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Abstract

Automated analysis of facial expressions has been gaining significant attention over the

past years. This stems from the fact that it constitutes the primal step toward developing

some of the next-generation computer technologies that can make an impact in many

domains, ranging from medical imaging and health assessment to marketing and education.

No matter the target application, the need to deploy systems under demanding, real-

world conditions that can generalize well across the population is urgent. Hence, careful

consideration of numerous factors has to be taken prior to designing such a system. The

work presented in this thesis focuses on tackling two important problems in automated

analysis of facial expressions: (i) view-invariant facial expression analysis; (ii) modeling of

the structural patterns in the face, in terms of well coordinated facial muscle movements.

Driven by the necessity for efficient and accurate inference mechanisms we explore machine

learning techniques based on the probabilistic framework of Gaussian processes (GPs).

Our ultimate goal is to design powerful models that can efficiently handle imagery with

spontaneously displayed facial expressions, and explain in detail the complex configurations

behind the human face in real-world situations.

To effectively decouple the head pose and expression in the presence of large out-

of-plane head rotations we introduce a manifold learning approach based on multi-view

learning strategies. Contrary to the majority of existing methods that typically treat

the numerous poses as individual problems, in this model we first learn a discriminative

manifold shared by multiple views of a facial expression. Subsequently, we perform facial

expression classification in the expression manifold. Hence, the pose normalization problem

is solved by aligning the facial expressions from different poses in a common latent space.

We demonstrate that the recovered manifold can efficiently generalize to various poses and

expressions even from a small amount of training data, while also being largely robust to

corrupted image features due to illumination variations. State-of-the-art performance is

achieved in the task of facial expression classification of basic emotions.

The methods that we propose for learning the structure in the configuration of the

muscle movements represent some of the first attempts in the field of analysis and intensity

estimation of facial expressions. In these models, we extend our multi-view approach to

exploit relationships not only in the input features but also in the multi-output labels. The

structure of the outputs is imposed into the recovered manifold either from heuristically

defined hard constraints, or in an auto-encoded manner, where the structure is learned

automatically from the input data. The resulting models are proven to be robust to data

with imbalanced expression categories, due to our proposed Bayesian learning of the target

manifold. We also propose a novel regression approach based on product of GP experts

where we take into account people’s individual expressiveness in order to adapt the learned

models on each subject. We demonstrate the superior performance of our proposed models

on the task of facial expression recognition and intensity estimation.
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Chapter 1

Introduction

“Every face could become

spiritually beautiful through the

accurate rendering of his or her

emotions”

Duchenne de Boulogne

Contents

1.1 Problem Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Facial expressions convey emotions, provide clues about people’s personality and intentions,

reveal the state of pain, weakness or hesitation, among others. The study and understanding

of human facial expressions has been a long standing problem. The first reported scientific

research on the analysis of facial expressions can be tracked back to as early as 1862, when

Duchenne de Boulogne published the ‘Mécanisme de la physionomie humaine’ [49]. In his

study, influenced by the beliefs of physiognomy of the 19th century, Duchenne wanted to

determine how the muscles in the human face produce facial expressions. He believed that

the reading of the expressions alone could reveal an accurate rendering of the soul’s emotions.

Directly related to this belief is also the seminal work of Charles Darwin, who studied facial

expressions and body gestures in mammals [40]. Darwin explored the importance of facial

expressions for communication and described variations in facial expressions of emotions. The
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1. Introduction

goal of his work was to show how human expressions link human movements with emotional

states, and are genetically determined from purposeful animal actions. He was one of the first

who studied complex emotional states including self-attention, shame, shyness, modesty and

blushing, setting the foundations of the study of affect.

An influential milestone in the facial expression analysis, is the work of Paul Ekman [53].

According to Ekman, there exists a set of six basic emotions (anger, fear, disgust, happiness,

sadness and surprise) that can be globally encountered across populations of different cultures.

The latter suggests that these six basic emotions are not only universal in terms of expressing,

but also in terms of understanding them. This findings encouraged Ekman & colleagues to

deepen their studies in various works [55, 51, 56, 54, 52], which can be regarded as the beginning

of what we now call affect analysis. These works set the basis for describing and analyzing

facial expressions not only of emotions, but also of cognitive states, such as interest, boredom,

confusion, stress, etc. Emerging from these studies, there has been noted an ever growing

research attention towards the analysis of human affect in the past years, spanning the fields of

psychology, cognitive science and computer science. This increasing interest in recognizing and

interpreting the human emotion resulted in the birth of affective computing [145], which focuses

on the development of autonomous systems and devices, capable of simulating and analyzing

the human affect. The applicability of affective computing expands in various domains, from

medicine and psychology to security, covering numerous applications, such as human-computer

interaction, analysis of social behavior, pain monitoring and entertainment, among others [137,

190, 139, 13, 67].

In this thesis, inspired by the works in the field of affective computing, we explore and

propose various techniques based on machine learning and pattern recognition for analyzing

the human affect, and in particular, facial expressions. The remainder of the introductory

chapter is organized as follows. Firstly, in Section 1.1 we refer in more detail to the problem

space on which the thesis builds on, and in Section 1.2 we introduce the most commonly

encountered modeling challenges. We then describe in more detail our main contributions in

Section 1.3, and list the publications that stemmed from this work in Section 1.4. Finally, in

Section 1.5 we give the outline of the thesis.
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1.1. Problem Space

Input image Pre-processing

1) Face detection
2) Facial landmark
    localization
3) Face registration

Feature extraction
- Geometric features
- Appearance features
    Holistic / Local

Machine analysis
- Emotion recognition
- AU detection
- AU intensity estimation

Figure 1.1: A typical system for automated analysis of facial expressions. Given an input image, the
first step consists of pre-processing of the target image(s). Subsequently, we proceed to the feature
extraction. Different geometric and/or appearance features can be used, which are usually chosen
depending on the target task. The final step is machine interpretation of facial expressions.

1.1 Problem Space

1.1.1 Automated Analysis of Facial Expressions

The ultimate goal of affective computing is to build automated systems for analyzing and

simulating the human affect. This is usually attempted by trying to train the computer to

interpret facial motions and cues from visual information (i.e., video streams or images).

Although this seems a relatively easy task given the human’s ability to analyze facial expres-

sions with little effort, development of such a system is quite challenging and requires careful

design [139]. A typical system aimed toward automated analysis of facial expressions follows

the pipeline depicted in Fig. 1.1. This architecture is comprised of three basic steps. First

we need to determine whether a face exists and in which location in an input image. This

is the pre-processing step. After having correctly located the face, we proceed to the feature

extraction step. Finally, the extracted features serve as input to a machine learning algorithm

for analyzing the facial expression. Note that recently, a new kind of learning paradigm based

on deep learning, comes to challenge the above framework, e.g., deep convolutional neural

networks [100]. In such systems, the tree individual steps are normally combined into a single

learning procedure, in which, image registration, feature extraction and classification can be

performed jointly. Nevertheless, such an approach is out of the scope of this thesis, and hence,

in the following we give a brief description of each step from the pipeline depicted in Fig. 1.1.

Pre-processing

In order to extract features from facial images, the first step consists of three parts: (i)

detecting the face in a given image; (ii) determining the actual location of the face; (iii)

registering all faces in a common coordinate system. In what follows we briefly describe each

part.

Face Detection. As we have already mentioned above, the primal step toward achieving auto-

3



1. Introduction

mated facial expression analysis is the detection of the face in a given input image. This

is proven to be rather challenging, especially when dealing with imagery from real-world

conditions where we encounter numerous faces depicted in varying illumination conditions,

variations in the head pose, occlusions of key parts of the face, etc. The most widely used al-

gorithm for face detection is the Viola-Jones [191], which exhibits reliable performance on close

to frontal images. Extensions of [191] to multi-view facial detectors are reported in [213, 134].

Facial Landmark Localization. After having located the existence of a face in an input image,

a set of points has to be localized on the face. These facial landmarks are defined as distinctive

face locations, such as the corners of the eyes and mouth, contours of the eyebrows or tip of

the nose. The landmark points, when combined together in sufficient numbers define the face

shape. The process of landmark localization is quite complex and remains an active research

topic. It usually requires performing statistical analysis on well defined shape and texture

models in order to explain variations in both facial shapes and appearances. Based on these

models, novel shape instances can be generated and fitted in new face images. Well studied

methods for this purpose are the active appearance model (AAM) [32] and the constrained

local model (CLM) [10]. Note that the landmark localization step may be omitted in the case

only the texture of the face is required for the task at hand. However, it is most often required

since in most applications faces need to be spatially aligned and registered.

Face Registration. Prior to the feature extraction step we need to eliminate unwanted vari-

ations between the faces, such as differences scale / pose and location. This is achieved via

registering all facial images in a common coordinate frame. First, registration of the facial

points is performed, usually by applying the Procrustes analysis [73] to the set of face shapes,

in order to find a global affine transform. Typically, only the facial points not affected by

facial expressions (e.g., corners around the eyes and nose) are used to learn the transform,

which is then applied to all the facial points. The registration of the texture follows. This

can be performed by applying the learned global affine transform to the whole facial texture.

An alternative is to learn a piece-wise affine transform for the different facial parts and then

warp the facial texture to the reference frame. While the former may better preserve facial

expression details, the latter is better for reducing the subject differences.

Feature Extraction

Having processed the facial images, the next step consists of extracting the desired fea-

tures. The most common employed features can be categorized into geometric and appearance

based [201, 42].

4



1.1. Problem Space

Geometric features. As the name implies, geometric features are usually a collection of inform-

ation regarding the morphology of the face. The most widely used geometric representation is

the 2D Cartesian coordinates of certain points in the face, i.e., the aforementioned facial land-

marks. They are readily interpretable, and thus, they are especially attractive for behavioral

scientists, who can use them to derive rules for studying the meaning of expressions. The set

of facial landmarks can be enhanced by including angle- and distance-based representations,

in order to encode the configuration and geometric deformations of the human face.

Appearance features. Contrary to the geometric features, appearance-based features encode

the textural information of the face. Therefore, they can effectively capture changes in the face

caused by wrinkles, bulges, and furrows [87]. The original pixels of the facial image can be used

as an appearance descriptor. However, more advanced features have been proposed throughout

the years, which are more suitable for the of facial expression analysis. A set of commonly

used appearance features include the gradient-based descriptors, such as histograms of oriented

gradients (HOGs) [35] and scale invariant feature transform (SIFT) [113]. Another widely used

descriptor is the local binary patterns (LBPs) [131], which quantifies the relative information

between neighboring pixels. Feature sets borrowed from the signal processing community have

also been applied on expression analysis, such as the Gabor wavelets [108] and the discrete

cosine transform (DCT) [4]. In general, some of these features are better suited to represent

global appearance (e.g., Gabors and DCT), and hence, are extracted holistically from the

entire image. On the other hand, local descriptors, such as gradient-based features and LBPs,

are usually extracted from patches centered around the facial landmarks. Despite the plethora

of available appearance-based features, none of them can be regarded as a universal descriptor

that performs well in a variety of applications. Thus, the choice is usually made by weighting

the trade-off between accuracy, complexity and robustness to various transformations and

noise.

Machine Analysis of Facial Expression

After the extraction of the desired facial features, the final step involves the design and applic-

ation of machine learning algorithms in order to facilitate the analysis of facial expressions.

Different models and learning strategies have been proposed throughout the years, varying

from simple classifiers applied on the extracted features, to learning low-level dependencies

among the features based on some form of statistical analysis. A detailed overview of the

methods proposed for facial expression analysis is given in Chapter 2.

The work presented in this thesis falls in the final step of the system in Fig. 1.1. In particular,

5



1. Introduction

we propose different machine learning algorithms with the aim of addressing some of the most

commonly encountered problems in automated analysis of facial expressions. In the remaining

of the section, we elaborate on the particular characteristics of the facial expressions, which

should be considered prior to designing a machine learning algorithm. We then continue to

the following sections, by introducing the most commonly encountered modeling challenges,

and listing of our contributions.

1.1.2 Facial Expression Analysis: Emotions vs. Facial Action Units

In the pipeline described above, facial expressions can be described at different levels [177]. The

more prevalent approaches focus on identifying either the exact facial affect, or the activations

of facial muscles, named action units (AUs). According to [31] these orthogonal approaches –

referred to as message and sign judgment, respectively – are just different measurements for

facial expressions.

Automated analysis of facial expressions based on the message judgment tries to decode the

conveyed meaning, normally in terms of the six basic emotions, as described by Ekman [53].

The simplicity of this approach has attracted the interest of the majority of the works proposed

in the field [142]. However, in practice, categorizing all facial expressions as basic emotions

is of limited applicability. Displaying of a certain facial expression does not necessarily mean

that the person is actually experiencing the associated emotion. An illustrative example is the

smiley expressions which can appear in moments of both happiness and embarrassment [6].

Apart from the ambiguity between the facial expressions and the underlying emotion there is

another discouraging factor for the use of the message judgment measurement. According to

the recent study of [47] people usually display compound emotions. Compound emotions are

those that can be constructed by combining basic component categories to create new ones.

For instance, a happily surprised expression, which we frequently use when we randomly bump

into someone loved on the street, is a combination of happiness and surprise. There are many

more compound categories that involve combination of different emotions. This suggests that

the message judgment approach, which assumes the existence of a set of mutually exclusive

classes of emotions, is not well suited for the particular task. Perhaps a more viable option

would be to examine the facial muscle movements that are observed in the underlying facial

expression.

