denoted by C), and potentially any
hyperparameters controlling the kernel function. This is
done through a grid search strategy, where a separate
subject-independent crossvalidation loop is performed
within the main evaluation cross-validation loop to ob-
tain the performance for each set of parameters.

Regarding the kernels tested, we compare the most
commonly used ones in the literature (linear, plyno-
mial, and rbf), plus the recently proposed intersection
kernel [28], which is designed for histogram-based fea-
tures. As our dynamic appearance descriptor LPQ-TOP
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Fig. 7. Spatial localisation of the selected features. Each
square is a face sub-region, and the number indicates how many
features are taken from it. The number of features selected for
each canonical plane is also shown. AU12 (smile) is depicted on
the left, AU45 (blink) on the right. The MMI database was used
for training.

is histogram-based, we expect this kernel to be very
suitable for our problem.
More specifically, the intersection kernels is defined as:

K(xi,%;) = > min(X;(k), X;(k)) )
k

Results on the performance of each kernel are pre-
sented in Section 5.

3.3.2 Action Unit Temporal Segmentation

For temporal segment detection, a dedicated one-versus-
all GentleBoost classifier is trained for each AU and each
temporal segment characterised by motion (i.e., onset
and offset), as we experimentally found it to perform
better than SVM for this task. As an example, Fig. 7
illustrates the distribution of the features used by Gen-
tleBoost for AU12 (smile) and AU45 (blink). As expected,
most features are selected around relevant regions. It
can also be seen that for AU12, 97% of the features are
selected from the spatial domain (XY) while for AU45
74% of the features are from the temporal domain (XT
and YT). This is in agreement with the finding that some
AUs can be detected using static features only and for
others dynamic features are crucial; for example, the only
difference between AU43 (eye closure) and AU45 (blink)
lies in the temporal domain (i.e., the duration of eye
closure).

We combine the GentleBoost classifiers with a Markov
Model (MM) in order to obtain temporal consistency
over the assigned labels. MM is one of the most popular
approaches to model time for classification problems
[6]. In particular, a hidden node’s variable can take one
out of four values, each corresponding to a temporal
phase. The relation between hidden nodes is modelled
as a first order Markov chain and, therefore, its state
depends on the state of the previous node (through
the transition probability) and on an observation node
(through the observation probability) only. Following
[22], as discriminative classifier we use GentleBoost to
model the relation between the hidden labels and the
observation nodes instead of the traditional generative
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modelling. This has been proved effective in practice,
as discriminative models are usually able to learn class
boundaries effectively with less training data and with
feature vectors of higher dimensionality. Finally, the
most likely sequence of hidden labels is found using the
standard Viterbi algorithm.

4 EXPERIMENTAL SETUP
4.1 Facial expression data sets

The MMI database [50] and the Cohn-Kanade (CK)
database [20] contain audio-visual recordings of subjects
displaying posed facial expressions in frontal or near-
frontal head poses and under controlled lighting condi-
tions. They provide recordings of a wide range of AUs,
as they are displayed on demand. The MMI database
contains 264 videos of 10 subjects fully FACS-coded in
terms of AU activation and temporal segments by two
FACS experts. For the CK database, the videos are very
short. They are typically 18 frames long, which means
that the optimal window length of dynamic descrip-
tors might be too large to be applied. Among the 187
available sequences, there are only 55 sequences longer
than the minimum required of 21 frames. In addition
the offset segment is not included in this database.
Therefore, we only use this database for cross-database
evaluation of AU activation detection.

One of the main criticisms of most existing works
on automatic facial expression recognition is that they
are based on deliberate and often exaggerated facial
expressions which rarely occur in real life [32], [52].
Spontaneous facial expressions differ from posed expres-
sions both with respect to which muscles are activated
and in the dynamics of the muscle activations [2]. For
this reason we also evaluate the proposed methodology
on spontaneous expressions.

The UNBC-McMaster Shoulder Pain Expression
Archive Database (UNBC-McMaster pain database) [26]
is a publicly available database designed for the purpose
of pain analysis. It contains a total of 129 participants
(63 male) with shoulder pain. Although the camera is
placed in front of the subjects, changes in head pose are
common. Only the AUs that have been implicated as
possibly related to pain were FACS-annotated (i.e. AU4,
AUS6, AU7, AU9, AU10, AU12, AU20, AU25 and AU26).
The authors also provide the locations of a set of facial
points per frame, obtained with a facial point tracker.

The SAL dataset [10] and the SEMAINE datasets [30]
contain displays of spontaneous expressions recorded
in a natural environment. The expressions were elicited
in human-computer and human-human conversations,
respectively. The head poses are mostly frontal or near-
frontal due to the nature of the interaction, although
the subjects can move freely. In SAL, ten subjects were
recorded. After removing the speech sections, 77 se-
quences are left to perform our evaluation studies on.
For four subjects, the data have been FACS-coded on a
frame-by-frame basis in terms of temporal segments. For

the other six subjects only AU activation coding exists.
For the SEMAINE database, sparse annotations of AU
activation is available for 10 sequences. This means that
for a few frames per video AU annotations are available,
with the frames that are annotated usually far apart. We
use these 10 sequences for the purpose of cross-database
AU activation detection evaluation.

