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—— Abstract

This paper presents the first dataset for eye segmentation in low resolution images. Although
eye segmentation has long been a vital preprocessing step in biometric applications, this work is
the first to focus on low resolutions image that can be expected from a consumer-grade camera
under conventional human-computer interaction and/or video-chat scenarios. Existing eye data-
sets have multiple limitations, including: (a) datasets only contain high resolution images; (b)
datasets did not include enough pose variations; (c¢) a utility landmark ground truth did not be
provided; (d) high accurate pixel-level ground truths had not be given. Our dataset meets all
the above conditions and requirements for different segmentation methods. Besides, a baseline
experiment has been performed on our dataset to evaluate the performances of landmark mod-
els (Active Appearance Model, Ensemble Regression Tree and Supervised Descent Method) and
deep semantic segmentation models (Atrous convolutional neural network with conditional ran-
dom field). Since the novelty of our dataset is to segment the iris and the sclera areas, we evaluate
above models on sclera and iris only respectively in order to indicate the feasibility on eye-partial
segmentation tasks. In conclusion, based on our dataset, deep segmentation methods performed
better in terms of IOU-based ROC curves and it showed potential abilities on low-resolution eye
segmentation task.

2012 ACM Subject Classification Computing methodologies — Image segmentation
Keywords and phrases dataset, eye, segmentation, landmark, pixel-level
Digital Object Identifier 10.4230/0OASIcs.ICCSW.2018.7

Category Main Track

1 Introduction

Eyes not only are the most vital sensory organ but also play a crucial role in conveying
a person’s emotional state and mental wellbeing [5]. Although there have been numerous
works on blink detection [1, 8, 10], we argue that accurate segmentation of sclera and iris can
provide much more information than blinks alone, thus allowing us to study the finer details
of eye movement such as cascade, fixation and other gaze patterns. As a pre-processing
step in iris recognition, iris segmentation in high resolution expression — less frontal face
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images have been well studied by the biometric community. However, the commonly used
Hough-transform-based method [14] does not work well on low-resolution images captured
under normal human-computer interaction (HCI) and/or video-chat scenarios, when the
boundary of eyes and iris are blurry and the shape of the eye can differ greatly due to pose
variation and facial expression. To our knowledge, this work presents the first effort in solving
the eye segmentation problem under such challenging conditions.

To investigate the topic of eye segmentation in low-resolution images, the first problem
we need to address is the lack of data. Albeit both biometric community and facial analysis
community published an abundance of datasets over the years, none can be used as is for
our purpose because the former category only contains high resolution eye scans while the
latter category lacks annotation of segmentation masks for sclera and iris. Therefore, during
the course this work, we created a sizable eye segmentation dataset by manually annotating
images selected from HELEN[9], 300VW[12], CVL[11] and Columbia Gaze[13] datasets.

After establish our dataset, it is necessary to evaluate how good performances are based
on two types of ground truths. Therefore, deformable and deep segmentation models
were chosen. Active Appearance Model(AAM)[3], Ensemble Regression Tree(ERT)[7] and
Supervised Descent Method(SDM)[15] were compared with deep semantic segmentation
methods(DeepLab[2] proposed): Atrous Neural Network with Conditional Random Field
(ACNN+CRF). For deformable models, the segmentation of non-frontal faces is a big challenge
because of occlusion, shape deformation and initializations. Therefore, the deep segmentation
methods can relatively compensate this shortcoming, whose performance can be more stable
especially on non-frontal faces. Otherwise, since we also want to know performances on iris-
only and sclera-only segmentations, all models were utilized and trained by iris-background
and sclera-background data samples. Finally, all segmentation results are evaluated and
discussed based on Interaction over Union(IOU) and Receiver operating characteristic(ROC)
curves. Based on that, the model with the best performance will be considered as the
potential model in eye segmentation researches.

2 Relative Works

Image segmentation is one of the oldest computer vision problems studied by the community.
Early approaches often rely on finding edges and/or specific shapes in the image or hand-
craft feature maps. Albeit dated, this kind of simple methods are still being used for eye
segmentation as a pre-processing step for iris recognition [14]. In this case, the eye and iris
are modeled respectively, by two parabolic curves and an ellipse. The parameters of the
curves are then determined using Hough transform performed on the image’s edge map.
Because this approach is sensitive to image noise and even slight shape variation caused by
head-pose and/or facial expressions, it cannot be use for eye segmentation in images captured
by consumer-grade camera under normal HCI/video-chat conditions.