Toward this direction, the approach that employs the sign judgment relies on identifying the

correct facial muscle configuration that is responsible for producing the displayed expression.

To describe the possible configurations, the facial action coding system (FACS) [54] defines 32

6



1.1. Problem Space

2. Affect Sensing: Background & the State-of-the-art

2.3.1 Visual Modality

Facial Expressions

In order to model the multiple, complex human facial expressions, Ekman and Friesen de-

veloped the Facial Action Coding System (FACS) [72] in 1978. This model provided a tax-

onomy of facial expressions, and is widely accepted as a de-facto standard utilised in order to

categorise the facial expressions of emotions. Based on Carl-Herman Hjortsjö’s book on the

anatomy of facial features [104], the FACS model consists of 32 atomic facial muscle actions,

(Action Units, AUs), which in turn represent the contraction or relaxation of one of the facial

muscles (Fig. 2.4). An important advantage of the FACCS model is that the annotation of

facial expressions is moved away from a subjective, personal interpretation of the annotator to

an objective representation of human expressions, which is observer-independent - although

usually an expert is required to correctly identify the activated facial muscles and thus, the

activated AUs. A list of facial AUs can be found in Fig. 2.3.

Figure 2.3: Facial Action Units (AUs), with 9 AUs for the upper face and 18 for the lower,
containing images from [72] and [189]. Figure adapted from [214].

Body & Gestures

Researchers have long attributed the expression of emotional states through body movement

and bodily gestures (e.g. [100, 3, 167]), originating from the work of Darwin on the description

of animal and human emotion expression. Various research has also supported that emotional

states can be disambiguated via analysing body expressions [259], while also indicating that a

better appreciation of emotional states can be achieved by analysing the entire body. In some

limited cases, studies have shown that body gestures can be as significant as voice and facial

expression modality [47]. There has been research in combining posture and body information

44

Figure 1.2: Facial action units (AUs), with 9 AUs for the upper face and 18 for the lower, containing
images from [54]. Figure adapted from [150].

unique, non-overlapping, visually detectable facial muscle activations, i.e., the AUs. 9 Out of

the 32 AUs are defined for describing the upper face, 18 for the lower face, while the rest cannot

be exclusively attributed to either. A list of facial AUs can be found in Fig. 1.2. Furthermore,

FACS encodes several categories of head/eye positions and other movements, which can be

used to describe miscellaneous actions. FACS also defines rules for scoring the intensity of

each AU in the range from absent to maximal intensity on a six-point ordinal scale. This, in

turn, is critical for high-level interpretation of facial expressions.

Up until recently, the dominant approach toward the facial expression analysis was the

message judgment. However, since every possible facial expression can be described as a

combination of different AUs, the research trend has been shifted toward automated analysis

of AUs, i.e., the sign judgment approach. For instance, the FACS has been used to teach

children on the autism spectrum to produce facial expressions [72], to demonstrate differences

between polite and amused smiles [6], as well as voluntary and evoked expressions of pain [56].

In this thesis we first start by employing the message judgment approach, and then continue

by proposing techniques for the analysis of AUs.

1.1.3 Posed vs. Spontaneous Expressions

An important factor that should also be considered during the design of an automated system

for facial expression analysis is the difference in the elicitation and the origin of the expressions.

Based on these criteria, facial expressions can be described as either posed or spontaneous ex-

pressions. Posed expressions are usually collected from trained actors or random subjects that

were requested to exhibit a particular facial expression, e.g., disgust, while being recorded in a

well constrained laboratory environment. On the other hand, spontaneous expressions are cap-

tured on real-world conditions, and appear involuntary on the subject’s face to communicate

the elicited emotion.
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1. Introduction

The core differences between posed and spontaneous expressions have been extensively stud-

ied in psychology and cognitive science [52, 56], where it has been found that they are controlled

from different areas in the brain. In particular, deliberate facial activities originate mostly in

the motor strip of the neocortex, whereas the less voluntary facial movements are initiated in

the sub-cortical part of the brain. These neuroanatomical indications suggest that different

activation patterns of the facial muscles are involved in the formation of posed and spon-

taneous expressions. A well studied paradigm is the different AUs that are present in facial

expressions of spontaneous and fake smiles. In genuine smiles (or ‘Duchenne smiles’) the asso-

ciated facial expression is composed by the combination of AU12 (‘lip corned puller’) and AU6

(‘cheek raiser’). On the other hand, expressions of deliberate smiles can be usually described

only from the presence of AU12. Apart from the AU co-occurrence patterns, the nature of the

facial expressions significantly affects the intensity and the duration of them. In general, spon-

taneously displayed facial expressions are characterized by synchronized and smooth muscle

movements, contrary to the less smooth posed expressions [139]. Moreover naturalistic expres-

sions are usually more subtle and involve large out-of-plane head movements [116]. Hence,

it is not surprising that the performance of automated systems that are developed based on

posed facial displays is expected to downgrade when applied to spontaneous expressions, a

fact which constitutes them inapplicable to real-world situations.

Lately, due to the availability of appropriate datasets, the research community have shifted

their attention toward designing systems for automated analysis of spontaneous facial expres-

sions [15, 122]. In particular, a lot of studies focus on discriminating spontaneous from posed

facial behavior, such as in expressions of smile [187] or pain [111]. Despite the significant

progress that has been made, there is still space for improvement. This can be achieved by

developing new methodologies and learning strategies that specifically tackle the challenges

that arise when dealing with spontaneous facial expressions (e.g., variations in head pose, illu-

mination conditions, co-occurrence patterns etc.). The models that we propose in this thesis

try to address some of those challenges.

1.2 Challenges

The machine analysis of facial expressions is challenging mainly due to the complexity and

subtlety of human facial behavior, as well as individual differences in expressiveness and vari-

ations in head-pose, illumination, occlusions, and so on [139]. In this section, we introduce

a set of rising challenges in the field, in order to facilitate later discussions on the practical

contributions of our work.
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1.2.1 Multiple Views

The focus of the research during the past years was on imagery in which the depicted per-

sons are relatively still and exhibit posed expressions in a nearly frontal pose [201]. However,

many real-world applications relate to spontaneous interactions (e.g., meeting summarization,

political debates analysis, etc.), in which people tend to move their head while being recorded.

Furthermore, depending on the camera position, facial images can be captured from multiple

views. These variations in head pose and/or view angle have an adversary impact on the ana-

lysis of facial expressions. First of all the head pose is responsible for violating the symmetry

of the face, and under extreme rotations it can lead to self-occlusions, i.e., certain parts of the

face are not visible. Thus, the characteristics of the face, on which we rely in order to perform

facial expression analysis, are being distorted in the presence of arbitrary views. Hopefully,

this can be rectified due to the well-known symmetry of the face. However, the main challenge

is to decouple the rigid facial changes – due to the head pose – and the non-rigid facial changes

– due to the expression – as they are non-linearly coupled in 2D images [216]. Another factor

that needs to be addressed when dealing with multi-view, and especially corresponding data

(e.g., security cameras in a monitored environment), is the redundancy of the information,

and the variations in the illumination conditions. For instance, according to recent studies

in the field [138], it is shown that the left hemisphere of the face is more informative when

it comes to expressing negative emotions (e.g., Disgust), while the right hemisphere is more

informative for positive emotions (e.g., Happiness). However, such assumptions are not ex-

pected to strictly hold when the two hemispheres are exposed to different illumination. The

lighting conditions may significantly affect the appearance of the face, e.g., light shadows may

be confused with wrinkles, which imply the presence of facial deformations associated with

certain expressions. This can lead, not only automated systems but humans also, to falsified

deductions regarding the displayed expression. The above challenges exemplify the need for

effectively exploiting the information from multiple views in order to facilitate the expression

analysis. Thus, accounting for the fact that each view is just a different manifestation of the

same underlying facial expression related content, multi-view analysis is expected to result in

more effective models for the task at hand.

1.2.2 Multiple Modalities

As we have seen the analysis of facial expression can be carried out by using either geometric or

appearance-based features. The geometric features capture changes in the location of specific

salient facial points caused by facial muscles activity (e.g., facial points displacement between

9
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expressive and expressionless faces [114]). On the other hand, the appearance-based features

capture transient differences in the facial appearance such as wrinkles, bulges and furrows.

While the former are more robust to illumination and pose changes, not all AUs can be

detected solely from the geometric features [189]. For example, the activation of AU6 wrinkles

the skin around the outer corners of the eyes and raises the cheeks, which makes it difficult, if

not impossible, to detect this AU from facial landmarks only. On the other hand, raising of the

eye brows, i.e., AU1,2, can effectively be explained from the geometric deformations of the face

shape. Apart from the different characteristics of the employed features there are also other

factors that have to be taken into consideration. Geometric features are highly dependent on

the underlying tracking algorithm, and hence, different algorithms can produce inconsistent

face shapes. Appearance-based features are typically high-dimensional and contain subject-

specific information, both of which can adversely affect the performance of the expression

analysis. A fused model should be able to effectively handle two different situations. First,

to isolate corrupted data, commonly arising in spontaneous, real-world scenarios. This should

apply even in cases where the corruptions are not spread evenly across the modalities, e.g.,

noisy appearance features due to illuminations or occlusions, compared to the unaffected

geometric features. Second, the relevance of each modality should be automatically determined

by the model, regarding the target task.

1.2.3 Structural Patterns in Expressions

Interpreting the facial expression in terms of basic emotions is straightforward since a single

label can be assigned to an input facial image. On the other hand, AUs rarely appear in

isolation, and thus, determining the AU configuration in a facial expression is a far more

difficult task due to the large number of possible combinations (more than 7,000, especially in

spontaneous data) [159]. This constitutes the AU analysis a multi-label problem, in the sense

that multiple AUs can be active, and in different intensities, within a single image. For this

reason, contrary to the prevalent approach of treating each AU independently [189, 139], the

AU analysis can be improved at the model level by exploiting the ‘semantics’ of AUs, in terms

of their co-occurrences. An illustrating example is the case where the activations of certain

AUs are driven based on latent factors, such as emotions. For instance, the co-occurrence of

AU12 and AU6 signals the facial expression of smiles that are related to joy. On the other

hand, expressions where AU12 occurs alone are associated with fake smiles, as in situations of

sarcasm. Also, the co-occurring AUs can be non-additive, in the case of which one AU masks

another, or a new and distinct set of appearances is created [54]. For example, AU4 (brow

lowerer) appears differently depending on whether it occurs alone or in combination with AU1
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(inner brow raise). When AU4 occurs alone, the brows are drawn together and lowered. In

AU1+4, the brows are drawn together but are raised due to the action of AU1. This, in turn,

significantly affects the appearance features of the target AUs.

Modeling of the co-occurrences is also beneficial when scoring the intensity of the AUs,

apart from their presence/absence. For instance, the criteria for intensity scoring of AU7 (lid

tightener) are changed significantly if AU7 appears with a maximal intensity of AU43 (eye

closure), since this combination changes the appearance as well as timing of these AUs [151].

These co-occurrences are usually driven by the context in which the target facial behavior

occurs (e.g., pain or joy). Encoding this type of information during the joint AU analysis

helps to reduce the space of possible AU combinations in target data, resulting in simpler and

more effective models for the joint prediction. The importance of this can be understood better

by comparing the joint analysis with individual AU models. In the latter case, to effectively

address the problem, one needs to train separate models not only for each AU, but also

for each non-additive combination at different intensity levels. However, joint AU analysis

is not always expected to be superior to the individual modeling. For instance, different

co-occurrence patterns can be encountered among the data, depending on the participants

and the context of the employed datasets. This gives rise to another important challenge,

which is related to the contextual information in the data, and, should be carefully examined

individually.

1.2.4 Context-Specific Attributes

People do not follow a universal pattern when trying to interpret the facial expressions of

others. Normally, the human brain analyzes various factors (not only the displayed facial

expression), prior to making the decision. Perhaps the most influential factor is the knowledge

of the person that performs the particular facial expression. It is well understood that people

gesticulate in different ways. For instance, extrovert people are often smiling at higher intens-

ities compared to an introvert person. Apart from the personality traits, age can also affect

the appearance of the face. Elder people normally carry wrinkles around the corner of the

eyes, without necessary performing the action of cheek raising, i.e., AU6. Furthermore, know-

ledge of the stimulus (e.g., whether someone is watching a comedy film or a football game)

is another of many factors that can influence the meaning of the displayed facial expressions.

To summarize the key aspects of the context in which the facial expressions occur, the au-

thors in [141] suggested the W5+ context model. In such a model all the contextual factors

can be considered by answering the questions: who (the observed subject), when (the timing

11



1. Introduction

of the phenomenon), where (the environmental characteristics, e.g., view angle, illumination

etc.), why (the stimulus), what (the task related cues), and how (they way the expression

is conveyed, e.g., by means of intensity levels or activated AUs). Thus, by accounting for

(some of) these factors we can achieve a more reliable analysis of facial expressions. However,

the majority of the existing works in the literature rely on generic models. These models

are expected to generalize well when applied to data recorded within specific contexts. Nev-

ertheless, due to possible variations in these contextual dimensions, especially when dealing

with uncotrolled spontaneous data, the performance of these generic approaches is expected

to downgrade largely when applied to previously unseen data [68]. Ideally, a proper model

for facial expression analysis should take into account all the above contextual factors during

training. However, due to the lack of appropriate data, such an approach is not feasible. A

more reasonable solution would be to develop mechanisms that can adapt the learned models

to the context of the examined situation. As a first step toward this direction, in this thesis

we propose a domain adaptation approach that can be used to adapt the context questions

who (subject) and where (view) during test time.

