
Tensor Regression Networks

Jean Kossaifi
Amazon AI

Imperial College London
jean.kossaifi@imperial.ac.uk

Zachary Lipton
Amazon AI

University of California, San Diego
zlipton@cs.ucsd.edu

Aran Khanna
Amazon AI

arankhan@amazon.com

Tommaso Furlanello
Amazon AI

University of Southern California
furlanel@usc.edu

Anima Anandkumar
Amazon AI

California Institute of Technology
anima@amazon.com

Abstract

To date, most convolutional neural network architectures output predictions by
flattening 3rd-order activation tensors, and applying fully-connected output layers.
This approach has two drawbacks: (i) we lose rich, multi-modal structure during
the flattening process and (ii) fully-connected layers require many parameters. We
present the first attempt to circumvent these issues by expressing the output of a
neural network directly as the the result of a multi-linear mapping from an activation
tensor to the output. By imposing low-rank constraints on the regression tensor, we
can efficiently solve problems for which existing solutions are badly parametrized.
Our proposed tensor regression layer replaces flattening operations and fully-
connected layers by leveraging multi-modal structure in the data and expressing the
regression weights via a low rank tensor decomposition. Additionally, we combine
tensor regression with tensor contraction to further increase efficiency. Augmenting
the VGG and ResNet architectures, we demonstrate large reductions in the number
of parameters with negligible impact on performance on the ImageNet dataset.

1 Introduction

Many natural datasets exhibit rich multi-modal structure. We can express audio spectrograms as
2nd-order tensors (matrices) in which the modes correspond to frequency and time. Images are
third-order tensors with modes corresponding to height, width and the filter channel. Videos could
be expressed as 4th-order tensors, and the signal processed by an array of video sensors could be
described as a 5th-order tensor. Owing to the abundance of multi-modal data, tensor methods, which
extend linear algebra to multilinear structures, are promising tools for manipulating and analyzing
this data.

Although the mathematical properties of tensors have long been the subject of theoretical study,
until recently most machine learning techniques have regarded points data as vectors and datasets as
matrices. However, over the past decade, tensor methods have come to prominence in the machine
learning community. One class of broadly useful techniques within tensor methods are tensor
decompositions, which extend the familiar linear algebraic matrix decompositions to to higher-order

ar
X

iv
:1

70
7.

08
30

8v
1 

 [
cs

.L
G

] 
 2

6 
Ju

l 2
01

7



tensors. Tensor methods have recently been developed for learning latent variable models [1], and
developing recommender systems [2].

In the past several years, several papers have investigated the intersection of tensor methods and deep
learning in a variety of ways. Some papers use tensor as tools of analysis in order to gain insight
into the representational expressivity of CNNs. Deep neural networks have demonstrated remarkable
breakthroughs for a variety of tasks in the domains of natural language processing, computer vision
and speech recognition. Yet, despite this success, there remain many open questions as to why they
work so well and whether they really require so many parameters in order to achieve state-of-the-art
performance, Tensor methods have emerged as promising tools of analysis to address these questions
and to better understand the success of deep neural networks [3, 4]. In another line of research, tensor
methods are investigated as tools for devising neural network learning algorithms with theoretical
guarantees of convergence [5, 6, 7].

Generally, two families of tensor methods have been studied in connection with deep learning: tensor
decomposition and tensor regression. While tensor decomposition has been applied in deep learning
for several applications including multi-task learning [8], sharing residual units [9] and speeding
up convolutional neural networks [10], most of these approaches are simply used for initialization
[8], require fine tuning [11] or use the Tensor-Train format [12] which presents several issues due
to the arbitrary reshaping of matrices into tensors. One promising direction is to incorporate tensor
regressions into deep neural networks. Tensor regressions leverage the natural multi-modal structure
of its inputs to learn compact predictive models [13, 14, 15, 16]. To our knowledge, no previous
attempt has been made to incorporate either tensor regressions or tensor contractions as end-to-end
trainable components of neural networks themselves.