The GEMEP-FERA challenge dataset is a subset of
the GEMEP database. It contains 158 sequences of 10
subjects, who are professional actors using the Russian
method of acting, i.e. evoking the feeling they are sup-
posed to portray from experience, and then act on that
feeling. It contains significant non-frontal head poses,
and it is a very challenging dataset. It is split into a
training set and a testing set. Frame-based AU activation
has been annotated, but only the labels of the training set
are publicly available. As there is no temporal segment
annotation available for this data, we will only use it for
the evaluation of AU activation detection.

All databases are recorded indoors, and have con-
trolled even lighting. In addition to the existing office
strip lights, the SAL and SEMAINE databases used
indirect frontal illumination to reduce the effect of cast-
shadows created by overhead lighting.

4.2 Training-Data Selection

The selection of the optimal set of training data is an im-
portant aspect when using machine learning techniques.
The goal of training-data selection is to collect a set of
examples that is as sparse as possible, yet spans the
problem space completely.

The simplest way to deal with this problem is to
randomly select the positive and negative examples
with uniform probability. This however can result in
including positive and negative instances whose feature
values differ very little from each other (e.g., frames near
the beginning of onsets and end of offsets), as well as
inclusion of highly redundant examples, and overrepre-
sentation of the most common patterns. Bootstrapping
is a common and more sophisticated approach [41].
By iteratively adding the mis-classified examples to the
training set, it refines the optimum hyperplane between
positive and negative examples. However, this process
can be extremely computational intensive. We propose
a heuristic approach to the training-data selection, and
compare it with these two standard data-selection tech-
niques: uniform random sampling and bootstrapping.

Uniform Random Sampling - In this method, every
instance has the same probability to be selected. We
uniformly select n training instances from the original
training set. In this formulation, n is the mean of the
number of instances selected by heuristic approach and
bootstrapping strategy.

Bootstrapping - Let us split the training database into
three different datasets without mixing subjects: A, B
and C. The training-bootstrapping algorithm used in this
work then follows as:
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Fig. 8. The criterion of static data selection. The shaded areas
are included in the dataset.

1) Randomly select k¥ samples from dataset A and B
to get a and b respectively.

2) Train on a to get classifier ¢, and test on B.

3) Gather the mis-classified examples of B and add
them to b.

4) Train on b to get classifier ¢; and test on A.

5) Gather the mis-classified examples of A and add
them to a.

6) Test on C using classifier ¢, and cs.

7) Use the mean of the predictions on C i.e., decision
values obtained from classifier ¢, and ¢, to get the
performance f.

8) Terminate if f does not increase for more than three
iterations to avoid local maximum. Otherwise, go
to step 2.

9) Concatenate set a and b.

Note that the choice of k largely depends on the data.
In this case, we start from the apex frames in the
dataset. In each iteration, the false negatives and 1% of
the false positives are added. We only add a subset of
false positives because the dataset we utilised is highly
unbalanced.

Heuristic approach - The heuristic approach we propose
distinguishes two different cases, and produces two
datasets for AU detection. One is the static dataset which
selects training data for static appearance descriptors, the
other is the dynamic dataset for dynamic appearance
descriptors. For the static dataset, we note that when
more than one AU is activated, facial actions can have
a very different appearance than when they occur in
isolation. These AUs are known as non-additive AUs.
In order to capture the appearance of each action unit as
fully as possible and thus build a richer data space, we
take the first apex frames of each target AU, as well as
other apex frames where any other upper face AUs are in
onset or offset, as they produce the appearance changes
(see Fig. 8, where the shaded parts are the frames
selected). Through this approach, AU combinations can
be expected to be detected by performing independent
detections of the forming AUs.

The dynamic dataset consists of a set of spatio-
temporal video segments extracted using a pre-defined
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Fig. 9. The criterion of dynamic data selection. Each marked
period results in one data element. Dynamic appearance de-
scriptors are extracted from space-time volumes centred at
salient moments indicated by the dots

Fig. 10. Average 2AFC scores based on different training-data
selection approaches tested on the MMI database. The number
above each bar indicates the number of selected instances

temporal window. To avoid repetitive patterns and to
reduce the potential number of examples, we first define
salient moments as the transition times between the
different temporal segments and the midpoint of every
AU phase. Then a space-time volume centred at the
salient moments is used to extract the appearance fea-
tures. As shown in Fig. 9, the vertical striped rectangles
show activated space-time volumes and the checkboard
rectangles represent neutral space-time volumes in a
video. Notice that the transition points between neutral
and onset are omitted as the image sequences with half
neutral and half apex frames may produce a pattern
too similar to the negative class, and would confuse the
classifiers.