1.3 Contributions

In this section we describe in more detail the main technical contributions of our thesis and

we relate them to the aforementioned challenges. For all our proposed models we build upon

the Gaussian process framework [146] and introduce novel extensions and learning strategies

in order to efficiently deal with the analysis of facial expressions. We use this non-parametric

probabilistic framework as a basis for our models because it is particularly suited for learning

highly non-linear mapping functions that can generalize from a small amount of training data.

Although the proposed methodologies have been developed having a specific task in mind,

they can be applied to various problems with similar settings, without loss of generality.

• Chapter 4. Multi-view analysis of facial expressions. The first problem that we

address in this thesis is the multi-view analysis of facial expressions. For this pur-

pose we introduce the discriminative shared Gaussian process latent variable model

(DS-GPLVM) for multi-view and view-invariant facial expression classification of basic

emotions. The proposed DS-GPLVM is the first approach that exploits the multi-view

learning strategy in order to align facial expressions from multiple poses on a common

non-linear manifold. To achieve this, we use the notion of Shared GPs [167, 50] to

generalize discriminative GP latent variable models [183, 212] to multiple observation
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spaces. Hence, in DS-GPLVM the discriminative information is shared among the views.

Consequently, classification of facial expressions from under-performing poses is largely

improved on the shared manifold. In the proposed DS-GPLVM we can efficiently handle

large number of views due to our proposed learning scheme. We first split the training

into different sub-problems (one for each view), and then optimize each sub-problem

separately. Finally, we demonstrate that the proposed DS-GPLVM is applicable to a

variety of tasks (multi-view classification, multiple-feature fusion, pose-wise classifica-

tion, etc.), a fact which makes it a complete framework for multi-view analysis of facial

expressions.

• Chapter 5. Joint feature fusion and AU detection. Although the method pro-

posed above is quite general, it has two main limitations: (i) the emotion classifier is

learned independently from the manifold; (ii) it cannot handle multiple labels in the

output, hence, it is not appropriate for facial expression analysis based on AU detection.

To ameliorate this, we propose a multi-conditional latent variable model (MC-LVM)

that performs simultaneously the fusion of different facial features and joint detection

of AUs. One of the key novelties of the proposed model is that the MC-LVM is derived

in a fully Bayesian multi-conditional formulation, and combines the merits of both the

generative and discriminative probabilistic models, by merging the framework of shared

GPs (feature fusion) with logistic classifiers (AU detection). This property, makes the

MC-LVM more flexible on generalizing to new data, while also being less susceptible to

overfitting. The structure from the output labels is integrated into the manifold through

newly introduced constraints during the model learning. Topological constraints encode

local dependencies (from image pairs) among multiple AUs, while relational constraints,

enforce the AU co-occurrences of the model predictions to match those of the target la-

bels. We experimentally show that such constraints play an important role in increasing

the discriminative power of the learned manifold, resulting in improved (average) detec-

tion performance. MC-LVM is one of the first approaches for multiple AU recognition

that jointly performs facial feature fusion and AU detection, via manifold learning.

• Chapter 6. Feature fusion and AU intensity estimation. Although the MC-LVM

can effectively deal with multiple labels in the output, it cannot model the intensity of

the facial AUs. Moreover, the structure of the co-occurring AUs is learned from heuristic

constraints. We address these limitations by: (i) explicitly modeling the ordinal nature

of the AUs and (ii) learning the desired structure directly from the data. Specifically, we

propose the variational GP auto-encoder (VGP-AE), which is composed of a probabilistic
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GP encoder, used to fuse multiple observed features onto a latent space, and a GP

decoder, used for their reconstruction. Inference of the proposed VGP-AE is performed

in a fully Bayesian framework, where the recovered latent representations are further

endowed with the ordinal output labels. In this way, we seamlessly integrate the ordinal

structure into the recovered manifold while attaining robust fusion of the input features.

The fully probabilistic nature of our auto-encoder allows us to explicitly model the

uncertainty in the projections onto the learned manifold. This results in learning a well

regularized latent space with good generalization abilities. Furthermore, VGP-AE is the

first approach that achieves simultaneous fusion of multiple input features and joint AU

intensity estimation in the context of facial behavior analysis.

• Chapter 7. Domain adaptation for facial expression analysis. The last challenge

that we introduced in the previous section is the modeling of context-specific attributes,

such as the different levels of expressiveness encountered across the population. To ad-

dress this challenge, we use the notion of domain adaptation to perform view and subject

adaptation, for expression classification of basic emotions and AUs. In particular, we

generalize prior work on GP experts [43, 25], and introduce domain-specific GPs as local

experts for the task of facial expression analysis. We facilitate the adaptation of the clas-

sifier in a probabilistic fashion by conditioning the target expert on the predictions from

multiple source experts. Our proposed GP domain experts (GPDE) is the first approach

that exploits the variance in the predicted expression in order to utilize a measure of con-

fidence for weighting the contribution of each expert. This results in learning a confident

classifier that minimizes the risk of potential negative transfer (i.e., the adapted model

performing worse than the model trained using the target data only). Furthermore, this

is the first work in the field of facial behavior modeling that can simultaneously perform

adaption to multiple AUs. As we demonstrate in the experiments in Chapter 7 the

proposed GPDE can effectively perform adaptation of 12 AUs simultaneously, and out-

performs generic and person-specific classifiers, while using as few as 50 target examples.

The latter is of remarkable importance, since the annotation of several AUs is a time

demanding and tedious task, which can be performed only from well trained personnel.

1.4 Publications

The work presented in this thesis has resulted in the following list of publications:

• International Conferences
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main Experts for Modeling Facial Affect. IEEE Transactions on Image Processing

(TIP). Submitted – under revision.
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1.5 Thesis Outline

The rest of the thesis is structured as follows. In Chapter 2 we review the related literature

and pay particular attention to the existing machine learning models that have been proposed
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for facial expression analysis. In Chapter 3 we briefly present the basics behind the framework

of GPs. Subsequently, in Chapter 4 we introduce the proposed discriminative shared Gaussian

process latent variable model (DS-GPLVM) to address the problems of multi-view and view-

invariant facial expression classification of basic emotions. Chapter 5 introduces the multi-

conditional latent variable model (MC-LVM) for joint facial action unit detection and feature

fusion. In Chapter 6 we introduce the variational Gaussian process auto-encoder (VGP-AE)

for intensity estimation of facial action units. Chapter 7 introduces our Gaussian process

domain experts (GPDE) for view and subject adaptation for analysis of facial expressions.

Finally, we conclude the thesis in Chapter 8.
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Chapter 2

Machine Analysis of Facial

Expressions: state-of-the-art

Contents

2.1 Multi-view and View-invariant Facial Expression Recognition . . . . . . . . 20

2.2 Joint Action Unit Detection and Intensity Estimation . . . . . . . . . . . . 22

2.3 Domain Adaptation for Personalized Analysis of Facial Expressions . . . . 26

2.4 Relation to Our Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

To date, the majority of the works in the area of facial expression analysis deal with imagery

where the subjects are depicted in a (nearly) frontal head pose. Depending on whether they

take into account the temporal information of the expression, they can be divided into static

and dynamic approaches. The former, typically employ static multi-class classifiers such as

rule-based classifiers [20, 143], artificial neural networks (ANN) [136, 176], support vector ma-

chine (SVM) [14, 163], Bayesian networks (BN) [30], k-nearest neighbors (kNN) [117], among

others. Their main goal is to classify an input image into one of six basic expression categories

(sometimes the neutral facial expression is considered as an additional expression category), on

frame-by-frame basis. The approaches that deal with the dynamic classification of the facial ex-

pressions are mainly based on hidden Markov models (HMMs) [135, 133, 197, 110, 189, 164, 30].

Their main goal is to isolate the segments in the video sequence that contain a facial expres-

sion and perform the emotion recognition within these segments. The common drawback of

the aforementioned methods (both static and dynamic) is their inability to operate on off-

frontal poses. This modeling practice –mainly driven due to data unavailability in the past–

can lead to effective classifiers, yet with limited applicability. Their usage is constrained to

applications where the subject is always facing towards a camera, e.g., video conferences,
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online gaming, etc. However, in real-world scenarios (video summarization, security and sur-

veillance, etc.), we frequently observe spontaneous human-to-human interactions, where the

participating subjects perform large out-of-plane head rotations. Hence, in the aforementioned

situations, learning only from frontal images would result in degraded performance.

The same modeling practice (e.g., frontal/single view analysis) is also observed in the AU-

related literature. Again, the main reason for this is the complete lack of data with AU

annotations from corresponding views. However, there is another source of variation in the

input facial images that can be treated in a multi-view manner. The term view can, more

broadly, refer to any possible descriptor of a given image. Hence, different feature repres-

entations, i.e., geometric- and appearance-based features, can be regarded as multiple views.

By combining the information of the various features (i.e., feature fusion), within the no-

tion of multi-view learning, we can possibly derive more powerful feature representation.

Note that different AUs are better explained from different type of features. For instance,

the deformations on the shape caused by the raising of the eyebrows (i.e., AU1,2) can ef-

fectively described from geometric features. On the other hand, bulges and wrinkles that

appear in the face due to the action of cheek raising (i.e., AU6) are better captured from

appearance-based features. Despite that, most of existing approaches for AU analysis use a

single type of features; either representing the geometry [151, 189, 90, 12, 179, 140] or the

appearance [91, 156, 28, 26, 158, 119, 111, 16] of the face deformations. Lately, some works

proposed to combine the information from various features by either concatenating them into

one single vector, i.e., early fusion [114, 194, 118, 215], or by combining the results of separate

classifiers trained on each modality, i.e., decision-level fusion, [115, 92]. More appropriate

solutions for fusing the input features have also been proposed under the framework of mul-

tiple kernel learning (MKL) [162, 125]. In all these works it was shown that the fusion of the

features was beneficial for the detection of the majority of the AUs. Thus, the improvement in

the results suggests that the analysis of facial AUs could further benefit by following a proper

multi-view learning strategy.

Another worth exploring area for advancing the facial expression analysis is the relations

among the AUs. Several AUs commonly co-occur in a facial expression in order to com-

pose a single basic emotion (e.g., the co-occurrence of AU6+12 or AU6+12+25 in full-blown

spontaneous smiles). This implies that the analysis of facial AUs is a multi-label problem

compared to the multi-class nature of the basic emotions. However, the majority of the

existing works, so far, attempted to recognize AUs or certain AU combinations independ-

ently [114, 115, 14, 119, 189, 99]. Hecne, they resolved to construct indepedent classifiers
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for each input featue, while ignoring completely the multi-label nature of the problem. For

instance, [14] applied independent Adaboost classifiers on the extracted Gabor features from

the facial images. Similarly, the authors in [119] encoded the Gabor appearance features into

a sparse dictionary of facial images. Yet, this work focused on the detection of certain AU

combinations as different classes, instead of recognizing the activations of independent AUs.

The authors in [114, 115] employed the SVM classifier to evaluate the performance of the

AU detection task for different input features. For the purposes of such comparison, the au-

thors used geometric features based on the landmark locations of a 2D AAM, and appearance

features based on raw pixel intensities from the warped facial images. There are also works

that employed variants of dynamic Bayesian networks (DBN) (mainly applied on appearance

Gabor features) in order to account for the temporal dynamics during the AU detection task.

Representative are [99, 189] that used HMMs in combination with GentleBoost and SVM

classifiers.

The same strategy is followed even in the more recent works that study the problem of

AU intensity estimation. The AU intensity is modeled independently via classification [118,

122, 151, 125, 186] or regression [158, 92, 89, 93] techniques. While the classification methods

(normally based on support vector classification (SVC) [33] and conditional random fields

(CRF) [104]) seem to be a natural choice to handle the problem, they often struggle from

inconsistent results, since they completely ignore the discrete, yet ordinal, state of the labels

(missclassification between different states are equally penalized). On the other hand, modeling

the intensity levels on a continuous scale, like the regression based methods (e.g., support

vector regression (SVR) [169]), is sub-optimal due to the fact that the various intensities span

on a different range [54].

Regardless of the addressed problem (i.e., detection or intensity estimation) or the modeling

technique (e.g., regression, classification, temporal modeling), none of the above methods

takes into account the dependencies among the AUs. Hence, they ignore to model any co-

occurrence structure between the outputs, which may result in low performance when data

from certain AUs are scarce. Another common limitation of all these works is that they rely

on generic classifiers. With the term generic we refer to simple classifiers that are trained

on all available data which are assumed to encode all possible variations of the population.

Hence, the performance of these classifiers is expected to degrade when applied to previously

unseen data [68]. Such a scenario is the case when we try to infer the facial expression of a new

subject, whose level of expressiveness varies significantly compared to the training subjects.

These individual differences among subjects have mainly been tackled by accounting for the
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subject information at the training stage. Specifically, the original feature set is extended

by adding the subject-specific features [151], or by building person-specific classifiers [188].

Although these approaches showed improvement over generic classifiers, their main limitation

is that for building personalized classifiers, access to an adequate collection of images of the

target person is essential.