On the other hand, various sparse 2D deformable-model-based methods, such as AAM,
SDM or ERT, have shown promising results in image segmentation, and in particular, facial
landmark localization. These methods work by finding a local minimum in the parametric
space that can optimally describe the object’s shapes and appearance. Since image intensity
space contains multiple local minimums so that it is uneasy to control which local minimum
it lies on. Moreover, the optimizing process of deformable models starts with the mean shape
of object’s intensity and geometry, thus the transformation of the landmark depends on
the initialization and integrity of objects. Therefore, they share many common limitations,
including sensitivities to initialization, occlusion, and out-of-plane rotation. In [3, 15, 7], the
profile face landmark tracking is still a challenge. Thus deformable models can experienced
as a candidate in our research, but the performance can be expectedly poor to profile faces.
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Table 1 dataset statistical information.

Name Value
Total number 3161
Non-frontal faces proportion 18.35%
low-resolution image proportion 66.97%
Number of bad illumination samples | 10
Number of samples with glasses 185

The methods mentioned above rely on the prior knowledges (such as the number of point,
landmark shapes or curves expressions) so that they cannot adapt variant images and head
poses of eyes (profile faces or occlusions). To lighten the influences in the wild (illuminations
and etc.) and adapt to multiple situations (tricky head poses or occlusions), more recently,
various deep learning techniques have achieved impressive results in semantic segmentation
of natural images, which is widely-used because of its better adaptability of performances in
variant environments. In particular, DeepLab[2, 4] uses atrous convolutional neural network
based on VGG-16 and ResNet-101 architectures to generate segmentation masked, refined by
a fully-connected CRF layer with mean-field approximation for fast inference. The atrous
convolutional neural network is the innovation of DeepLab in order to increase the ability of
extracting global image features. They not only reduced the computational cost but also
improved the generalization.

In previous works, there is no existed low-resolution eye dataset. However, facial datasets
provide us a good sources to obtain eye images in different illuminations and pose variations.
HELEN dataset[9] contains high resolution facial images in different situations (multi-faces,
indoor/outdoor and etc.). 300VW[12] is a low-resolution facial video dataset captured in
the wild. CVL[11] and Columbia Gaze[13] are two facial dataset technically captured in lab
environment. Although these datasets cannot be utilized directly in our research, they can
also regard as sources of our proposed dataset.

3 Data Description

We create the iBUG eye segmentation dataset by annotating a total of 3161 images selected
from HELEN(9], 300VW[12], CVL[11] and Columbia Gaze[13] datasets. The dataset contains
faces under various poses. Specifically, faces who look ahead and with slight rotations are
frontal, the others are annotated sas non-frontal faces. We primarily focus on low resolution
images, but a small number of high resolution images are also included for completeness. The
distribution of eye-patch height is illustrated in Figure 1. Note that we use eye-patch height
as a measure for image resolution because the widely-used interocular distance measure can
be easily biased by face yaw. Last but not least, the dataset contains a small number of
examples featuring partial occlusion and bad illumination. The detailed statistics can be
found in Table 1.

Some examples of the annotated images are shown in Figure 2. The first row shows the
source image and the location of the control points, while the second row visualizes the
segmentation mask. Some extra statistical information has been presented in Table 1.
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Figure 2 Some annotated images in our dataset.
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4 Baseline Methods

In this work, we utilized deformable model-based methods (AAM, ERT and SDM) and
DeepLab proposed Atrous CNN+CRF (CGG16+CRF and ResNet101+CRF) as the baseline
method.

4.1 Landmark Models

Before we discuss details of utilizations of baseline methods, we are going to introduce
some concepts about them. AAM, ERT and SDM are deformable statistic models which
were generally used in object localization and alignment. The shape and texture will be
transformed with a specific transformation function. Assume z = {1, 2, ..., z;} indicates
shapes of images and g = {¢1, 92, ..., 9;} presents textures of images. x = X + Qscs and
g = g + QgCg demonstrate the transformation methods in deformable model-based methods.
Qs and @, are matrices describing the modes of variation derived from the training set. c;
is the shape model parameter and c, is the appearance model parameter, which control the
shape and texture gradient and the transforming directions. Thus, the aim of deformable
model-based methods is to find the optimized local minimum between current image and the
mean shape.
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Figure 4 Flowchart of landmark models methodology.

Since deformable model-based methods are sensitive to initialization, the accuracy of
initializations affects algorithms’ performances. To generate an appropriate initialization,
the first step is eye localization. The procedure is shown in Figure 3. Firstly, face detection
method (fast RCNN][6]) was utilized to obtain the bounding box of each faces. Secondly, a
ridge regression model was trained to predict eyes’ bounding boxes based on facial bounding
boxes. Finally, landmark models can use mean shape as initialization lying into above located
bounding boxes. The procedure flowchart of deformable model-based method is shown in
Figure 4.