Fig. 10 shows the average 2AFC scores based on differ-
ent types of training selection approaches as discussed
above. The appearance descriptor LPQ and intersection
kernel have been used. It is clear that the heuristic ap-
proach achieves the highest accuracy among these three
methods. The reasons for the poor performance of boot-
strapping may lie in the highly unbalanced training data.
The bootstrapping method iteratively trains a classifiers
to find the optimal training set. This process is much
more time-consuming than the heuristic approach. More-
over, note that the number of selected training instances
directly affects the computational costs of the following
steps, i.e., feature selection and classifier training. On
average, 3000 instances are selected by bootstrapping,
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1150 instances are selected by the heuristic approach,
and for random sampling we randomly selected 2000
examples. Hence, the heuristic approach performs best,
not only in terms of performance, but also in terms of
computational complexity and memory consumption.

4.3 Evaluation setup

As our approach is intended to be a subject independent
methodology for FACS Action Unit analysis, the evalua-
tion is done in a subject independent manner. The ability
of the system to generalise to new subjects is evaluated
by using 10-fold subject-independent cross-validation
when performing tests within the same dataset, and by
training and testing on completely disparate datasets
when performing cross-database experiments. The train-
ing instances are selected using the proposed heuristic
approach described in Section 4.2 in all experiments.

The performance measure used in this work is the 2-
alternative forced choice task (2AFC). The percentage
of correctly classified examples in a 2AFC evaluation
framework is equivalent to the area under the ROC
curve (AUC) [14], and can be computed more efficiently
than the AUC itself. Another performance measure typ-
ically used in the literature is the Fl-measure, which
is the harmonic mean of precision and recall. The F1-
measure suffers from the problem of not crediting true
negative detections. The 2AFC score does take the true
negative rates into account and is therefore preferred.
In a practical application, a vast majority of frames will
not have the target AU active; therefore measuring the
true negatives is very important. In this work we will
only use the Fl-measure to allow comparison with other
works.

4.4 Parameter optimisation

Our approach requires the optimisation of the choice of
SVM kernel and its parameters, the spatial block-size
of the appearance descriptors (see Sec. 3.2.2), and the
temporal window length of the appearance descriptors.
It is important to note that the only extra parameter with
respect to many other methods is the temporal window
length, although often the optimisation process for some
of these parameters is not mentioned explicitly.

To find the optimal height and width of the blocks in
the histogram grid, we tested the average performance
using different block sizes. We use the static descriptor
as the block size relates to the spatial information only.
We tested on grids of 4 x 4, 8 x 8 and 10 x 10 blocks (the
more blocks an image is divided into, the fewer pixels
each block contains). We found that 10 x 10 produces
better results. We directly apply our results from the
static descriptors to the dynamic descriptors.

The kernel parameters are optimised through a
grid search, where a second subject-independent cross-
validation loop is applied to the training set of every
fold of the outer cross-validation definition. To select the
best-performing kernel, we computed the average 2AFC

score using 9 common AUs, while LPQ-TOP features
were used. The results yielded similar results across ker-
nels, although the intersection kernel performed slightly
better than the rbf kernel. As the histogram kernel is
also more computationally efficient than the RBF kernel,
that’s what we selected for our experiments.

As different AUs have different dynamics, we ex-
plored the optimal window length for each AU inde-
pendently. The window lengths tested ranged between 3
and 21 frames. We found that the optimal window length
further depends on the database setting, so we optimised
this parameter during the training stage for each exper-
iment, and include the optimal figures obtained in the
corresponding results tables. Again, the optimal window
length was determined independently of the test data.

The optimal window lengths used to detect temporal
segments are found independently of those for AU
detection, as the temporal segments are strictly shorter
in duration than the full AU episodes. Different AUs also
have different segment durations.

5 EVALUATION RESULTS

We conducted three sets of experiments to evaluate the
performance of our method. The first set of experi-
ments is designed to evaluate its performance regarding
frame-based AU detection. More specifically, we pro-
vide quantitative performance evaluations for posed and
spontaneous databases, and we show that the use of
dynamic features improves the results of AU detection
when compared to their static counterparts. The MMI
database is used to provide performance results for
posed AUs, while the UNBC-McMaster pain database,
the SAL database and the GEMEP-FERA dataset are the
benchmarks for spontaneous expressions.

The second round of experiments is targeted at detect-
ing the temporal AU segments. While the previous prob-
lem was binary (an AU is active or not), now the output
of the algorithm can belong to 4 classes (neutral, onset,
apex or offset). For this evaluation we use the MMI,
UNBC-McMaster pain and SAL databases, which are
used by other state-of-the-art methods as well. However,
only the MMI database contains sufficient annotations
in terms of temporal segments to perform experiments.
It is therefore complicated to quantify performance of
temporal segment detection in spontaneous settings. In
order to do so, we follow the same procedure as in [22],
where the output of the temporal segment detection was
then converted into a binary output representing AU
activation. That is to say, if either onset, apex or offset
was detected, then the corresponding binarised output
used for comparison would be 1.