In the remaining of this chapter, we first review existing approaches for multi-view facial

expression recognition of the basic emotions, and then proceed to methods for joint AU detec-

tion and intensity estimation. We then review approaches for personalized analysis of facial

expressions. Lastly, we relate those works to the methods proposed in this thesis.

2.1 Multi-view and View-invariant Facial Expression

Recognition

The first step towards rectifying the limitations of the frontal-based analysis of facial expres-

sions had been achieved by the collection of more appropriate data, acquired from multiple

views (e.g., the BU-3DFE [193] and MultiPIE [76] datasets). Subsequently, several approaches

have been proposed recently for the multi-view facial expression recognition of six basic emo-

tions. Based on how they deal with variation in the head-pose (view) and expressions in 2D

images, they can be divided into: (i) pose-wise, (ii) pose-independent and (iii) pose-normalized

models. The methods from the first category treat each view as a separate problem. Hence,

different models are trained independently per view. On the other hand, the approaches from

the second group operate on a completely orthogonal direction. A universal model is learned

from data from multiple views. Finally, the methods from the third group attempt to learn

a mapping between frontal and non-frontal images, in order to normalize the pose before the

classification task.

Pose-wise facial expression recognition. A representative of the first group is [127],

where the authors used local binary patterns (LBPs) [131] (and its variants) to perform a

two-step facial expression classification. In the first step, the colsest head-pose to the (dis-

crete) training pose was selected via the SVM classifier. Once the view was obtained, the

task of facial expression recognition was handled via another set of pose-specific SVM clas-

sifiers. This approach was evaluated on synthetic images generated from BU-3DFE at five

yaw angles (0◦ – 90◦), and posed expressions from MultiPIE at seven yaw angles (0◦ – 90◦).

In [86], the performance of different appearance features (SIFT, HOG, and LBPs), extrac-

ted from synthetic images from BU-3DFE, was tested under 5 yaw angles (0◦ – 90◦). The
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various features were extracted around the locations of characteristic facial points, and were

used as input to train pose-specific kNN classifiers. An important outcome of [86] was the

experimental proof that the two-stage multi-view facial expression recognition performed bet-

ter than considering all the combinations between available views and emotions as separate

classes. Motivated by these results, the authors in [85] evaluated the performance of different

classifiers on the same yaw angles from BU-3DFE, and found that the SVM performed better,

on average. In a similar study [81], the authors used per-view trained 2D AAMs to locate a

set of characteristic facial points over thirteen yaw angles (−90◦ – 90◦). The obtained points

were used as landmarks to extract LBP, SIFT and DCT features around them. Pose-specific

SVM classifiers showed that the combination of the geometric features from the AAMs with

the DCT appearance-based features, achieved the best average performance. Nonetheless, the

main limitation of the pose-wise classifiers is that they treat each view as an independent

problem. Hence, they require a sufficient amount of training data per view, in order to learn

effective classifiers. Furthermore, by learning view-specific classifiers, these approaches fail to

model possible correlations between the features from the various poses, which can result in

lower average performance.

Pose-independent facial expression recognition. As mentioned above, the methods of

this group attempt to learn a single classifier by combining the available data from multiple

poses. Specifically, [210] used variants of dense SIFT [113] features extracted from expressive

images over seven yaw angles (0◦ – 90◦), and five pitch angles (−30◦ – 30◦). A universal

linear classifier was then trained on the concatenation of the SIFT features from all thirty five

views. It is worth noting that dimensionality reduction based on Gaussian mixture models

(GMM) [19] was proposed from the authors, in order to facilitate an efficient training of

the classifier. Likewise, [175] used the generic sparse coding scheme (GSC) [195] to learn a

dictionary that sparsely encodes the SIFT features extracted from the same twelve views. After

obtaining the relevant dictionary for a given test image, linear classification was used again

to perform the facial expression recognition. Although the methods of this category seem to

deal effectively with arbitrary views, they have certain limitations. Due to the high variation

in appearance of facial expressions in different views and of different subjects, the complexity

of the learned classifier increases significantly with the number of views and expressions. This

can easily lead to overfitting, and, in turn, poor generalization of the classifier to unseen data.

Pose-normalized facial expression recognition. The approaches that fall in this cat-

egory rely on known correspondences between facial images from various poses. Given that
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correspondence, a regression function can be trained in order to pair the input features between

any pair of poses. Representatives of this pose-normalization approach are [148, 149]. In these

methods, the authors first perform the view normalization, and then apply facial expression

classification in the canonical view. The latter is usually chosen to be the frontal view. For

the view normalization, the authors employed the coupled GP (CGP) regression model that

exploits pair-wise correlations between the views, in order to learn robust mappings for pro-

jecting facial features (i.e., a set of facial points) from an arbitrary pose to the frontal. In a

similar work, the authors in [9] used again the GP regression, yet for modeling the opposite

mapping. The pose-specific facial points are obtained from the frontal ones. Subsequently,

these points were used as landmarks to produce virtual images, by warping the appearance

from the frontal to the desired view. The resulting facial image is used for the emotion classi-

fication task. Likewise, the authors in [88] encoded different appearance-based features (HOG

and LBPs) in a sparse dictionary using k-singular value decomposition (k-SVD) [3]. A linear

regression was learned to map the dictionaries between an arbitrary view and the frontal.

The facial expression recognition of six basic emotion was performed on the reconstructed fa-

cial features from the normalized dictionary. A common limitation of all the pose-normalized

approaches is that the view normalization and learning of the expression classifier are done

independently. Thus, the classification’s accuracy is bounded by that of the view normaliz-

ation, since any errors in the latter can adversely affect the performance of the recognition

task. Furthermore, the canonical view has to be selected in advance. This can further limit

the accuracy of the expression classification, as such view may not be the most discriminative

for classification of certain facial expression categories.

2.2 Joint Action Unit Detection and Intensity Estimation

The works mentioned above focus solely on the classification of the basic emotion categories

from multiple poses. When it comes to the analysis of facial AUs, due to the lack of avail-

able annotated multi-view data, the area remains still unexplored. However, as we already

explained, the different image descriptors, i.e., geometric- and appearance-based features, can

be regarded as multiple views. Hence, multi-view learning can be employed to model the vari-

ation between the input features. Furthermore, an even more important source of variation

in the analysis of AUs stems from the nature of the output. The analysis of facial AUs is a

multi-label problem compared to the multi-class nature of the basic emotions. Thus, a holistic

analysis would need to consider also the correlations among the multiple outputs. In what

follows we review the works that placed the AU analysis on the frames of multi-view learning
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(feature fusion) and multi-label learning (joint modeling of the outputs).

2.2.1 Joint Facial AU Detection

As we have explained above, a holistic analysis of facial AUs suggests jointly modeling of

the relations among the input features and the highly correlated outputs. However, the ma-

jority of the existing works, so far, attempted to recognize AUs or certain AU combinations

independently [114, 115, 14, 119, 189, 99]. While the former approach ignores the depend-

encies among the AUs, the latter results in a prohibitively large space of possible combina-

tions. To the best of our knowledge, there are only few works that perform joint detection

of AUs [180, 215, 194, 207, 205, 206, 171, 209]. Towards this direction, the authors in [180]

proposed a two stage strategy. First they applied independent Adaboost classifiers for each

AU on Gabor features extracted from the facial images. Then a generative DBN is employed

to model the dependencies among the various AUs and refine the classifiers’ predictions. Due

to the Markov assumptions while learning the network of the co-occurred AUs, this model

can handle only local dependencies between pairs of AUs. The same two stage approach was

also followd by [215], yet, the authors considered the information from both geometric and

appearance features (2D landmark points and Gabor wavelets). Specifically, the logistic clas-

sifiers for multiple AUs was first learned on the concatenated features, by using the notion

of multi-task feature learning [8]. Then, a similar pre-trained BN was employed to refine the

predictions. Hence, the same limitation as of [180] also apply to [215]. Nontheless, the main

drawback of both [180, 215] lies on their two-stage training scheme. The independent modeling

of the discriminative classifiers and the generative DBN could result in inconsistent learned

dependencies across inputs/outputs, and hence, produce contradictory predictions.

On the other hand, the models in [194, 207, 205, 206, 171, 209] are defined in a fully

discriminative framework. More specifically, [194] employed the restricted Boltzmann machine

(RBM) to overcome the pair-wise AU modeling limitation of the DBN [180, 215]. The authors

proposed a parametric model, in which discrete latent variables account for correlations among

discrete outputs that are directly connected to the image features. The latter are comprised

again from a combination of 2D landmark points and raw pixel intensities, obtained from the

warped images. Since the latent variables are not connected to the feature space, they cannot

model correlations between the inputs, hence, concatenation of the input features is used for

the fusion task. [207] combined multi-task learning with MKL techniques, in order to jointly

learn the AU-specific SVM classifiers for different appearance features (LBP and HOG). This

work has been extended in [205, 206], where the authors introduced an lp-norm regularization

23



2. Machine Analysis of Facial Expressions: state-of-the-art

to the MKL problem, in order to obtain a more robust solution with possible sparse structure

among the AUs. However, all three MKL methods, i.e., [207, 205, 206] due to their expensive

learning complexity, can only deal with a small subset of AUs (typically less than 4) in the

output.

In a more recent work, [209] used again the notion of multi-task learning in order to learn

multiple logistic classifiers for each AU. The learned dependencies among the AUs were ad-

ditionally constrained to be sparse, via appropriate regularizations based on positive and

negative AU co-occurrences. Simultaneously to the AU detection task, [209] performed fea-

ture selection in order to preserve a sparse subset of SIFT appearance features, extracted

from patches around the face, that are more relevant to each AU. Yet, the feature fusion

task was not addressed. More importantly, the learned AU-dependencies were regarded only

between predefined pairs of AUs. Likewise, [171] proposed a probabilistic framework, based

on Bayesian compressed sensing (BCS), in order to encode the co-occurrence structure and

the (group) sparsity patterns of the AUs to the compressed signal (latent variables). HOG

features extracted from different pyramid levels served as the input features, and were mapped

to the latent variables via a linear regression. Hence, neither this work addresses the problem

of fusing different input features.

2.2.2 Joint AU Intensity Estimation

The works described on the previous section focus solely on the detection of AU activations

(i.e., presence/absence). However, the true nature of the AUs is not binary, since they appear

in various levels. The AU intensity analysis is relative new problem in the field, and most

of the proposed works focus on independent modeling of the AUs [151, 118, 122, 125, 186,

158, 92, 89, 93]. Hence, they fail to account for the structured relations among the AUs.

Moreover, except for [158, 125] none of these works can naturally handle the case where we

have different modalities in the input (e.g., fusion of geometric and appearance features). This

can adversely affect the models’ performance, since different AUs are better described from

different modalities (e.g., AU1+2 from geometric and AU6 from appearance features).

Only recently, the joint estimation of the intensity levels has been addressed [109, 156, 94,

129, 77, 126]. This is motivated by the fact that intensity annotations are difficult to obtain

(due to the tedious process of manually coding) and that AU levels are highly imbalanced.

Thus, by imposing the structure on the output in terms of AU co-occurrences, a more robust

intensity estimation is expected. Towards this direction, [109] employed the same two-stage

learning strategy as the one encountered on the works in AU detection. The authors first

24



2.2. Joint Action Unit Detection and Intensity Estimation

trained a multi-class SVM and then infered a DBN in order to capture the semantic rela-

tionships among the various AUs. Likewise, the authors in [156] followed a similar approach.

First, they trained individual SVR for estimating the intensity of each AU over appearance

based features. Then, they fed the predictions into a Markov random field (MRF) in order

to model the dependencies between the AUs and improve the performance. Again, simil-

arly to [180, 215], this two-stage approach followed in both [109, 156] limits their recognition

performance, since learning of the regressors/classifiers and the AU relations are handled in-

dependently. Moreover, both [109, 156] use information only from appearance features, which

makes them more susceptible to subject and illumination variations.

To overcome the limitatios of the previous works, the authors in [94] proposed to learn lat-

ent representations which encode the information of the input features and the output labels.

The structure of the latent variables is governed by the relations among the AUs, and it is

constrained to form a tree graph. However, in the presence of high-dimensional inputs and

multiple AUs, this method becomes prohibitively expensive. Moreover, the authors show that

with this approach the fusion of different features does not benefit the estimation of AU in-

tensity, achieving similar performance to when individual modalities are used. More recently,

a learning method based on sparse representation has been proposed in [126]. Specifically,

the authors use the notion of robust principal component analysis [24] to decompose the ex-

pression from facial identity. Then, joint intensity estimation of multiple AUs is performed

via a regression model based on dictionary learning. Yet, this approach uses only appearance

features, thus, it cannot benefit from the information of illumination invariant geometric fea-

tures. The authors in [129] cast the joint AU intensity estimation in a multi-task formulation.

They employed metric learning for kernel regression (MLKR) in order to find an optimal sub-

space where the error from all tasks is reduced. The main drawback of [129] is that the use

of MLKR becomes prohibitive when dealing with high dimensional features, let alone when

using features of different modalities (e.g., fusion of geometric and appearance features).