4.2 Deep Segmentation Method

Atrous convolutional neural network (ACNN) effectively enlarge the field of view of filters
without increasing the number of parameters or the amount of computation[2]. The method
adds ’'holes’ to the convolution filter mask to better model the relationship between distant
pixels. With our dataset, we fine-tune the ACNN network to produce the initial per-pixel
probability score map from the input eye region RGB image. Note that at this stage, the
entire eye region (which contains both left and right eyes) are fed to the ACNN. Because
the shape and orientation of left and right eyes are highly correlated, the correlation can
be learned and exploited by ACNN to produce good score map for both eyes when face is
not in a frontal position so that one eye is more blurry/smaller than the other. Since the
boundaries of the sclera and the iris were too blur to accurately be segmented, a CRF was
utilized at the end of ACNN as post-processing in order to sharp boundaries. The procedure
of the experiment is as Figure 5.
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Figure 5 Flowchart of deep model methodology.
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Figure 6 Evaluation of all models.

5 Experiments

In this section, we evaluated deformable model-based methods and deep models according
to two criteria: (a) the performance of holistic, iris-only and sclera-only segmentation; (b)
robustness through comparing performances of frontal faces and non-frontal faces. Perform-
ances of landmark and deep models are evaluated in Figure 6. It is obvious that performances
of deep models on holistic eye and iris-only segmentation were better than deformable models.
For VGG-16 and ResNet101, ResNet101 performed better than VGG16, since ResNet101
has larger size of architecture in order to gain wispy features of the eye. On the other
hand, in sclera-only segmentation, the performance of ResNet101 was relatively worse than
other methods, because the dataset we built was not big enough for large-scale ResNet101.
Meanwhile, the overfitting was happened during ResNet101 training.

According to Figure 7 in appendix, the segmentation of profile faces is worse than frontal
faces. Even so, deep segmentation models still got higher performances than deformable
models on profile faces. On another aspect, the accuracy reduction of deep models is milder
than deformable methods, which means that deep models are more robust than deformable
methods under pose variation. Theoretically, for non-frontal faces, the face shape and texture
need to be transformed further than frontal faces during predictions of deformable methods,
so that it is difficult to find optimized local minimum from image intensity space. With
inaccuracy initializations, non-frontal faces are still challenges for landmark tracking. On the
other hand, the baseline methods we utilized in this research aims to evaluate the availability
of our dataset, meanwhile, the performance of experiments provide a preliminary research on
low-resolution eye segmentation. Although methods above are widely-used and may not be
state-of-art currently, it is enough for us to present the effectiveness of our dataset. Therefore,
this research indicates: (a) eye segmentation research can reasonably work on our dataset; (b)
deep models are more potential for eye segmentation compared with deformable model-based
methods.
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6 Conclusion

In conclusion, there are two contributions in this research. Firstly, we proposed a new
dataset for low-resolution eye segmentation. Our dataset provides two types of ground truths:
30-point landmarks and pixel-level ground truth. In terms of contents, the dataset contains
frontal and non-frontal faces in low resolution of eye region, under variant illuminations
and with/without glasses. Secondly, in order to evaluate the usability of our dataset and
provide a preliminary eye segmentation investigation on low-resolution eye segmentation,
we applied deformable model-based methods (AAM, SDM and ERT) and deep semantic
segmentation models (VGG16+CRF and ResNet1014+CRF) as baseline methods. According
to the ROC curves of IOU accuracy, deep models got a better robustness than deformable
methods. Moreover, especially for non-frontal faces, performances of deep models can adapt
head poses variation. Otherwise, our dataset can be utilized for iris-only and sclera-only
segmentation. Based on experiments, deep models got better performances on our dataset
as well. Therefore, this research indicates that researchers can put more efforts to use deep
segmentation methods instead of deformable model-based methods in eye segmentation task.
Otherwise, existed models did not consider the shape refinement and shape prior of the
eye, thus in future researches plugging in shape prior and post-processing shape model can
extremely improve segmentation performance.

—— References

1 Michael Chau and Margrit Betke. Real time eye tracking and blink detection with usb
cameras. Technical report, Boston University Computer Science Department, 2005.

2 Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834-848, 2018.

3  Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. Active appearance models.
IEEE Transactions on Pattern Analysis € Machine Intelligence, pages 681-685, 2001.

4 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

5 Bruce M Hood, J Douglas Willen, and Jon Driver. Adult’s eyes trigger shifts of visual
attention in human infants. Psychological Science, 9(2):131-134, 1998.

6  Huaizu Jiang and Erik Learned-Miller. Face detection with the faster R-CNN. In Automatic
Face & Gesture Recognition (FG 2017), 2017 12th IEEE International Conference on, pages
650-657. IEEE, 2017.

7 Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an ensemble of
regression trees. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1867-1874, 2014.