The last set of experiments explores how generalisable
the results are. To this end, we perform a series of cross-
database experiments; we trained on the MMI database
and tested on the Cohn-Kanade database, and we trained
on SAL and tested on the SEMAINE database.
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In this section, comparisons between LBP-TOP and
LPQ-TOP are carried out as to show the superior per-
formance on average of LPQ-TOP. Furthermore, we
compare relative performance boost obtained by using
dynamic features by comparing the performance of LBP
and LBP-TOP and LPQ with LPQ-TOP respectively.

5.1 Frame-based Action Unit detection

TABLE 1
AU activation detection results (2AFC) using LBP, LPQ, LBP-TOP and
LPQ-TOP based on posed data taken from the MMI database. n is the
number of tested videos, 6; is the optimal window length for LBP-TOP
and 6, is the optimal window length for LPQ-TOP.

AU n LBP | LPQ 01 | LBP-TOP | 6> | LPQ-TOP
1 13 | 0.838 | 0.766 || 19 0.815 21 0.850
2 12 | 0.794 | 0.832 || 21 0.809 21 0.822
4 33 | 0.785 | 0.799 || 21 0.819 19 0.828
5 12 | 0.837 | 0.831 11 0.810 15 0.825
6 19 | 0599 | 0.702 || 15 0.805 21 0.810
7 10 | 0577 | 0.534 || 11 0.686 19 0.678
9 11 | 0812 | 0.770 || 21 0.889 11 0.959
10 14 | 0.807 | 0.820 || 11 0.892 21 0.877
11 17 | 0.858 | 0.903 || 11 0.978 19 0.983
12 18 | 0.884 | 0.892 || 21 0.937 21 0.958
13 9 0.887 | 0.857 || 21 0.986 21 0.973
14 16 | 0.804 | 0.882 || 15 0.824 19 0.878
15 12 | 0.831 | 0.862 || 11 0.841 15 0.813
16 14 | 0.801 | 0.850 || 15 0.894 21 0.952
17 93 | 0.691 | 0.820 || 21 0.811 19 0.828
18 21 | 0.738 | 0.758 || 21 0.881 11 0.904
20 11 | 0.852 | 0.845 || 21 0.776 21 0.740
22 11 | 0.801 | 0.871 15 0.860 19 0.886
23 12 | 0.654 | 0.608 || 21 0.785 21 0.752
24 19 | 0.690 | 0.640 || 15 0.774 21 0.754
25 75 | 0.758 | 0.784 || 15 0.805 21 0.795
26 33 | 0700 | 0.715 || 19 0.851 19 0.885
27 13 | 0.849 | 0.880 || 21 0.831 21 0.947
28 35 | 0.856 | 0.905 || 11 0.908 15 0.863
43 11 | 0.754 | 0.848 || 21 0.920 21 0.968
45 108 | 0.613 | 0.683 7 0.896 7 0.838
46L 22 | 0.887 | 0.896 || 11 0.901 7 0.903
46R 11 | 0.876 | 0.881 11 0.912 7 0.941
AVG 0.780 | 0.801 0.853 0.865

The 2AFC scores obtained with our method on the
MMI database in terms of AU detection are shown in
Table 1. It is possible to draw two conclusions from the
obtained results. Firstly, the best-performing feature for
this task is the LPQ-TOP, although this is not the case for
all AUs. Secondly, using dynamic appearance descrip-
tors provides a significant performance boost respect
their static counterparts, with a similar boost obtained
for both. The improvement in performance of dynamic
features can be illustrated for the case of AU45 (blink).
As can be seen from the table, LBP-TOP performance
is 28.3% higher than that of LBP for AU45. The reason
that the actual difference between AU43 (eye closed) and
AU45 lies in the temporal domain.

We used the UNBC-McMaster pain database and the
SAL database in order to evaluate the performance of
our method for spontaneous expressions. The set of
tested AUs is smaller, as the number of AUs occurring in

spontaneous expressions for a specific scenario (in this
case pain/dyadic interactions) is smaller than with acted
AU displays. For the UNBC-McMaster database, the 10
AUs which have been implicated as possibly related to
pain are tested.