Finally, the recent developments in the deep networks literature inspired the authors in [77]

to train deep convolutional neural networks (CNN) for automatic feature extraction and AU

intensity estimation. This work showed some promising results in the recent FERA2015 chal-

lenge [186]. However, deep networks normally require large amount of annotated data for their

effective training. This is a burden since, AU-coded data are still scarcely available.
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2.3 Domain Adaptation for Personalized Analysis of Facial

Expressions

The methods that we have encountered in Sec. 2.1 and Sec. 2.2, no matter their employed

strategy, and whether they model the relations between the inputs/outputs, suffer from a

common limitation. That is their poor generalization to new unseen data, an artifact which

especially appears when dealing with spontaneous data of facial expressions. A reasonable

and cost-efficient way to deal with this problem is to normalize the data based on some

person-specific attributes. For instance, the authors in [11] suggested to perform a dynamic

normalization of the expression phenomena. They achieved so by removing the global neut-

ral expression, per subject, from each available sequence. Hence, the resulted geometric and

appearance descriptors hold only the relevant information regarding the individual facial de-

formations that are responsible for every expression, and not general face variations. However,

the problem with this technique is that it does not take into account the different levels of

expressiveness between the subjects. Thus, the normalized features may still suffer from in-

consistencies, especially in the cases of subtle expressions. Lately, in order to ameliorate this

effect, recent advances in the field focus on employing standard domain adaptation techniques

for building personalized classifiers.

In the domain adaptation literature, normally the data between the phases of training and

testing are treated as data from different domains. Thus, all subjects that are present during

the training of a classifier are considered to belong to the source domain, while the data from

the test target belong to the target domain. The ultimate goal of domain adaptation is to

bridge the gap between the two domains. A widely used algorithm for adaptation is the kernel

mean matching (KMM) [74], which directly infers resampling weights by matching training

and test distributions. Towards this attempt, the authors in [28] employed the KMM to learn

person-specific, independent AU detectors. This is attained by modifying the SVM’s cost

function to account for the mismatch in the distribution between source and target domain,

while also adjusting the SVM’s hyper-plane to the target test data. Although proven to be

effective, this transductive learning approach is inefficient. This is due to the fact that for

each target subject a new classifier has to be relearned during inference. Likewise, the authors

in [124] proposed a supervised extension to the KMM. More specifically, they used the provided

labeled examples from both domains in order to align the source and target distributions in a

class-to-class manner. The reweighted source data along with the target data, form the input

features that are used to train several classifiers, e.g., SVM, for facial expression recognition

of basic emotions.
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Apart from KMM, adaptation can be also attained by combining the knowledge from mul-

tiple classifiers or by sharing the parameter space between source and target classifiers. In [26],

a two-step learning approach was proposed for person-specific pain recognition and AU detec-

tion. First, the input data of each subject were regarded as different source domains, and were

used to train weak Adaboost classifiers. Then, the weak classifiers were weighted based on

their classification performance on the available target data. A second boosting was performed

on the best performing source classifiers in order to derive the final set of weak classifiers for the

target data. In [157, 199], the Adaboost classifiers were replaced with the linear SVMs. First,

independent AU classifiers were trained from the source domain data. Then, the SVR frame-

work was employed to associate the input features with the classifiers’ parameters. Finally,

the unlabeled target domain data were fed into the learned regressors, in order to obtain the

target-specific classifier’s parameters. Recently, a more suitable approach has been proposed

in [200]. The authors suggested to train target-specific classifiers by exploiting the confidence

in the predictions from the source classifiers. In their approach, the confidence is represented

by the agreement in the predictions between a pair of SVM classifiers, which were trained

to distinguish the easy-positive and easy-negative samples in the source data. The confident

classifiers are then employed to obtain ‘virtual’ labels for a portion of the target data, which

can be used to train a target-specific detector.

Note that, apart from [26], all the works mentioned above perform in the unsupervised

adaptation setting. While this requires less effort in terms of obtaining the labels for the

target sub-sample, its underlying assumption is that target data can be well represented as a

weighted combination of the source data. However, in real-world data, this assumption can

easily be violated, resulting in poor performance of the adapted classifier. A further limitation

of the aforementioned methods is that none of them exploits the multi-label nature of the AU

detection problem. Hence, not only they fail to model the relations among the various AUs,

but they also need to adapt each AU-specific classifier independently.

2.4 Relation to Our Work

The machine learning methods for facial expression analysis that we propose are related to the

methods reviewed in Sec. 2.1–2.3. In what follows, we discuss similarities and differences of

existing approaches to the methods proposed in this thesis. We relate/contrast these methods

in the context of the target problems that we address.
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Multi-view and view-invariant classification of facial expressions. In Chapter 4 we

propose a method for multi-view and view-invariant facial expression recognition of basic

emotion categories. In contrast to the approaches from Sec. 2.1 that operate either on a

pose-wise manner or normalize the pose to a canonical view, the multi-view method that we

propose performs the pose normalization implicitly on a discriminative manifold shared among

multiple views of facial expressions. The classification of an observed facial expression can be

carried out either in the view-invariant manner (using only a single view of the expression) or in

the multi-view manner (using multiple views of the expression). However, instead of learning

independent classifiers, as in the pose-wise classification methods, we learn a single classifier in

the low-dimensional manifold. Compared to the pose-independent methods, the complexity of

our classifier is significantly reduced. This is due to the fact that we account for the underlying

structure of the data (i.e., the correspondences between the views) via the shared latent

variables. Thus, within the proposed learning strategy we can directly relate the performance

of our proposed method to both pose-wise and pose-independent approaches from Sec. 2.1,

in a unified framework. As we show in the experimental analysis of Chapter 4, modeling

of the dependencies among the views in the shared subspace, not only results in improved

performance compared to state-of-the art, but also improves the accuracy in underperforming

views. The latter implies that more robust classification can be attained via our proposed

method.

Joint feature fusion and multiple AU detection. The method that we propose for this

task advances the existing work from Sec. 2.2.1 in many aspects. First of all, both the problems

of feature fusion and joint AU detection are addressed, simultaneously, within a single latent

variable model. Specifically, the method that we propose in Chapter 5 performs feature fusion

in a generative fashion via a low-dimensional shared subspace, while simultaneously perform-

ing AU detection using a discriminative classification approach. The learned low-dimensional

manifold allows the model to capture dependencies among multiple AUs at both feature and

model level. Contrary to the methods from Sec. 2.2.1, which are purely generative or discrim-

inative, as we show in Chapter 5, our joint formulation takes the best of both approaches and

successfully combines them in a multi-conditional likelihood function. Due to the latter, the

proposed model is less susceptible to overfitting compared to purely discriminative models,

since the generative part acts as an efficient regularizer during parameter learning. Additional

regularizations are also considered during the training of our method, in order to constrain the

latent variables to preserve the local structure in the outputs. This has not been addressed

from the latent variable approaches [194, 171] that solely model the AU dependencies only via
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their multi-task formulation. Note that the proposed fusion technique has some similarities to

the MKL-based fusion methods [205, 206]. The latter perform the feature fusion implicitly via

the kernel-induced space, while our manifold-based approach does it explicitly via the fixed

point estimate of the shared low-dimensional latent projections. Finally, the complexity of

the proposed approach scales linearly to the number of AUs in the output. Consequently,

we can efficiently model relations among a relatively large number of outputs, without the

requirement to a priori define groups of highly correlated AUs as done in [206, 209].

Joint feature fusion and AU intensity estimation. In the method for intensity estima-

tion of facial AUs, introduced in Chapter 6, we generalize the latent variable model mentioned

above to account for the ordinal labels in the output. The work presented in Chapter 6 ad-

vances the current state-of-the-art in several aspects. First of all, our approach can efficiently

perform the fusion of multiple modalities by means of a shared manifold, while simultaneously

dealing with the problem of joint AU intensity estimation. This is in contrast to most of

the works from Sec. 2.2.2 that either do not address the feature fusion problem or fail to

attain an improved performance when both modalities are used, e.g., [94]. The automatic

feature selection is implicitly attained via a latent space, which is learned in an auto-encoding

manner. Thus, oposing to the expensive dimensionality reduction apprach of [129], we can

automatically perform feature selection via the manifold in an efficient probabilistci approach.

Furthermore, for the AU intensity estimation part, we employ the more appropriate framework

of ordinal regression [2]. The recovered latent representations are used as input to multiple

ordinal regressors [2], which are concurrently learned in a joint Bayesian training. Finally

the use of the kernel-based GPs allow us to efficiently deal with high-dimensional input and

output variables without (significantly) affecting the model’s complexity.

Context adaptation for facial expression analysis. Apart from [26], all the works men-

tioned in Sec. 2.3 perform in the unsupervised adaptation setting. While this requires less

effort in terms of obtaining the labels for the target sub-sample, it can have a negative impact

on the final classification when the distribution between the source and target data vary sig-

nificantly. On the other hand, in the method we propose in Chapter 7 we adopt a supervised

approach that needs only few annotated data from target domain to perform the adaptation.

This, in turn, allows us to define both target and source experts, by means of individual GP

regressors, assuring that the performance of the resulting classifier is not constrained by the

distribution of the source data. Hence, contrary to the works from Sec. 2.3 that perform the

adaptation by adjusting the classifiers’ parameters and minimizing the error between the dis-
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tributions of the original source and target domain data, we follow a different approach. We

achieve domain adaptation in a Bayesian fashion, and explain the target data by conditioning

on the learned source experts. Note that except for [200], none of the methods from Sec. 2.3

provide a measure of confidence in the predicted labels. Yet, even in [200] the confidence is

obtained in a heuristic manner and is not directly related to the prediction of the classifier.

On the contrary, in our probabilistic approach, we model the confidence by means of pre-

dicted variance. Finally, oppsing to transductive adaptation approaches (e.g., [28]) that need

to be re-trained completely, the adaptation in our proposed method is efficient and requires

no re-training of the source model.
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In many real-world applications in the fields of computer vision and pattern recognition,

the practical problem consist of learning the underlying function f , that can associate some

observed inputs (e.g., geometric or appearance-based facial features in our case), with the

corresponding outputs (e.g., facial expressions or facial muscle configuration). The dominant

approach so far is to train parametric models, i.e., assume that the underlying function can

be adequately described by some parameters, normally a set of weights that measure the in-

teractions between the inputs. The main limitation of the parametric approach is the original

assumption regarding a finite set of parameters. This practically means that given the para-

meters, any future predictions are independent of the observed data. Hence, the complexity

of any parametric model is bounded even if the amount of data is unbounded. A more flexible

approach would be to learn non-parametric models, i.e., assume that the distribution of the

data can only be defined in terms of an infinite dimensional set of parameters. We normally

think of this infinite set as the mapping function f , which can be naturally modeled within

the framework of Gaussian processes (GPs) [146].

In what follows, we first give more intuition regarding the importance of GPs to our line
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of research. Then we present the basics behind the framework of GPs, in order to provide

the reader with the appropriate methodological background, prior to presenting our proposed

models in the upcoming chapters.

3.1 Why Gaussian Processes?

The main goal in our approach to automated analysis of facial expressions is to learn high-

dimensional mappings between the corresponding facial features and the associated output

labels. We can tackle this problem by following either a supervised learning approach (i.e., re-

gression/classification), or an unsupervised learning approach (i.e., dimensionality reduction).

In the former case, we aim to map directly the facial features to the output labels, while in

the latter we aim to find a low-dimensional manifold where the facial features and the output

labels are coupled together. In what follows, we outline the key strengths of GPs that make

them particularly suitable for the target tasks.

• GPs, as a fully probabilistic framework, can naturally provide a well calibrated uncer-

tainty in their predictions. The importance of modeling the uncertainty is twofold: (i)

Latent variables can be learned as random variables with known probability distributions.

Hence, latent samples can be efficiently collected in order to facilitate a fully Bayesian

training of the models (see Chapters 5&6). Consequently, the automatic regularization

from the Bayesian framework, allows us to learn models that are robust to overfitting,

and also capable of generalizing well to new settings; (ii) The learned uncertainty can be

used to design gating functions for combining predictions from different mapping func-

tions learned with GPs. We use this mechanism to perform domain adaptation during

the analysis of facial expressions (Chapter 7).

• Due to their non-parametric nature, GPs allow us to specify various types of covariance

functions that can capture complex data structures. This is important as we need to be

able to model the interactions among the features, which are responsible for preserving

the facial-expression-specific details during the learning of either the low-dimensional

manifold or the direct mapping function.

• Prior knowledge can be easily introduced during the learning of latent variables using

GPs. We use this property of GPs to incorporate two types of priors: (i) The discrim-

inative prior, defined using the notion of graph Laplacian matrix that encodes the class

information. We place this prior over a manifold in which we align facial expressions
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from multiple views, and perform their classification (Chapter 4); (ii) The structured

output prior, defined again via the Laplacian matrix, which now encodes the informa-

tion regarding co-occurring patterns in the multiple outputs. This results in a model

with structured output that we use for multi-label classification (Chapter 5).

3.2 Gaussian Processes

A Gaussian process [146] is a generalization of the multivariate Gaussian distribution to an

infinite number of dimensions (random variables). A sample from a Gaussian process is a

random function f that models the relationship between two variables, i.e., f : X → Y . X

and Y are usually corresponding multivariate instances X = {xi}Ni=1 and Y = {yi}Ni=1, with

xi ∈ Rq and yi ∈ RD. Hence, a Gaussian process can be regarded as a collection of functions,

any finite number of which have a jointly Gaussian distribution. This definition highlights

the expressive power of Gaussian processes, which along with the tractable marginalization

of Gaussian distributions allow us to only work with a finite set of function instantiations

f :,j = f:,j(xi,:) = [f:,j(x1), f:,j(x2), · · · , f:,j(xn)]1, which constitute our observed data and

jointly follow a marginal Gaussian distribution. This implies that all other (possibly infinite)

function values corresponding to unseen inputs are just marginalized.