8 Marc Lalonde, David Byrns, Langis Gagnon, Normand Teasdale, and Denis Laurendeau.
Real-time eye blink detection with GPU-based SIFT tracking. In Computer and Robot
Vision, 2007. CRV’07. Fourth Canadian Conference on, pages 481-487. IEEE, 2007.

9  Vuong Le, Jonathan Brandt, Zhe Lin, Lubomir Bourdev, and Thomas S Huang. Interactive
facial feature localization. In FEuropean conference on computer vision, pages 679-692.
Springer, 2012.

10  Yuezun Li, Ming-Ching Chang, Hany Farid, and Siwei Lyu. In Ictu Oculi: Exposing Al
Generated Fake Face Videos by Detecting Eye Blinking. arXiv preprint arXiv:1806.02877,
2018.

77

ICCSW 2018



7:8

The iBUG Eye Segmentation Dataset

11

12

13

14

15

Peter Peer. Cvl face database. Computer vision lab., faculty of computer and information
science, University of Ljubljana, Slovenia. Available at http://www. lrv. fri. uni-lj. si/facedb.
html, 2005.

Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kossaifi, Georgios Tzimiropoulos,
and Maja Pantic. The first facial landmark tracking in-the-wild challenge: Benchmark
and results. In Proceedings of the IEEE International Conference on Computer Vision
Workshops, pages 50-58, 2015.

Brian A Smith, Qi Yin, Steven K Feiner, and Shree K Nayar. Gaze locking: passive eye
contact detection for human-object interaction. In Proceedings of the 26th annual ACM
symposium on User interface software and technology, pages 271-280. ACM, 2013.
Qi-Chuan Tian, Quan Pan, Yong-Mei Cheng, and Quan-Xue Gao. Fast algorithm and
application of hough transform in iris segmentation. In Machine Learning and Cybernetics,
200/. Proceedings of 2004 International Conference on, volume 7, pages 3977-3980. IEEE,
2004.

Xuehan Xiong and Fernando De la Torre. Supervised descent method and its applications
to face alignment. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 532-539, 2013.



B. Luo, J. Shen, Y. Wang, and

proportion

front vs profile faces (holistic eye with AAM)

— front face

— profile face

oo 02 o o6 o8 10

(a) Holistic eye of AAM

proportion

front vs profile faces (holistic eye with ERT)

— front face

— profile face

oo 02 o o6 o 10

(d) Holistic eye of ERT

proportion

front vs profile faces (holistic eye with SDM)

— front face
— profile face

oo 02 o4 o o8 10

(g) Holistic eye of SDM

proportion

—
=

proportion

front vs profile faces (holistic eye with VGG-16)

— front face

— profile face

oo 02 04 o6 o8 10
error

j) Holistic eye of VGG-16

front vs profile faces (holistic eye with ResNet101)

— front face
— profile face

0o 02 04 o6 o8 10
error

(m) Holistic eye of ResNet101

o8

proportion

Pantic

front vs profile faces (iris with AAM)

— front face

— profile face

00 02 04 o6 o8 Lo

(b) Iris of eye of AAM

proportion

front vs profile faces (iris with ERT)

— front face
— profile face

00 02 04 o6 o8 Lo

(e) Iris of eye of ERT

proportion

front vs profile faces (iris with SDM)

— front face
— profile face

00 02 04 o6 o8 1o

(h) Iris of eye of SDM

proportion

front vs profile faces (iris with VGG-16)

— front face
— profile face

00 02 04 06 o8 10
error

(k) Iris of eye of VGG-16

proportion

front vs profile faces (iris with ResNet101)

— front face
— profile face

00 02 04 06 o8 10
error

(n) Iris of eye of ResNet101

proportion

front vs profile faces (sclera with AAM)

— front face

— profile face

0z o o6 o8 10

(c) Sclera of eye of AAM

proportion

front vs profile faces (sclera with ERT)

— front face

— profile face

02 o4 o6 o8 10

(f) Sclera of eye of ERT

proportion

front vs profile faces (sclera with SDM)

— front face
— profile face

02 04 o6 o8 10

(i) Sclera of eye of SDM

proportion

front vs profile faces (sclera with VGG-16)

— front face
— profile face

02 04 o o 10
error

(1) Sclera of eye of VGG-16

proportion

front vs profile faces (sclera with ResNet101)

— front face
— profile face

02 04 o6 o8 10
error

(0) Sclera of eye of ResNet101

Figure 7 Appendix: Robustness evaluation compared between profile and frontal faces.

7:9

ICCSW 2018



	Introduction
	Relative Works
	Data Description
	Baseline Methods
	Landmark Models
	Deep Segmentation Method

	Experiments
	Conclusion