In this paper, we pursue this new research direction and investigate tensor operations, as pluggable
components of neural networks. Our aim is to use tensor methods to exploit the rich multilinear
structure in our data without giving up the the power and flexibility conferred by modern deep learning
methods. Consider that modern deep neural networks make frequent use of high-order tensors for
representing spatial and sequential data. In a standard deep Convolutional Neural Network (CNN),
the inputs and the activations of hidden convolutional layers are all 3rd-order tensors. And yet, to wit,
most architectures output predictions by first flattening the activations tensors, before connecting to
the output neurons via a fully-connected layer. This approach presents several issues: we lose rich,
multi-modal information during the flattening process and the fully-connected layers require many
parameters (typically the product of the input’s length by the number of hidden layers/outputs).

Specifically, we propose incorporating tensor regression into the neural network architecture by
leveraging a low-rank representation of the regression weights expressed as the factors of a tensor
decomposition. Our proposed Tensor Regression Layer (TRL) replaces flattening operations and
fully-connected layers by leveraging multi-dimensional structure in the data and expressing the
regression weights via a low rank tensor decomposition. Additionally, we combine tensor regression
with tensor contraction to further increase efficiency. Augmenting the VGG and ResNet architectures,
we demonstrate parameter reduction and improved performance on the ImageNet dataset.

2 Mathematical background

Notation: Throughout the paper, we define tensors as multidimensional arrays, with indexing
starting at 0. First order tensors are vectors, denoted v. Second order tensors are matrices, denoted
M and Id is the identity matrix. We denote X̃ tensors of order 3 or greater. The transpose of M is
denoted M> and its pseudo-inverse M†. Finally, for any i, j ∈ N, [i . . j] denotes the set of integers
{i, i+ 1, · · · , j − 1, j}.

Tensor unfolding: Given a tensor, X̃ ∈ RI0×I1×···×IN , its mode-n unfolding is a matrix X[n] ∈
RIn,IM , with M =

∏N
k=0,
k 6=n

Ik and is defined by the mapping from element (i0, i1, · · · , iN ) to (in, j),

with j =
∑N

k=0,
k 6=n

ik ×
∏N

m=k+1 Im.

2



Tensor vectorization: Given a tensor, X̃ ∈ RI0×I1×···×IN , it can be flattened into a vector vec(X̃ )
of size (I0 × · · · × IN ) defined by the mapping from element (i0, i1, · · · , iN ) of X̃ to element j of
vec(X̃ ), with j =

∑N
k=0 ik ×

∏N
m=k+1 Im.

n-mode product: For a tensor X̃ ∈ RI0×I1×···×IN and a matrix M ∈ RR×In , the n-mode product
of a tensor is a tensor of size (I0 × · · · × In−1 ×R× In+1 × · × IN ) and can be expressed using
unfolding of X̃ and the classical dot product as:

X̃ ×n M = MX̃[n] ∈ RI0×···×In−1×R×In+1×·×IN (1)

Tucker decomposition: Given a tensor X̃ ∈ RI0×I1×···×IN , it can be decomposed into a low
rank core G̃ ∈ RR0×R1×···×RN through projection along each of its modes by projection factors(
U(0), · · · ,U(N)

)
, with U(k) ∈ RRk,Ik , k ∈ (0, · · · , N).

In other words, we can write:

X̃ = G̃ ×0 U
(0) ×1 U

(2) × · · · ×N U(N) = JG̃; U(0), · · · ,U(N)K (2)

Typically, the factors and core of the decomposition are obtained by solving a least squares problem.
In particular, closed form solutions can be obtained for the factor by considering the n−mode
unfolding of X̃ that can be expressed as:

X[n] = U(n)G[n]

(
U(0) ⊗ · · ·U(n−1) ⊗U(n+1) ⊗ · · · ⊗U(N)

)T
(3)

Similarly, we can optimize the core in a straightforward manner by isolating it using the equivalent
rewriting of the above equality:

vec(X) =
(
U(0) ⊗ · · · ⊗U(N)

)
vec(G) (4)

The interested reader is referred to the thorough review of the literature on tensor methods by Kolda
and Bader [17].