More formally, we consider the case where f operates as a mapping function between two

variables X,Y . We assume that each dimension of the observed output yi is a noisy obser-

vation of the function instantiation f :,j corrupted with Gaussian noise εi,j ∼ N (0, σ2n), where

σ2n is the variance of the noisy process, so that

yi,j = f:,j(xi) + εi,j . (3.1)

Here, all mapping functions are assigned a GP prior, and hence, the process can be para-

meterized by its mean µ(x) and covariance function k(x,x′), so that f ∼ GP(µ(x), k(x,x′)).

Commonly, the mean function is selected to be the constant zero vector 0. The covariance

function operates on the infinite input domain and can be parameterized by a set of hyper-

parameters θ. A widely used covariance function is the radial basis function (RBF)

k(x,x′) = σ2f exp(− 1

2`2
‖x− x′‖2), (3.2)

where the signal variance σ2f and the length scale ` constitute the set of hyper-parameters.

1Note that throughout this chapter the subscript ‘:’ denotes stacking of the variables along the operating
dimension.
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Thus, we end up with the distribution of the function values

p(F |X,θ) =

D∏
j=1

p(f :,j |X,θ) =

D∏
j=1

N (0,K), (3.3)

where F = {f :,j}Dj=1 is the collection of the finite set of function instantiations, and K =

k(X,X) is the covariance matrix, obtained from evaluating the covariance function on the

available finite instances.

Since f in Eq. (3.1) follows a Gaussian distribution, the observed output is also Gaussian

with

p(Y |F ) =
D∏
j=1

p(y:,j |f :,j) =
D∏
j=1

N (f :,j , σ
2
nI). (3.4)

Marginalization over the infinite set of function values yields the marginal likelihood of the

observed outputs given the observed inputs

p(Y |X,θ) =

D∏
j=1

p(y:,j |X,θ) =

D∏
j=1

N (0,K + σ2nI). (3.5)

Traditionally, in the GP literature the hyper-parameters and the noise variance are learned

jointly by maximizing the above marginal likelihood w.r.t. {θ, σn}. By expanding the marginal

likelihood as:

p(Y |X,θ) =
D∏
j=1

(2π)−
n
2

∣∣K + σ2nI
∣∣− 1

2 exp

(
−1

2
yT:,j(K + σ2nI)−1y:,j

)
(3.6)

we identify the dual purpose of this objective function: (i) the determinant penalizes complex

models, and hence, acts as a natural regularization preventing the model from overfitting,

whereas, (ii) the exponential term promotes a good fit to the data.

Once the model’s hyper-parameters have been found, the predictive distribution for a new

input vector x∗ can be obtained by conditioning on all the available training instances

p(f∗|Y ,X,x∗) = N (kT∗ (K + σ2nI)−1Y , k∗∗ − kT∗ (K + σ2nI)−1k∗), (3.7)

where f∗ is the predicted function value, k∗ = k(x,x∗) and k∗∗ = k(x∗,x∗).

3.3 Gaussian Processes with Latent Inputs

In the previous section we demonstrated how we can place probabilistic priors over a family

of functions, in order to learn robust and accurate non-linear mappings between input/output

data pairs. Herein, we present the Gaussian process latent variable model (GPLVM) [105], an

unsupervised flavor of GPs used for non-linear dimensionality reduction.
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3.3. Gaussian Processes with Latent Inputs

3.3.1 GPLVM

We assume a similar setting to that of a GP regression from Sec. 3.2, where Y ∈ RN×D

and X ∈ RN×q. The difference now is that we observe only the high-dimensional outputs Y

(q � D), while the inputs X are considered to be latent. The same (noisy) generative process

of Eq. (3.1) also applies here. Specifically, each dimension of the observations y:,j is assumed

to be generated from the same low-dimensional latent variable X via a GP mapping f . Note

that independent GP priors are placed over each dimension of the function values, f :,j , while

the hyper-parameters θ of the covariance matrix K, are assumed to be shared across the

independent processes. Hence, our GP prior has the form of

p(F |X,θ) =
D∏
j=1

(2π)−
n
2

∣∣K + σ2nI
∣∣− 1

2 exp

(
−1

2
fT:,j(K + σ2nI)−1f :,j

)
. (3.8)

The difference here compared to the standard GP regression is that now the inputs X to the

kernel functions are latent random variables. Thus, they can be assigned prior distributions

p(X). The choice and the constructions of this prior usually depends on the task at hand.

For now we keep this structure unspecified, in order to facilitate a more general discussion.

By following the same derivation to the standard GP regression, we end up with the marginal

likelihood of the observed data given the latent variables

p(Y |X,θ) =
1√

(2π)ND|K + σ2nI|D
exp

[
−1

2
tr
(
(K + σ2nI)−1Y Y T

)]
. (3.9)

Since we have access to both the marginal likelihood and the prior of the latent variables,

we can follow a maximum a posteriori (MAP) training procedure as in [105], in order to obtain

the fixed points estimates of the latent variables X as the mean of the posterior distribution

p(X,θ|Y ) ∝ p(Y |X,θ)p(X). (3.10)

Hence, learning of the GPLVM can be facilitated by minimizing the negative log posterior,

given by

L =
D

2
ln |K + σ2nI|+

1

2
tr
(
(K + σ2nI)−1Y Y T

)
− log p(X) + const., (3.11)

w.r.t. the latent coordinates X, as well as the hyper-parameters θ.

3.3.2 Different Latent Space Priors and Back-constraints

The original GPLVM is a generative model of the observed data, where a simple spherical

Gaussian prior is placed over the manifold, similar to

p(X) =
N∏
i=1

(xi|0, I) =

N∏
i=1

q∏
j=1

N(xi,j |0, 1). (3.12)
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3. Gaussian Processes: Background Overview

Such a prior prevents the GPLVM from placing the latent points infinitely far apart, i.e.,

latent positions close to the origin are preferred. However, we can also introduce more specific

priors, more appropriate to the task at hand (i.e., facial expression analysis), in order to

impose discriminative information in the manifold and obtain a latent space with good class

separation. This has firstly been explored in [183], where a prior based on linear discriminant

analysis (LDA) is proposed. LDA tries to maximize between-class separability and minimize

within-class variability by maximizing

J(X) = tr(S−1w Sb), (3.13)

where Sw and Sb are within- and between-class matrices, respectively, defined as

Sw =
C∑
c=1

Nc

N

[
1

Nc

Nc∑
i=1

(x
(c)
i −M c)(x

(c)
i −M c)

T

]
, (3.14)

Sb =

C∑
i=1

Nc

N
(M c −M0)(M c −M0)

T . (3.15)

Here, Nc training points from class c are stored in X(c) = [x
(c)
1 , . . . ,x

(c)
Nc

]T , M c is the mean of

examples of class c, and M0 is the mean of examples of all the classes. The energy function

in Eq. (3.13) is used to define the discriminative prior over the manifold as

p(X) =
1

Zq
exp

{
− 1

σ2q
J−1

}
, (3.16)

where Zq is a normalization constant, and σq represents a global scaling of the prior. Then,

the discriminative GPLVM (D-GPLVM) [183] is obtained by replacing the Gaussian prior in

Eq. (3.10) with the prior in Eq. (3.16).

A more general prior based on the notion of the graph Laplacian matrix [29] has been

used to derive a discriminative GPLVM model named Gaussian process latent random field

(GPLRF) [212]. To define the prior, an undirected graph G is first constructed and the Lapla-

cian matrix L associated with the graph G is learned. More details regarding the construction

of the graph and the Laplacian matrix are given in Chapter 4. Once the Laplacian matrix L

has been defined, the discriminative prior is given by

p(X) =
1

Zq
exp

[
−β

2
tr(XTLX)

]
, (3.17)

where Zq is a normalization constant and β > 0 is a scaling parameter. The term tr(XTLX)

in the discriminative prior in Eq. (3.17) reflects the sum of the distances between the latent

positions of the examples from the same class. Thus, the latent positions from the same class

that are closer will be given higher probability. This prior can be seen as a more general

version of the LDA prior in Eq. (3.16), without the restriction on the size of the manifold.
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3.4. Building on top of Gaussian Processes

Back-constraints With the standard GPLVM we can robustly unravel a low-dimensional

manifold, even from small datasets, as long as the selected dimensionality of the latent space

is much smaller than that of the observed data. In the case that this condition does not hold,

GPLVM can suffer from overfitting, and eventually recover ‘weird’ latent representations. To

address this problem and preserve the topological structure of the data, the authors in [106]

proposed to back-constrain the GPLVM, by enforcing the latent positions to be a smooth

function of the data space. This ensures that points that are close in the data space are

also close on the manifold. More importantly, these constraints allow us to learn the inverse

mappings, which are used during the inference step to map the query points from the data

space onto the manifold. Specifically, each latent position xi can be back-constrained so that

it satisfies

xij = gj(yi;Aj) =
N∑
n=1

anjkbc(yi,yn), (3.18)

where xij is the j-th dimension of xi ∈ Rq, gj is the kernel ridge regression over Y , and A is

the matrix that holds the parameters for the regression. To obtain a smooth inverse mapping

in the back-constraints, the RBF kernel can be employed again so that

kbc(yi,yn) = exp(−γ
2
‖yi − yn‖2), (3.19)

where γ is the inverse width parameter. We can now re-parameterize the GPLVM by substi-

tuting the actual latent positions with the mapping from Eq. (3.18), and minimize Eq. (3.11)

w.r.t. A, as well as the hyper-parameters θ.2 Hence, in back-constrained GPLVM we indir-

ectly obtain the latent space via an efficient mapping which not only preserves the topology

of the observed data, but also acts as a fast inference mechanism for future projections to the

manifold.

3.4 Building on top of Gaussian Processes

In the following chapters we use the introductory material presented above as a basis for

extending existing GP models, and to propose novel methodologies, applicable to the task of

facial expression analysis. Specifically, in Chapter 4 we generalize discriminative flavors of

GPLVMs to the multi-view scenario, by means of shared GPs [167]. In Chapter 5 we combine

the shared GPs with the logistic regression, to introduce a joint generative and discriminative

latent variable model. In Chapter 6 we propose a fully probabilistic auto-encoder based on

2Note that the inverse width of the back-constrained kernel γ is commonly obtained via a costly grid search
cross-validation procedure.
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3. Gaussian Processes: Background Overview

GPs. Finally in Chapter 7 we explore the conditional property of the Gaussian distribution

to introduce a domain adaptation framework with domain-specific GP experts.
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Chapter 4

Gaussian Processes for Multi-view and

View-invariant Facial Expression

Recognition

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Discriminative Shared GPLVM . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Relation to Prior Work on Multi-view Learning . . . . . . . . . . . . . . . 48

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Images of facial expressions are often captured from various views as a result of either head

movements or variable camera position. Existing methods for multi-view and/or view-invariant

facial expression recognition typically perform classification of the observed expression by using

either classifiers learned separately for each view or a single classifier learned for all views.

However, these approaches ignore the fact that different views of a facial expression are just

different manifestations of the same facial expression. By accounting for this redundancy in

information, we can design more effective classifiers for the target task.

4.1 Introduction

To exploit the relations among images of facial expressions captured from various views, in

this chapter we introduce the discriminative shared Gaussian process latent variable model
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4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

Y(1)

Y(v)

X

Y(V)

θ(1)
θ(v)

θ(V)

DisgustSurprise Smile

Surprise Disgust Smile

Surprise Disgust Smile

p(X)

GP(1) GP(v) GP(V)
g(Y(v))

g(Y(1)) g(Y(V))

Figure 4.1: The overview of the proposed DS-GPLVM. The discriminative shared manifold X of
facial expressions captured at different views (Y (v), v = 1 . . . V ) is learned using the framework of

shared GPs (GP(v)). The class separation in the shared manifold is enforced by the discriminative
shared prior p(X), informed by the data labels. During inference, the facial images from different
views are projected onto the shared manifold by using the kernel-based regression, learned for each
view separately (g(Y (v))) for a view-invariant approach, or simultaneously from multiple views for a
multi-view approach. The classification of the query image is then performed using the kNN classifier.

(DS-GPLVM) for multi-view and view-invariant facial expression recognition of basic emo-

tions. We adopt the multi-view learning strategy in order to represent the multi-view facial

expression data on a common expression manifold. To facilitate this we assume the existence

of instance constraints, i.e., each image should be captured from different views. Toward this

approach, we use the notion of shared GPs [167, 50], the generative framework for discover-

ing a non-linear subspace shared across different observation spaces (e.g., the facial views or

feature representations). Since our ultimate goal is the expression classification, we place a

discriminative prior, informed by the expression labels, over the manifold. The classification

of an observed expression is then performed in the learned manifold using the kNN classifier.

The proposed model can be regarded as a generalization of discriminative GP latent variable

models [183, 212] for non-linear dimensionality reduction and classification of data from a

single observation space. The learning of DS-GPLVM is carried out using the expression data

from multiple views (corresponding images between the views). Classification of an observed

facial expression, however, can be carried out either in a view-invariant manner (in case only

a single view of the observed expression is available at runtime) or in a multi-view manner

(in case multiple views of the observed expression are available at runtime). Note that during

the testing phase, it is assumed that the view from which the image is captured is known.