The results using LPQ-TODP, as well as those using sim-
ilarity normalised shape (SPTS), canonical normalised
appearance (CAPP) and a hybrid method reported in
[25] have been presented in Table 2. For a fair com-
parison, the same pre-processing step reported in [25]
was used, with the LPQ-TOP features extracted from
the normalised appearance. As we can see, the sys-
tem using LPQ-TOP outperforms those using geometric
(SPTS), static appearance (CAPP) and hybrid features
on average, particularly for AU4 and AU43. The per-
formance of dynamic appearance feature LPQ-TOP is
5.5% higher than that of the static appearance feature
CAPP. Furthermore, geometric features were found to be
particularly suitable for the detection of AU25 and AU26.
Note that while the difference between LPQ-TOP and the
Hybrid appearance/geometric approach of [25] is neg-
ligible, our system does not leverage geometric features
in the Machine Learning phase. We expect enhancing
the LPQ-TOP with geometric features would result in
a similar performance increased observed between the
SPTS, CAPP and Hybrid approaches.

For the SAL database, only 10 AUs are evaluated,
being the only ones that occurred five or more times
in the training data, and it is the same set as used in
[22]. As can be seen from Table 3, the achieved 2AFC
score is 0.81, while the average performance on the MMI
database for this same subset of AUs is 0.83. Therefore,
the performance loss with respect to posed expressions
is marginal. This is despite the common understanding
that spontaneous expressions are more challenging.

TABLE 2
Results (2AFC) for Testing the System on the UNBC-McMaster pain
database for the LPQ-TOP in terms of frame-based AU detection
accuracy. For comparison, results from [25] by using the
similarity-normalised shape (SPTS), the canonical appearance (CAPP)
and both have also been presented. ¢ is the optimal window length for
the LPQ-TOP descriptor, N is the number of frames that contain an AU.

AU 0 N LPQ-TOP | SPTS | CAPP | Hybrid
4 15 | 1074 91.6 72.5 60.0 57.1
6 11 | 5557 80.6 80.1 85.1 85.4
7 20 | 3366 74.0 713 82.6 80.4
9 11 | 423 85.0 75.1 84.1 85.3
10 15 | 525 86.9 87.9 83.2 89.2
12 19 | 6887 79.8 79.4 84.6 85.7
20 15 | 706 68.9 75.7 61.7 77.9
25 19 | 2407 74.3 78.8 70.9 78
26 11 | 2093 61.8 73.5 54.7 71
43 10 | 2434 95.7 83.1 86.7 87.5
AVG - - 79.9 78.0 754 79.8

Further evaluation has been carried out on the
GEMEP-FERA dataset. Unlike the SAL database, it con-
tains a large number of displays in non-frontal head
poses. This is particularly challenging for texture-based
methods, and especially for holistic methods. This is
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TABLE 3
Results for Testing the System for 10 AUs on 77 Sequences from the
SAL Data Set for the LPQ-TOP in terms of frame-based AU detection
accuracy: classification rate (CR), recall (RC), precision (PR),
F1-measure (F1) and 2AFC. 6 is the optimal window length for the
LPQ-TOP descriptor, N the number of videos that contain an AU.

AU 0 | N CR RC PR F1 2AFC
1 15| 8 904 | 40.88 | 48.79 | 44.48 0.78
2 19 | 10 | 88.6 | 46.87 | 58.76 | 52.15 0.93
6 11 | 28 | 912 97.7 93.2 95.4 0.85
7 15| 7 55.9 34.7 71.8 46.79 0.78
10 15 | 13 | 91.7 98.5 59.8 74.42 0.86
12 19 | 35 | 94.00 | 94.00 | 100.00 | 96.90 1.00

23 11 | 6 | 52.79 | 68.00 | 4240 | 52.23 0.60
25 5 | 33 | 82.40 | 82.40 | 100.00 | 90.35 1.00
26 15 | 18 | 75.80 | 82.52 | 86.81 | 84.60 0.64
45 15 | 17 | 60.30 | 45.12 | 71.51 | 55.31 0.68
AVG - - 7331 | 69.06 | 7331 | 69.26 0.81

due to the fact that non-frontal textures are significantly
different than frontal ones. Training a pose-independent
texture-based method requires a larger amount of train-
ing data (with examples of all AUs for all poses), which
is challenging due to the lack of adequate databases and
the cost of FACS annotation.

However, we still wanted to measure the performance
of our method under these conditions. We followed the
instructions of the FERA challenge [45], where the sys-
tem was trained on the 87 training sequences provided,
and tested on the 71 test sequences. The results of this
experiment are shown in Table 4, where the baseline
performance of the challenge is also shown. In this case,
our LPQ-TOP-based system produces an increase of 4.9%
respect to the baseline system.

As can be seen from Table 4, even for a database
like GEMEP-FERA, where the alignment of the images
is very challenging, the use of dynamic features is
still beneficial. In fact, the relative performance increase
when using dynamic features compared to when using
static features is very similar. In particular, when using
LPQ-TOP features instead of LPQ features the average
performance, measured in 2AFC score, increases by 8%
for the MMI database and an 8.5% for the GEMEP-FERA
dataset. Another interesting aspect is that the average
optimal window length is reduced (from an average
optimal window length of 19 frames for MMI, to 14
frames for SAL, and 8 frames for GEMEP). This may be
due to a greater challenge posed by alignment. The more
images to be aligned, the more impact registration errors
will have, as increasingly more noisy pattern variations
will be included in learning.