3 Tensor Contraction and Tensor Regression

In this section, we explain how to incorporate tensor contractions and tensor regressions into neural
networks as differentiable layers.

3.1 Tensor Contraction

The most obvious way to incorporate tensor operations into a neural network is to apply tensor
contraction to an activation tensor in order to obtain a low-dimensional representation [18]. We call
this technique the Tensor Contraction layer (TCL). Compared to performing a similar rank reduction
with a fully-connected layer, TCLs require fewer parameters and less computation.

Figure 1: A representation of the Tensor Contrac-
tion Layer (TCL) on a tensor of order 3. The input
tensor X̃ is contracted into a low rank core G̃.

Tensor contraction layers Given an activa-
tion tensor X̃ of size (D0, · · · , DN ), the TCL
will produce a compact core tensor G̃ of smaller
size (D0, R1, · · · , RN ) defined as:

G̃ = X̃ ×1 V
(1) ×2 V

(2) × · · · ×N V(N) (5)

with V(k) ∈ RRk,Ik , k ∈ (1, · · · , N). Note that
the projections start at the second mode since
the first mode corresponds to the batch-size.

The projection factors
(
V(k)

)
k∈[1,···N ]

are
learned end-to-end with the rest of the network
by gradient backpropagation. In the rest of this
paper, we denote size–(R1, · · · , RN ) TCL, or
TCL–(R1, · · · , RN ) a TCL that produces a compact core of dimension (R1, · · · , RN ).

3



Figure 2: In a traditional deep neural network
architecture, the input tensor X̃ is flattened and
passed on to a fully connected layer, where it is
multiplied by a weight matrix W.

Figure 3: We propose to replace the flattening
and fully connected layers by a tensor regres-
sion layer. In other words, we express directly
the output as the result of the product between
the activation tensor and low-rank regression
weights W̃ .

Gradient back-propagation In the case of the TCL, we simply need to take the gradients with
respect to the factors V(k) for each k ∈ 0, · · · , N of the tensor contraction. Specifically, we compute

∂G̃
∂V(k)

=
∂X̃ ×1 V

(1) ×2 V
(2) × · · · ×N V(N)

∂V(k)
(6)

By rewriting the previous equality in terms of unfolded tensors, we get an equivalent rewriting where
we have isolated the considered factor:

∂G̃[k]
∂V(k)

=
∂V(k)X[k]

(
Id⊗V(1) ⊗ · · ·V(k−1) ⊗V(k+1) ⊗ · · · ⊗V(N)

)T
∂V(k)

(7)

Model complexity Considering an activation tensor X̃ of size (D0, D1, · · · , DN ), a size–
(R1, · · · , RN ) Tensor Contraction Layer will have a total of

∑N
k=1 Dk ×Rk parameters.

3.2 Low-Rank Tensor Regression

Typically, the activation tensor resulting from the core of a deep convolutional network (e.g. a series
of convolution, ReLu and Pooling) is passed through an average pooling layer that averages out the
spatial components, indicating a hight degree of redundancy. The result is then flattened before being
passed to a fully connected layer that produces the desired number of outputs. We propose to leverage
the structure in the activation tensor and formulate the output as lying in a low rank subspace that
models jointly the input and the output as well as their multi-modal structure. We do this by means of
a low rank tensor regression, where we enforce a low multilinear rank of the regression weight tensor.

Tensor regression as a layer Specifically, let us note X̃ ∈ RS,I0×I1×···×IN the input activation
tensor corresponding to S samples

(
X̃1, · · · , X̃S

)
and Y ∈ RS,O the O corresponding labels for

each sample. The problem is that of estimating the regression weight tensor W̃ ∈ RI0×I1×···×IN×O

under some fixed low rank (R0, · · · , RN , RN+1), such that, Yij = 〈X̃i, W̃j〉+ b, i.e.