The proposed model can also perform fusion of different facial features (same view angle, but

multiple image descriptors), in order to improve view-invariant facial expression classification.
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4.2. Discriminative Shared GPLVM

In order to keep the model computationally tractable in the presence of large number of views,

we propose a learning algorithm that splits the learning into different sub-problems (for each

view), and then employs the alternating direction method of multipliers (ADMM) [18] to op-

timize each sub-problem separately. The outline of the proposed approach is given in Fig. 4.1.

Note that the contents of this chapter are published in [59, 60, 61].

4.2 Discriminative Shared GPLVM

In this section we introduce the discriminative shared GPLVM (DS-GPLVM) for multi-view

and view-invariant facial expression classification. We start by placing the DS-GPLVM within

the framework of shared GPs [167]. We then define an appropriate discriminative prior for the

shared space and introduce back-constraints from multiple observation spaces to the manifold.

Finally we describe learning and inference in the proposed DS-GPLVM.

4.2.1 Discriminative Shared GPLVM: Model Definition

The proposed DS-GPLVM uses the notion of shared GPs [167] to learn latent variables X =

{xi}Ni=1 shared among V observation spaces Y = {Y (1), . . . ,Y (V )}, with Y (v) = {y(v)i }Ni=1 de-

noting the observed input features from space v, xi ∈ Rq and y
(v)
i ∈ RD, with q � D. Within

this setting, we assume that each observation space is generated from the shared manifold via

a separate GP. Note that a GP for each view is defined by a view-specific covariance matrix

computed from the latent variables X that are shared among all the views. Formally, the

marginal likelihood of the shared GPLVM is factorized as follows

p(Y |X,θs) = p(Y (1)|X,θ(1)) . . . p(Y (V )|X,θ(V )), (4.1)

where θs = {θ(1), . . . ,θ(V )} are the kernel parameters for each observation space. The kernel

function is commonly selected to be the combination of the RBF, bias and noise terms

k(v)(x,x′) = θ
(v)
1 exp(−θ

(v)
2

2
‖x− x′‖2) + θ

(v)
3 +

δx,x′

θ
(v)
4

, (4.2)

where δx,x′ is the Kronecker delta function, and θ(v) = {θ(v)1 , θ
(v)
2 , θ

(v)
3 , θ

(v)
4 } are the kernel

hyperparameters, associated with the view v.1

1With such kernels, by enforcing θ(v) to have small values, we can model (i) small output scales (i.e.,

θ
(v)
1 , θ

(v)
3 ), with (ii) large RBF support (i.e., small θ

(v)
2 ), and (iii) large noise variances (i.e., small θ

(v)
4 ).
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4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

The shared latent space X is then found by minimizing the negative log marginal likelihood

penalized with the prior placed over the shared manifold, and is given by

Ls =
∑
v

L(v) − log(p(X)) (4.3)

where L(v) is the negative log marginal likelihood from view v, and is given by

L(v) =
D

2
ln |K(v) + σ2vI|+

1

2
tr[(K(v) + σ2vI)

−1
Y (v)Y (v)T ] +

ND

2
ln 2π. (4.4)

In Eq. (4.4), the spherical Gaussian prior is placed over the manifold. To obtain a shared

manifold for multi-view classification, in the following we define a discriminative shared-space

prior.

4.2.2 Discriminative Shared GPLVM: Shared-space Prior

To define a discriminative shared space prior for multi-view learning, we adopt the modeling

approach of discriminative GPLVMs for a single observation space proposed in [183, 212].

Specifically, in the discriminative GPLVM (D-GPLVM) [183], the authors define a prior based

on linear discriminant analysis (LDA), which tries to maximize between-class separability

and minimize within-class variability in the latent space. Such a prior, however, constrains

the dimensionality of the latent space to be at most C − 1, where C is the total number of

classes. On the other hand, in the GP latent random field (GPLRF) [212], the authors define

a more general prior using the notion of the graph Laplacian matrix [29]. We follow the latter

approach in our definition of the shared-space prior, as it allows for recovering of more flexible

latent representations.

To define a prior based on a graph Laplacian matrix, we first need to construct an undirected

graph G = (V, E), where V = {V1, V2, . . . , VN} is the node set, with node Vi corresponding to

a training example xi, and E = {(Vi, Vj)i,j=1...N |i 6= j,xi and xj belong to the same class} is

the edge set. Since we have paired each node with the random variable xi we have obtained

a Gaussian Markov Random Field (GMRF) [152] w.r.t. the graph G. Next, each edge in the

graph needs to be associated with a weight. To design a shared-space prior we construct view-

specific weight matrices W (v), v = 1, . . . , V . Specifically, the elements of the weight matrices

are obtained by applying the RBF kernel to the data from each view as

W
(v)
ij =


exp

(
−‖y

(v)
i −y

(v)
j ‖

2

t(v)

)
if i 6= j and ci = cj ,

0 otherwise.

(4.5)
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4.2. Discriminative Shared GPLVM

where ci is the class label, and t(v) is the kernel width which is set to the mean squared

distance between the training inputs as in [155]. Then, the graph Laplacian for view v is

L(v) = D(v)−W (v), whereD(v) is a diagonal matrix withD
(v)
ii =

∑
jW

(v)
ij . Because the graph

Laplacians from different views vary in their scale, we use the normalized graph Laplacian,

defined as

L
(v)
N = (D(v))−1/2L(v)(D(v))−1/2, (4.6)

Subsequently, we define the (regularized) joint Laplacian as

L̃ = L
(1)
N +L

(2)
N + . . .+L

(V )
N + ξI =

∑
v

L
(v)
N + ξI, (4.7)

with I the identity matrix, and ξ a regularization parameter (typically set to a small value

e.g., 10−4), which ensures that L̃ is positive-definite [214]. This, in turn, allows us to define

the discriminative shared-space prior as

p(X) =
V∏
v=1

p(X|Y (v))
1
V =

1

V · Zq
exp

[
−β

2
tr(XT L̃X)

]
. (4.8)

Here, Zq is a normalization constant and β > 0 is a scaling parameter. The discriminative

shared-space prior in (4.8) aims at maximizing the class separation in the manifold learned

from data from all the views, and it can be regarded as a multi-view kernel extension of the

priors defined for a single view in [183, 212]. By incorporating this prior in Eq. (4.3) we obtain

the final form of the negative log marginal likelihood of the proposed DS-GPLVM

Ls =
∑
v

L(v) +
β

2
tr(XT L̃X), (4.9)

where L(v) is defined by Eq. (4.4).

4.2.3 Discriminative Shared GPLVM: Back-constraints

As we have seen in Section 3.3.2, in order to assure that the topology of the observed space

is preserved on the manifold we need to back-constrain the GPLVM. In DS-GPLVM, this is

achieved by the discriminative shared-space prior, since the weight matrix used to define the

prior is built from the observed data. However, to perform fast inference with DS-GPLVM we

still need to learn the inverse mappings that project data from different views onto the shared

manifold. For this, we consider two scenarios. In the first, we define v sets of constraints (one

for each view), which are enforced by separate inverse mappings from each view to the shared

space. In the second, we define one set of constraints (for all the views), which are enforced

by a single inverse mapping from all the views to the shared space. We refer to the former
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4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

as independent back-projections (IBP), and the latter as single back-projection (SBP). These

are given by

• IBP from each view v = 1, . . . , V

X = g(Y (v),A(v)) = K
(v)
bc A

(v). (4.10)

• SBP from V views

X = g(Y ,A) =

(
V∑
v=1

wvK
(v)
bc

)
A = K̃A, (4.11)

where g(·, ·) represents the mapping function(s) learned using the kernel ridge regression. wv

is the (scalar) weight for view v, while the elements of K
(v)
bc are given by Eq. (3.19), which for

convenience we re-introduce here as well

k
(v)
bc (y

(v)
i ,y(v)n ) = exp(−γ

(v)

2
‖y(v)i − y

(v)
n ‖2). (4.12)

Note that for a single view, the model can be re-parametrized to obtain an unconstrained

optimization problem (see Sec. 3.3.2). Yet, in the case of multiple views, this is not possible as

it would result in different X for each view. Therefore, we need to solve a constrained optim-

ization problem, the complexity of which increases with the number of views. To efficiently

solve this, in the following section we propose an iterative learning algorithm for simultaneous

learning of the shared space and inverse mappings in the proposed model.

4.2.4 Discriminative Shared GPLVM: Learning and Inference

Learning of the model parameters X, θs and A, consists of minimizing the negative log mar-

ginal likelihood given by Eq. (4.9) subject to either the IBP or SBP constraints. Formally, we

aim to solve the following minimization problem:

arg min
X,θs,A

Ls(X) +R(g) (4.13)

s.t.

IBP (X,A(v)) ,X −K(v)
bc A

(v) = 0 , v = 1, . . . , V

SBP (X,A) ,X − K̃A = 0 ,
∑V

v=1wv = 1, wv ≥ 0,

where R(g) is a regularization term. To obtain the function form for R(g), we first derive the

solution of the kernel ridge regression from the mapping function of the infinite-dimensional

feature space g(xi) = φ(xi)
Tw, as in [78]. The solution to this problem is of the form of
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4.2. Discriminative Shared GPLVM

w =
∑N

i=1 aiφ(xi). Hence, by applying the Representer Theorem [160] on this space, and by

using the Tikhonov regularization for the parameters w, we arrive at the optimal functional

form for R(g) as

R(g) =


∑ λ(v)

2 r(g(v)), r(g(v)) = tr(A(v)TK
(v)
bc A

(v)), for IBP

λ
2 tr(AT K̃A), for SBP

(4.14)

IBP: Parameter Optimization. We first present the learning procedure for the more gen-

eral case involving the IBP constraints, and then provide the solution for the SBP case. From

Eq. (4.13), we see that the back-mapping from each view is represented by an independent

set of linear constraints. We exploit this to find the model parameters by iteratively solving

a set of sub-problems. We first incorporate the IBP constraints into the regularized negative

log marginal likelihood in Eq. (4.13) by using the Lagrange multipliers. As a result, we obtain

the following augmented Lagrangian function:

LIBP (X, {A(v),Λ(v)}Vv=1) =Ls(X) +R(g) +

V∑
v=1

〈Λ(v), IBP (X,A(v))〉+
µ

2

V∑
v=1

‖IBP (X,A(v))‖2F , (4.15)

where Λ(v) are the Lagrange multipliers for view v, 〈·, ·〉 is the inner product, and µ > 0

is the penalty parameter. We can see from Eq. (4.15) that the linear constraint has been

incorporated into the cost function as a quadratic penalty term without affecting the solution

to the problem. The role of the Lagrange multipliers (inner product term) is to achieve

efficiency in obtaining the solution without the requirement of sequentially increasing the

penalty parameter to infinity [18]. The standard approach is to minimize the objective in

Eq. (4.15) w.r.t. all the model’s parameters simultaneously. Yet, this is impractical, as the fact

that the objective function is separable, is not exploited to simplify the problem. To remedy

this, we employ the alternating direction method of multipliers (ADMM) [18] to decompose

the minimization into subproblems, each of which can be solved separately w.r.t. to a subset

of the model parameters. More specifically, we split the learning of the parameters of the

shared space and the back-mappings from each view, by defining the iterations of ADMM as

follows. We first solve for X and θs as

{X,θs}t+1 = arg min
X,θs

Ls(X) +
µt
2

V∑
v=1

‖IBP (X,A
(v)
t ) +

Λ
(v)
t

µt
‖2F . (4.16)

Then, for each view v = 1, ..., V , we solve for A(v) as

A
(v)
t+1 = arg min

A(v)
r(A(v)) +

µt
2
‖IBP (Xt+1,A

(v)) +
Λ

(v)
t

µt
‖2F , (4.17)
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and finally update the Lagrangian and the penalty parameter as

Λ
(v)
t+1 = Λ

(v)
t + µtIBP (Xt+1,A

(v)
t+1) (4.18)

µt+1 = min(µmax, ρµt), (4.19)

respectively. Note that in Eq. (4.19), ρ is kept constant (it is typically set to ρ = 1.1).

Since there is not a closed-form solution for the problem in Eq. (4.16), we use the conjugate

gradient optimization algorithm2 to minimize the objective w.r.t. the latent positions X and

the kernel parameters θs
3. On the other hand, the problem in Eq. (4.17) is similar to that of

kernel ridge regression, and it has a closed-form solution, which is given by

A(v) =

(
K

(v)
bc +

λ(v)

µt
I

)−1(
X +

Λ
(v)
t

µt

)
(4.20)

However, this solution depends on the parameters γ(v) (i.e., the inverse width of the back-

projection kernel from Eq. (4.12)), and λ(v) (i.e., the regularization weight associated with

IBP/SBP), which are normally tuned through costly cross-validation procedures. To alleviate

this, we reformulate the optimization problem in Eq. (4.17). For this, we use the notion of the

leave-one-out (LOO) cross-validation procedure for the kernel ridge regression [174] to define

the learning of the parameters γ(v) and λ(v). Once estimated, these parameters are used to

compute A(v). Note that by employing the LOO optimization scheme we reduces the chances

of overfitting.