5.2 Frame-based AU temporal segment detection

The performance of the AU temporal segment detection
is evaluated on the MMI and the SAL datasets. Anal-
ogous to previous related studies, only sequences that
have the target AUs activated are considered for testing.

For the case of the MMI database, the existence of
annotations in terms of temporal segments allows per-

TABLE 4
2AFC of frame-based AU activation detection on the GEMEP-FERA
test dataset. 6 is the optimal window length for LPQ-TOP.

AU baseline | LPQ 6 | LPQ-TOP

1 0.790 0.671 3 0.846

2 0.767 0.664 | 3 0.749

4 0.526 0.587 7 0.639

6 0.657 0.673 | 11 0.658

7 0.556 0.612 | 3 0.629

10 0.597 0.524 7 0.567

12 0.724 0.785 | 11 0.827

15 0.563 0.543 7 0.541

17 0.646 0.678 7 0.713

18 0.610 0.714 | 15 0.715

25 0.593 0.607 | 11 0.502

26 0.500 0.611 | 11 0.709

AVG 0.628 0.623 0.677
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Fig. 12. Comparison of the F1 measures of temporal segment
detection attained by using LBP-TOP and LPQ-TOP from the
MMI database, measured per frame.
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formance measures with respect to the above-described
4-class problem. Fig. 12 shows the average Fl-measure
attained when using LPQ-TOP, LBP-TOP and their static
variants. On average, using LPQ-TOP attains higher
accuracy than using LBP-TOP. Also the use of dynamic
appearance features boosts the accuracy for temporal
segment detection, especially for the onset and offset
phases. This is unsurprising, as the appearance of an
AU during the onset and associated offset frames is very
similar. Thus, it will be very difficult for a classifier to
distinguish them relying solely on static appearance.

TABLE 5
Percentages of early/on time/late detection per transition, tested on the

MMI dataset

Early On time Late

Neutral — Onset | 22.65 47.64 29.71

Onset — Apex 19.63 23.92 56.45

Apex — Offset 20.37 53.23 26.41

Offset — Neutral | 15.50 30.50 54.01

For the MMI database, we also examined the error in
the estimated duration of the temporal segments and of
the total AU episode. This results are shown in Fig. 11.
For most AUs, the average error per temporal segment is
less than 8 frames, and the prediction of the duration of
the offset temporal segment usually has the largest error.
Onset and apex error for AU45 and AU46R are missing
due to their brevity (e.g., the average apex duration of
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Fig. 11. Temporal segment (onset, apex, offset) duration error and the entire facial action duration error. Results are average per AU, and

measured in frames and tested on the MMI dataset

AU45 is 1.2 frames). It is important to note that the error
of the total AU activation duration is far less than the
sum of the temporal-segment-duration errors. To wit, if
the apex segment has been predicted to last too long, the
offset phase will start late and will result in an error in
the offset phase duration too, thus the error is effectively
double counted.

TABLE 6
Confusion Matrix (percentages) for AU12 (Row represents true labels
and column represents predictions)

Neutral Onset Apex Offset
Neutral 96.00 1.80 2.10 1.70
Onset 14.20 51.80  34.00 0.00
Apex 4.20 0.00 95.10 0.80
Offset 28.20 0.00 17.10 54.70

Table 5 presents the proportion of early, timely, and
late detections for all correctly detected transitions. As
we can see, there is a larger portion of predictions
being late for the onset—apex and offset—neutral tran-
sitions. The early detection for the onset—apex and
offset—neutral transitions can be illustrated on the ex-
ample of AU12 (as shown in Table 6). We can see that
both neutral and apex phases have very low confusion
with any other class. Effectively, almost all errors are due
to confusions between onset and apex, onset and neutral,
offset and neutral, and offset and apex. This is logical as
most AUs start and end in a very subtle manner, visible
to the human eye but not sufficiently pronounced to be
detected by an automatic method. Also note that there
is no confusion between onset and offset either way.

For the SAL dataset, as described in Sec. 4.1, only
sequences of 4 out of 10 subjects were annotated on a
frame-by-frame basis in terms of AU temporal segments.
The remaining sequences were annotated in a frame-by-
frame manner only in terms of AU activation. Following
the approach in [22], we used the former set for train-
ing and the latter for testing. As there is no temporal

TABLE 7
F1-measure classification accuracy of Hybrid approach for
distinguishing the four temporal segments from the MMI database
using LPQ-TOP. 6 is the optimal window lengths for the LPQ-TOP
descriptor. F'14.¢ is the F1-measure after converting into AU activation.