Y = X̃[0] × W̃[−1] + b

subject to W̃ = JG̃; U(0), · · · ,U(N),U(N+1)K (8)

with G̃ ∈ RR0×···×RN×RN+1 , U(k) ∈ RIk×Rk for each k in [0 . . N ] and U(N+1) ∈ RO×RN+1 .

This problem has previously been studied as a standalone problem where the input is directly mapped
to the output. This approach has several drawbacks: it implies pre-processing the data to extract

4



Figure 4: Alternatively, we propose to first reduce the dimensionality of the activation tensor by
applying tensor contraction before performing tensor regression.

(hand-crafted) features. The problem is typically solved analytically by formulating the problem as a
least squares one. This involves heavy computation and memory usage which renders it prohibitive
in practice for large dataset sizes.

In this work, we depart from the standard approach and decide to leverage the multi-modal information
in the activation tensor as well as the structure in of the problem. We do so by introducing a neural
network layer that replaces the traditional flattening + fully-connected layers and applies tensor
regression directly to its input while enforcing low rank constraints on the weights of the regression.
We coin our layer Tensor Regression Layer (TRL). Intuitively, the advantage in doing so is many fold:
we are able to leverage the multi-modal structure in the data and express the solution as lying on a
low rank manifold encompassing both the data and the associated outputs.

Gradient backpropagation The gradients of the regression weights and the core with respect to
each factor can be obtained by writing:

∂W̃
∂U(k)

=
∂G̃ ×0 U

(0) ×1 U
(1) × · · · ×N+1 U

(N+1)

∂U(k)
(9)

Using the unfolded expression of the regression weights, we obtain the equivalent formulation:

∂W̃[k]

∂U(k)
=

∂U(k)G[k]

(
U(0) ⊗ · · ·U(k−1) ⊗U(k+1) ⊗ · · · ⊗U(N+1)

)T
∂U(k)

(10)

Similarly, we can obtain the gradient with respect to the core by considering the vectorized expressions:

∂vec(W̃)

∂vec(G̃)
=

∂
(
U(0) ⊗ · · · ⊗U(N+1)

)
vec(G)

∂vec(G̃)
(11)

Model analysis We consider as input an activation tensor X̃ ∈ RS,I0×I1×···×IN , and a rank-
(R0, R1, · · · , RN , RN+1) tensor regression layer, where, typically, Rk ≤ Ik. Let’s assume the
output is n-dimensional. A fully connected layer taking X̃ as input will have nFC = n×

∏N
k=0 Ik

parameters.

By comparison, the tensor regression layer will have a number of parameters nTRL, with:

nTRL =

N+1∏
k=0

Rk +

N∑
k=0

Rk × Ik +RN+1 × n (12)

5



(a) Empirical comparison of the TRL with a Fully Connected
layer regression. We plot the weight matrix of both the TRL
and a Fully Connected layer. Thanks to its low-rank weights,
the TRL is able to better capture the structure in the weights
and is more robust to noise.

(b) Evolution of the RMSE as a function of
the training set size for both the TRL and
Fully connected based linear regression (LR)

Table 1: Results obtained on ImageNet by adding a TCL to a VGG-19 architecture. We reduce the
number of hidden units proportionally to the reduction in size of the activation tensor following the
tensor contraction. Doing so allows more than 65% space savings over all three fully-connected layers
(i.e. 99.8% space saving over the fully-connected layer replaced by the TCL) with no corresponding
decrease in performance (comparing to the standard VGG network as a baseline).

Method Accuracy Space Savings
TCL–size Hidden Units Top-1 (%) Top-5 (%) (%)

baseline 4096 68.7 88 0
(512, 7, 7) 4096 69.4 88.3 -0.21
(384, 5, 5) 3072 68.3 87.8 65.87

4 Experiments

We empirically demonstrate the effectiveness of preserving the tensor structure through tensor con-
traction and tensor regression by integrating it into a state-of-the-art architectures and demonstrating
similar performance on the popular ImageNet dataset. In particular, we empirically verify the effec-
tiveness of the TCL on VGG-19 [19] and conduct thorough experiment with the tensor regression on
ResNet-50 and ResNet-101 [20].