AU 9 Neutral | Onset | Apex | Offset | Flac
1 7 78.29 63.26 76.87 61.05 | 85.15
2 15 87.36 63.59 71.81 62.12 79.32
4 15 67.36 63.59 71.81 62.12 | 61.61
5 15 75.05 50.15 | 62.61 36.12 | 41.59
6 11 82.56 49.44 70.61 2222 | 58.89
7 19 58.63 25.64 | 52.04 2459 | 45.13
9 3 74.86 70.96 78.31 37.74 | 80.70
10 7 84.07 61.90 | 82.97 58.54 | 86.46
11 7 94.86 61.78 | 89.82 61.36 | 89.61
12 15 93.21 66.02 | 88.95 69.61 86.55
13 11 90.38 67.15 90.33 47.73 93.04
14 7 72.80 62.94 76.64 34.78 89.14
15 3 71.39 21.85 | 66.60 39.42 | 52.19
16 11 71.99 47.22 70.74 42.05 71.06
17 3 72.81 51.85 68.73 44.53 74.42
18 7 91.21 50.00 76.40 41.54 58.26
20 15 67.92 43.24 64.09 41.54 44.63
22 7 75.90 62.80 | 65.45 4456 | 89.65
23 3 54.10 26.56 | 54.49 3.57 43.08
24 7 79.60 53.57 | 83.98 47.62 | 53.42
25 7 91.15 58.88 78.01 5333 | 8247
26 3 66.06 38.62 | 63.53 41.13 71.04
27 3 96.96 72.07 | 35.06 64.71 63.02
28 7 90.79 68.68 | 84.58 68.69 | 83.56

43 11 89.07 49.60 | 63.73 55.32 | 63.48
45 3 96.96 72.07 | 35.06 64.71 63.02
46L 3 95.44 34.81 55.94 66.06 | 50.73
46R 3 95.64 58.82 | 30.49 62.65 | 69.46
AVG - 80.77 53.82 | 69.87 48.79 | 69.85

segment annotation in the test data, the prediction is
converted into AU activation to compute the results.

The results for the SAL dataset are given in Table 8.
The obtained classification rate is 80.3% and an average
Fl-score is 79.3%. The poor performance (recognition
rate) is reported for AU7, AU23 and AU45. The du-
ration of AU45 is very short (average apex duration
of 1.2 frames). The confusion between AU7 and AU45
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TABLE 8
Results for Testing the LPQ-TOP-based method for 10 AUs on 77
Sequences from the SAL Dataset in terms of frame-by-frame AU
activation detection. 6 is the optimal window lengths for the LPQ-TOP

descriptor.

AU 0 NT CR RC PR F1 2AFC
1 15 8 90.85 61.90 64.36 63.10 0.71
2 15| 10 | 9571 | 86.89 58.56 | 69.97 0.87
6 11 28 98.50 98.93 99.55 99.24 0.57
7 5 7 42.33 41.62 100.00 | 58.77 0.75
10 5 13 | 98.86 | 100.00 | 98.86 | 99.43 0.60
12 5 35 | 9718 | 97.18 | 100.00 | 98.57 1.00
23 11 6 58.29 64.85 68.16 66.46 0.60
25 5 33 83.54 83.54 100.00 | 91.03 1.00
26 7 18 | 81.61 | 84.26 96.30 | 89.88 0.65
45 7 17 | 55.75 | 43.61 80.23 | 56.51 0.63

AVG - - 80.26 | 76.28 86.60 | 79.30 0.74

is another reason for the poor performance. For AU23,
in spontaneous expressions, the appearance changes are
even more subtle than those shown in posed expressions.

5.3 Cross-database evaluation

In order to test the ability to generalise to novel condi-
tions, a cross-database test was performed. Since there
are no similar databases with available annotations in
terms of temporal segments, we restricted the evaluation
to the problem of AU activation detection. For posed
facial expressions, the system is trained on the 264
sequences from the MMI and tested on the 55 sequences
from the CK databases that met the restrictions in length
imposed by the feature descriptor window length. For
the cross-database experiment on spontaneous expres-
sions, the system is trained on the 35 sequences from
the SAL dataset which are fully annotated, and tested on
the SEMAINE database. As only the sparse annotation
of 10 sequences is available in the SEMAINE database,
our system is evaluated only on the annotated frames.

Average results are shown in Table 9. The tests were
run on those AUs available in both datasets using the
optimal window size obtained from the trained database.
From Table 9, we can see that the average result is, as
expected, lower than the results for training and testing
on the same dataset. The difference between the CK and
MMI databases is partially explained by differences in
annotation styles. For SEMAINE and SAL, the coding
system is consistent, but aspects of the databases such
as resolution, lighting conditions, codec artefacts, and
camera positions differ. Note that some of these results
are obtained with very little data.

TABLE 9
Cross-Database testing (Average 2AFC score over 15 AUs using
LPQ-TOP)
TRAIN, TEST \ CR RC PR F1 2AFC
MMI, CK 80.56 50.30 5194 51.11 0.80
MMI, MMI 9470 63.80 77.80 68.40 0.87
SAL, SEMAINE | 70.10 60.10 68.45 64.00 0.73
SAL, SAL 7331 69.06 7331 69.26 0.81

5.4 Comparison to Earlier Work

We compared our method to earlier works that re-
ported results on the MMI, UNBC-McMaster pain, SAL
and GEMEP-FERA datasets. Note that using the same
database for testing does not necessarily mean that the
evaluated methodologies were trained and tested in
exactly the same experimental setup, e.g. on the same
number of videos or using the same parameter optimi-
sation strategy.

Table 10 gives an overview of the existing systems
that report their performance in terms of frame-by-
frame AU detection and temporal segment detection on
the MMI database. In order to effectively compare the
performance regarding AU temporal segment detection,
we reported two quantitive measures. F'ly;, is the F1-
measure after binarising the temporal segment results
to effectively obtain AU activation coding, and F'l,,cqn
is the average of the per-class F1-measures with respect
to the temporal segments (see Table 7). For AU detec-
tion, we achieve an average Fl-measure of 68.4% which
clearly outperforms all the other systems.

For temporal segment detection, we compare with
the FFD-based method [22], the work using geometric
features [48] and the work of [36]. The results show
that our system based on LPQ-TOP features outperforms
[48] and [22]. Note that the classifiers and the training
procedure used for AU detection here are exactly the
same as those used in [48], and for the temporal analysis
they are the same as in [22]. In this way the machine
learning algorithm used in our system is not accountable
for the superior performance, and thus it is possible to
determine the relative merit of the LPQ-TOP dynamic
appearance descriptor. By contrast, [36] attained 65%
using LBP but with a more sophisticated temporal model
Lap-CORF and the methodology has been applied on
the upper-face AUs only. In principle, it is expected a
higher score can be reached by using a combination of
LPQ-TOP and Lap-CORF.

The results on the UNBC-McMaster pain database
have been compared with those in [25]. The detailed
results (2AFC) have been shown in Table 2. Again we
have shown that the use of dynamic appearance fea-
tures outperforms those of geometry-based and static
appearance-based features for most AUs. Note that [19]
has tested on the same database by using appearance
features and regression. However, the performance of
the algorithm is measure using mean square error and
correlation coefficient, which cannot be directly com-
pared to the 2AFC measure more commonly used. For
the SAL dataset, only one other work reported results on
it. The authors in [22] reported an average Fl-measure
of 75.52% for temporal segment detection (binarised
results). Referring to Table 8, we can see that our system
produces superior results of 79.30%. For comparisons
with the existing systems on the GEMEP-FERA dataset
please see [45]. Our system achieves an average 2AFC
score of 0.677 which ranks third in the challenge despite
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TABLE 10
Comparison of AU activation detection and temporal segment detection methods on the MMI Database. Nr is the number of sequences used,
CRuact, Flaet and 2AFCyc+ is the performance for frame-by-frame AU detection, F'1;;,, is the F1 measure after binarising the temporal segments
results, F'lmean is the mean of F1 measure for difference segments.

System feature type | classification method | AUs Nr CRact | Flact | 2AFCact Flpin | Flmean

This work Appearance GentleBoost& MM 25 264 || 0.947 | 0.684 0.867 0.700 | 0.630

Valstar & Pantic 2012 [48] Geometric GentleSVM & MM 22 244 0.953 | 0.533 - - 0.615

Rudovic et al. 2012 [36] Appearance Lap-KCORF 9 264 - - - - 0.650
Jiang et al. 2011 [18] Appearance SVM 9 442 || 0.890 | 0.663 - - -
Koelstra et al. 2010 [22] Appearance GentleBoost MM 27 264 - - - 0.651 -
Valstar &Pantic 2007 [47] Geometric AdaBoost+SVM 23 196 - 0.660 - - -
Pantic & Patras 2005 [33] Geometric Rule-based 27 299 0.936 - - - -

our method not being designed to deal with non-frontal
poses.

6 CONCLUSIONS AND FUTURE WORK

We have presented a novel approach to explicit analysis
of the temporal dynamics of facial actions using the
dynamic appearance descriptor LPQ-TOP. Extensive ex-
perimentation has shown that this dynamic appearance
descriptor is highly suited for the problem of AU tempo-
ral segment detection, outperforming all previous works
that reported on this task. The proposed methodology
has also been shown to attain superior AU activation
detection.

Given the descriptive power of LPQ-TOP in terms of
capturing the dynamics of facial actions, it seems natural
to extend our work to recognise more facial dynamic
characteristics such as the intensity of AUs and their
frequency of occurrence. In the light of our performance
on the GEMEP-FERA dataset, it has become clear that
head-pose invariant face registration is one obstacle that
needs to be resolved in order for our approach to work
on arbitrary data. Given the complementary nature of
dynamic appearance and geometric features, fusing the
two would also be a natural extension of this work.
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