4.1 Experimental setting

Synthetic data To illustrate the effectiveness of the low-rank tensor regression, we apply it to
synthetic data y = vec(X̃ ) ×W where each sample X̃ ∈ R(64) follows a Gaussian distribution
N (0, 3). W is a fixed structure matrix and the labels are generated as y = vec(X̃ )×W. We then
train the data on X̃ + Ẽ where Ẽ is added Gaussian noise sampled from N (0, 3). We compare i) a
TCL chained with squared loss and ii) a Fully Connected Layer with a squared loss. In Figure 5a, we
show the trained weight of both a linear regression based on a fully-connected layer and a TRL with
various ranks, both obtained in the same setting. As can be observed in Figure ??, the TRL is easier
to train on small datasets and less prone to over-fitting, due to the low rank structure of its regression
weights, as opposed to typical Fully Connected based Linear Regression.

ImageNet Dataset We ran our experiments on the widely used ImageNet-1K dataset, using state-of-
the-art network architectures. The ILSVRC dataset (ImageNet), is composed of 1, 2 million images
for training and 50, 000 for validation, all labeled for 1,000 classes. We evaluate the classification
error on the validation set as is the common practice, on single 224× 224 single center crop from the
raw input images. For training, we adopt the same data augmentation procedure as in the original
Residual Networks (ResNets) paper [20].

6



Training the TRL When experimenting with the tensor regression layer, we did not retrain the
whole network each time but started from a pre-trained ResNet. We experimented with two settings:
i) First, we replaced the last average pooling, flattening and fully connected layer by either a TRL or a
combination of TCL + TRL and trained these from scratch while keeping the rest of the network fixed.
ii) Second, we investigate replacing the pooling and fully connected layers with a TRL that jointly
learns the spatial pooling as part of the tensor regression. In that setting, further explore initializing
the TRL by performing a Tucker decomposition on the weights of the fully connected layer.

Implementation details We implemented all models using the MXNet library [21] and ran all
experiments training with data parallelism across multiple GPUs on Amazon Web Services, with 4
NVIDIA k80 GPUs. We report results on the validation set in term of Top-1 accuracy and Top-5
accuracy across all 1000 classes.

When training the layers from scratch, we found it useful to add a batch normalization layer [22]
before and after the TCL/TRL to avoid vanishing or exploding gradients, and to make the layers more
robust to changes in the initialization of the factors. In addition we constrain the weights of the tensor
regression by applying `2 normalization [23] to the factors of the Tucker decomposition.

4.2 Results

Table 2: Results obtained with ResNet-50 on ImageNet. First row corresponds to the standard ResNet.
Rows 2 and 3 presents the results obtained by replacing the last average pooling, flattening and
fully connected layers with a Tensor Regression Layer. In the last row, we have also added a Tensor
Contraction Layer.

Method Accuracy

Architecture TCL–size TRL rank Top-1 (%) Top-5 (%)

Resnet-50 baseline with spatial pooling 74.58 92.06
- (1000, 2048, 7, 7) 73.6 91.3
- (500, 1024, 3, 3) 72.16 90.44

(1024, 3, 3) (1000, 1024, 3, 3) 73.43 91.3
Resnet-101 baseline with spatial pooling 77.1 93.4

- (1000, 2048, 7, 7) 76.45 92.9
- (500, 1024, 3, 3) 76.7 92.9

(1024, 3, 3) (1000, 1024, 3, 3) 76.56 93

Impact of the tensor contraction layer We first investigate the effectiveness of the TCL using a
VGG-19 network architecture [19]. It is particularly adapted for this test since of its 138, 357, 544
parameters, 119, 545, 856, more than 80%, are contained in the fully-connected layers. Therefore,
by adding a TCL to contract the activation tensor prior to the fully connected layers we can achieve
large space saving. We define the space saving of a model M with nM total parameters in its fully
connected layers with respect to a reference model R with nR total parameters its fully connected
layers is defined as 1− nM

nR
(bias excluded).

Table 1 presents the accuracy obtained by the different combinations of TCL in term of top-1 and
top-5 accuracy as well as space saving. By adding a TCL that preserves the size of its input we are
able to obtain slightly higher performance with little impact on the space saving (0.21% of space
loss) while by decreasing the size of the TCL we got more than 65% space saving with almost no
performance deterioration.

Overcomplete TRL We first tested the tensor regression layer with a ResNet-50 and a ResNet-101
architectures on ImageNet. In particular we removed the average pooling layer to preserve the spatial
dimension of the tensor.

The full activation tensor is directly passed on to a tensor regression layer which produces the outputs
on which we apply softmax to get the final predictions. This results in more parameters as the spatial
dimensions are preserved. To reduce the computational burden but preserve the multi-dimensional
information, we alternatively insert a Tensor Contraction Layer before the TRL. In Table 2, we present

7



Table 3: Results obtained with ResNet-101 on ImageNet by learning the spatial pooling as part of the
TRL.

Performance (%)

TRL rank Top-1 Top-5 Space savings

baseline 77.1 93.4 0
(200, 1, 1, 200) 77.1 93.2 68.2
(150, 1, 1, 150) 76 92.9 76.6
(100, 1, 1, 100) 74.6 91.7 84.6
(50 , 1, 1, 50) 73.6 91 92.4

(a) Accuracy as a function of the core size (b) Accuracy as a function of space savings

Figure 6: 6a shows the evolution of the Top-1 accuracy (in %) as we vary the size of the core along
the number of outputs and number of channels (the TRL does spatial pooling along the spatial
dimensions, i.e. the core has rank 1 along these dimensions). In 3, we present the space savings
associated with some of these configurations.

results obtained in this setting on ImageNet for various configurations of the network architecture. In
each case, we report the size of the TCL (i.e. the dimension of the contracted tensor) and the rank of
the TRL (i.e. the dimension of the core of the regression weights).

Joint spatial pooling and low-rank regression Alternatively, we can learn the spatial pooling as
part of the tensor regression. In this case, we remove the average pooling layer and feed the tensor of
size (batch size, number of channels, height, width) to the TRL, while imposing a rank of 1 on the
spatial dimensions of the core tensor of the regression. Effectively, this setting simultaneously learns
weights for the multi-linear spatial pooling as well as the regression.

In practice, to initialize the weights of the TRL in this setting, we consider the weight of fully
connected layer from a pre-trained model as a tensor of size (batch size, number of channels, 1, 1,
number of classes) and apply a partial tucker decomposition to it by keeping the first dimension
(batch-size) untouched. The core and factors of the decomposition then give us the initialization of
the tensor regression layer. The projection vectors over the spatial dimension are the initialize to

1
height and 1

width , respectively. The Tucker decomposition was performed using TensorLy [24]. In this
setting, we show that we can decrease drastically the number of parameters with little impact on
performance. In particular, Figure ?? shows the evolution of the Top-1 and Top-5 accuracy as we
decrease the size of the core tensor of the TRL as well as the space savings.

5 Conclusions

We introduced a tensor regression layer that can replace fully-connected layers in neural networks.
Unlike fully-connected layers, tensor regression layers do not require flattening the input tensor, which

8



looses information, and can leverage the multi-dimensional dependencies in the data. Additionally,
demonstrated that by imposing a low-rank constraint on the weights of the regression, we can
effectively learn a low-rank manifold on which both the data and the labels lie. The result is a
compact network, capable of learning over-complete representations without loss in accuracy. Going
forward, we plan to apply the tensor regression layer to more network architectures. We also plan to
leverage recent work [25] on extending BLAS primitives to avoid transpositions needed to compute
the tensor contractions, which will further speed up the computations.

References
[1] A. Anandkumar, R. Ge, D. J. Hsu, S. M. Kakade, and M. Telgarsky, “Tensor decompositions for learning

latent variable models.,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 2773–2832, 2014.

[2] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse recommendation: n-dimensional
tensor factorization for context-aware collaborative filtering,” in Proceedings of the fourth ACM conference
on Recommender systems, pp. 79–86, ACM, 2010.

[3] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of deep learning: A tensor analysis,” CoRR,
vol. abs/1509.05009, 2015.

[4] B. D. Haeffele and R. Vidal, “Global optimality in tensor factorization, deep learning, and beyond,” CoRR,
vol. abs/1506.07540, 2015.

[5] H. Sedghi and A. Anandkumar, “Training input-output recurrent neural networks through spectral methods,”
CoRR, vol. abs/1603.00954, 2016.

[6] M. Janzamin, H. Sedghi, and A. Anandkumar, “Generalization bounds for neural networks through tensor
factorization,” CoRR, vol. abs/1506.08473, 2015.

[7] M. Janzamin, H. Sedghi, and A. Anandkumar, “Beating the perils of non-convexity: Guaranteed training
of neural networks using tensor methods,” CoRR, 2015.

[8] Y. Yang and T. M. Hospedales, “Deep multi-task representation learning: A tensor factorisation approach,”
CoRR, vol. abs/1605.06391, 2016.

[9] Y. Chen, X. Jin, B. Kang, J. Feng, and S. Yan, “Sharing residual units through collective tensor factorization
in deep neural networks,” 2017.

[10] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. S. Lempitsky, “Speeding-up convolutional
neural networks using fine-tuned cp-decomposition,” CoRR, vol. abs/1412.6553, 2014.

[11] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep convolutional neural
networks for fast and low power mobile applications,” CoRR, vol. abs/1511.06530, 2015.

[12] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing neural networks,” in Proceedings
of the 28th International Conference on Neural Information Processing Systems, NIPS’15, pp. 442–450,
2015.

[13] W. Guo, I. Kotsia, and I. Patras, “Tensor learning for regression,” IEEE Transactions on Image Processing,
vol. 21, pp. 816–827, Feb 2012.

[14] G. Rabusseau and H. Kadri, “Low-rank regression with tensor responses,” in NIPS (D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, eds.), pp. 1867–1875, 2016.

[15] H. Zhou, L. Li, and H. Zhu, “Tensor regression with applications in neuroimaging data analysis,” Journal
of the American Statistical Association, vol. 108, no. 502, pp. 540–552, 2013.

[16] Q. R. Yu and Y. Liu, “Learning from multiway data: Simple and efficient tensor regression,” CoRR,
vol. abs/1607.02535, 2016.

[17] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM REVIEW, vol. 51, no. 3,
pp. 455–500, 2009.

[18] J. Kossaifi, A. Khanna, Z. Lipton, T. Furlanello, and A. Anandkumar, “Tensor contraction layers for
parsimonious deep nets,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, July 2017.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
CoRR, vol. abs/1409.1556, 2014.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR, 2015.

[21] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang,
“Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems,” CoRR,
vol. abs/1512.01274, 2015.

9



[22] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” CoRR, vol. abs/1502.03167, 2015.

[23] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization to accelerate training
of deep neural networks,” in NIPS (D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
eds.), pp. 901–909, 2016.

[24] J. Kossaifi, Y. Panagakis, and M. Pantic, “Tensorly: Tensor learning in python,” ArXiv e-print, 2016.

[25] Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka, “Tensor contractions with extended blas kernels
on cpu and gpu,” in 2016 IEEE 23rd International Conference on High Performance Computing (HiPC),
pp. 193–202, Dec 2016.

10


	1 Introduction
	2 Mathematical background
	3 Tensor Contraction and Tensor Regression
	3.1 Tensor Contraction
	3.2 Low-Rank Tensor Regression

	4 Experiments
	4.1 Experimental setting
	4.2 Results

	5 Conclusions