The idea of the LOO learning procedure is based on the fact that given any training set

and the corresponding learned regression model, if we add a sample to the training set with

the target equal to the output predicted by the model, the latter will not change since the

cost function will not increase [174]. Thus, given the training set with the sample y
(v)
i left

out, the predicted outputs X̂
(\i)

(the superscript denotes that the i-th sample is left out) will

not change if the sample y
(v)
i with target x̂

(\i)
i is added to the set. Then, the goal of LOO is

to minimize the difference between the predictions x̂
(\i)
i and the actual outputs xi for all the

samples. To compute this, we first need to define the matrix

M ,

[
mii mT

i

mi M i

]
= (K

(v)
bc +

λ(v)

µt
I), (4.21)

where we partitioned the inverse matrix from Eq. (4.20) so that the elements corresponding

to the i-th sample appear only in the first row and column of M (the same is done for X

2We used Rasmussen’s minimize.m function provided from http://learning.eng.cam.ac.uk/carl/code/minimize/.
3The derivatives of the objective w.r.t. the model parameters are given in the appendix.
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and Λ
(v)
t in order to place the i-th row on the top). Furthermore, M i is the kernel matrix

formed from the remaining elements as M i = (K
(v)
bc\i+

λ(v)

µt
IN−1). Then, using Eq. (4.20), the

prediction and the actual target for sample i are given by

x̂
(\i)
i = mT

i M
−1
i miA

(v)
i +mT

i A
(v)
\i (4.22)

xi = miiA
(v)
i +mT

i A
(v)
\i −Λ

(v)
i /µt. (4.23)

We can now define the cost for the LOO procedure, which is

ELOO =
1

2

N∑
i=1

‖xi − x̂(−i)
i ‖2 =

1

2

N∑
i=1

‖
A

(v)
i

[M−1]ii
−

Λ
(v)
i

µt
‖2 (4.24)

Minimization of ELOO w.r.t. γ(v) and λ(v) is accomplished using again the conjugate gradient

algorithm.4 By plugging these parameters into Eq. (4.20), we obtain A(v). Note that by

adopting the LOO learning approach, we: (i) avoid the burden of the standard cross-validation

procedures, which are time consuming, and (ii) reduce the chances of overfitting the model

parameters by using the additional cost defined in Eq. (4.24).

At this point, it is important to clarify that under the proposed ADMM-based optimization

scheme we are able to automatically learn the majority of the model’s parameters (i.e., X

θs, µ, λ, γ), avoiding the need of their tuning via validation procedures. The only parameter

learned by means of cross-validation is the weight of the prior, β, while we also need to explore

the effect of the dimensionality, q, of the manifold.

SBP: Parameter Optimization. Analogous to the IBP case, we define the Augmented

Lagrangian function for the SBP case using the regularized negative log-likelihood and the

SBP constraints from Eq. (4.13). The resulting function has the form as in Eq. (4.15), but

after dropping the dependencies on v, and replacing the IBP by SBP constraints. The model

parameters are then found by applying the proposed ADMM to the augmented Lagrangian

function. For this, the objectives in each iteration of the ADMM for the IBP case described

above are adjusted accordingly.

To achieve efficiency, when applying the conjugate gradient algorithm in each iteration of

the ADMM, with either IBP or SBP constraints, we stop at the first line search, update the

corresponding parameters, and go to the next iteration. The ADMM cycle is repeated until

convergence of the augmented Lagrangian function.

4The exact derivation of Eq. (4.22)-(4.23) along with the gradients of Eq. (4.24) w.r.t. γ(v) and λ(v) are
given in the appendix.
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Algorithm 1 DS-GPLVM: Learning and Inference

Learning
Inputs: D = (Y (v), c), v = 1, . . . , V

Initialize µmax >> µ0 > 0, ρ = const., X0, A
(v)
0 , Λ

(v)
0 .

repeat
Step 1: Update (X,θs) by minimizing Eq. (4.16).
Step 2: Minimize ELOO from Eq. (4.24) w.r.t (γ(v),λ(v))v=1,...,V for IBP, and (γ,λ) for SBP.

Step 3: Update (Λ(v), µ, A(v)) for IBP, and (Λ, µ, A) for SBP, from Eq. (4.18)–(4.20).
until convergence of Eq. (4.15)
Outputs: X, A

Inference
Inputs: y

(v)
∗ for IBP, and [y

(1)
∗ , ...,y

(V )
∗ ] for SBP, k for classification.

Step 1: Find the projection x∗ to the latent space using Eq. (4.10) for IBP, and Eq. (4.11) for SBP.
Step 2: Apply kNN classifier to the latent space to obtain the class prediction: c∗ = kNN(x∗,X).
Output: c∗

Inference in the DS-GPLVM is straightforward. The test data y∗ (which for the view-

invariant case come from a single view v, and for the mutli-view case from all available views)

are first projected to the shared space using the back-mappings defined by Eq. (4.10) for the

IBP, or Eq. (4.11) for the SBP case. In the second step, classification of the target facial

expression is accomplished by using a single classifier trained on the discriminative shared

manifold. For this, we use the kNN classifier5. In Algorithm 1 we summarize the learning and

inference of the proposed DS-GPLVM.

4.3 Relation to Prior Work on Multi-view Learning

In what follows, we make a short overview of the most popular multi-view learning methods

that can be applied to the multi-view facial expression analysis. A common approach in

multi-view classification is to learn the view-specific projection using paired samples from

different views, and to project those samples onto a common latent space, followed by their

classification. The paired samples usually refer to samples that come from the same subject

(e.g., face images of a person in two different views). The goal here is to learn a latent space

5In the model as defined, the resulting posterior is the manifold and not the class information, so it cannot
be used for the classification. For this reason, we need to apply a classifier to the inputs projected onto this
manifold during inference. A reasonable choice would be to opt for the GP classifier, however, in our case this
would be impractical for two reasons: (i) in the case of more than two classes, the computation complexity
of GP classification increases significantly since we have to learn a different kernel for each class, making it
less applicable to the large number of classes/views. (ii) More importantly, since we are not interested in
the classification uncertainty, the GP classification is expected to perform similarly to the standard kernel
regression, as noted in [146]. Thus, we opt for the deterministic kNN classifier which is the commonly employed
classifier in the GPLVM discriminative models (e.g., see GPLRF [212]).
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4.3. Relation to Prior Work on Multi-view Learning

where the paired samples are placed close if they come from the same class/subject, and far

apart otherwise.

A widely used unsupervised approach to learn such latent spaces is canonical correlation

analysis (CCA) [84] and its non-linear variant kernel CCA (KCCA) [79]. The goal of these

methods is to find projection to a common subspace where the correlation between the low-

dimensional embeddings is maximized. These methods can handle data only in the pair-wise

manner (thus, only two views at a time), which makes them inappropriate for multi-view

classification problems with more than two views. A generalization of CCA to the multi-view

setting, multiview CCA (MCCA), has been proposed in [153]. The main idea of MCCA is

to find a common subspace where the correlation between the low-dimensional embeddings

of any two views is maximized. Apart from CCA-based methods, there are a few works that

extend the single-view subspace learning to the multi-view case. [103] is a representative of

this approach. It is a spectral clustering approach for the multi-view setting. In particular, the

spectral embedding from one view is used to constrain the data of the other view. Note that

the methods mentioned above are proposed for unsupervised learning. Thus, in the context

of the multi-view facial expression analysis, they are not expected to perform well as the view

alignment by these methods is not optimized for classification.

Another group of methods performs supervised multi-view analysis. For instance, multi-view

Fisher discriminant analysis (MFDA) [45] learns classifiers in different views, by maximizing

the agreement between the predicted labels of these classifiers. However, MFDA can only

be used for binary problems. In [95], the authors extended the LDA to the multiview case,

named multi-view discriminant analysis (MvDA). This model maximizes the between-class

and minimizes the within-class variations, across all the views, in the common subspace. Gen-

eralized multi-view analysis (GMA) [165] has also been proposed for extending dimensionality

reduction techniques for single views to multiple views. An instance of GMA, the generalized

multi-view LDA (GMLDA), finds a set of projections in each view that attempt to separate

the content of different classes and unite different views of the same class in a common sub-

space. Another example of GMA is the generalized multi-view locality preserving projections

(GMLPP), that extends the LPP [130] model, which can be used to find a discriminative data

manifold using the labels. Although effective in some tasks, these models are all based on lin-

ear projection functions. This can limit their performance when dealing with high-dimensional

input features (i.e., appearance based facial features), as well as their ability to successfully

unravel non-linear manifold(s) of multiple views. The above limitations have been addressed

in the proposed DS-GPLVM model.
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4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

Figure 4.2: Example images from MultiPIE (top), LFPW (middle) and SFEW (bottom) datasets with
the facial point annotations for the first two.

4.4 Experiments

Herein, we empirically assess the multi-view learning abilities of the proposed DS-GPLVM on

the tasks of facial expression classification of basic emotions and smile detection.

4.4.1 Experimental Protocol

Datasets. We evaluate the performance of the proposed DS-GPLVM on expressive face

images from three publicly available datasets: MultiPIE [76], labeled face parts in the wild

(LFPW) [17] and static facial expressions in the wild (SFEW) [44]. Fig. 4.2 shows sample

images from these datasets. From the MultiPIE dataset we used images of 270 subjects de-

picting acted facial expressions of Neutral (NE), Disgust (DI), Surprise (SU), Smile (SM),

Scream (SC) and Squint (SQ), captured at pan angles −30◦, −15◦, 0◦, 15◦ and 30◦, resulting

in 1531 images per pose. For all images, we selected the flash from the view of the correspond-

ing camera in order to have the same illumination conditions. The LFPW dataset contains

images downloaded from google.com, flickr.com, and yahoo.com, depicting spontaneous facial

expressions (mainly smiles), in large variation of poses, illumination and occlusion. We used

200 images of NE and SM expressions from the test set provided by [17]. We manually annot-

ated the images in terms of the poses used in MultiPIE. Lastly, the SFEW dataset consists

of 700 images of 95 subjects, extracted from movies containing facial expressions with various

head poses, occlusions and illumination conditions. The images have been labeled in terms

of six basic emotion expressions, i.e., Anger (AN), Disgust (DI), Fear (FE), Happiness (HA),

Sadness (SA), Surprise (SU), as well as Neutral (NE).
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Features. The images from both MultiPIE and LFPW were cropped so as to have equal

size (140 × 150 pixels), and annotations of the locations of 68 facial landmark points were

provided by [154], which were used to align the facial images in each pose using an affine

transform. Similarly, the images from SFEW were cropped (112 × 164 pixels) and aligned

using 5 facial landmark points (center of the eyes, tip of the nose, and corners of the mouth)

provided by [44]. For the experiments on MultiPIE, we used three sets of features: (I) facial

points, (II) LBPs [131], and (III) DCT [4]. More specifically, from each aligned facial image

we extracted LBPs and DCT features from local patches of size 15 × 15 around the facial

landmarks. For LBPs, we used 8 neighbors with radius 2, and in the case of DCT we kept

the first 15 coefficients (zig-zag method) of each patch. We then concatenated all the patches

to form the feature vectors. Note that LBP and DCT are complementary features, since the

former captures local information between a neighborhood of pixels, while the latter preserves

the spatial correlation of the pixels inside the neighborhood. Finally, we applied PCA on the

three feature sets, keeping 95% of the total energy, to remove unwanted noise and artifacts,

and reduce the dimensionality of the original feature vectors (especially the appearance based).

The resulting dimensionality of each set varies among the views. The dimensionality of feature

set (I) is around 20D, while for feature sets (II)&(III) we obtain 100D feature vectors. In the

experiments conducted on LFPW, we used only feature set (I), while for SFEW we extracted

the same local texture descriptors as in [44], i.e., local phase quantization (LPQ) [132] and

pyramid of HOG (PHOG) [22]. To reduce the dimensionality, we applied again PCA by keeping

the same amount of energy, i.e., 95%, resulted in 47D and 220D feature vectors, respectively.

Models Compared. We compare the DS-GPLVM to the state-of-the-art view-invariant

and multi-view learning methods. As the baseline method, we use the 1-nearest neighbor (1-

NN) classifier trained/tested in the original feature space. Similarly, we apply 1-NN classifier

to the subspace obtained by LDA, supervised LPP [211], and their kernel counterparts, the

D-GPLVM [183] with the LDA-based prior, and the GPLRF [212]. These are well-known

methods for supervised dimensionality reduction, and we show their performance in the view-

invariant version of the experiments. In the experiments conducted in the multi-view/feature

fusion settings, we compare DS-GPLVM to the baseline methods: CCA [84] and KCCA [79].

Since they are designed to deal with only two modalities (feature sets), we follow the pair-wise

(PW) evaluation approach, as in [95], i.e., the methods are trained on all combinations of

view pairs, and their results are averaged. We also compare DS-GPLVM to the state-of-the-

art methods for multi-view learning, namely, the MvDA [95], and the multi-view extensions

of LDA (GMLDA), and LPP (GMLPP), proposed in [165].

51



4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

Evaluation Procedure. For the experiments in MultiPIE and LFPW we performed 5-fold

subject independent cross-validation. We used a separate validation set to tune the parameters

of each model. More specifically, for all the GPLVM-based methods (i.e., DS-GPLVM, GPLRF

and D-GPLVM) the optimal weight for the prior β was set using a grid search. For the

GPLRF and D-GPLVM we performed additionally an extra grid search to tune the kernel’s

parameter of the mapping from the back-constrain (RBF kerenel was used) as in [183]. For

the GMA-based methods (i.e., GMLDA and GMLPP) we tuned the parameter that controls

the alignment of the subspaces as suggested in [165]. Finally, in KCCA the width of the

employed RBF kernel was cross-validated, while LPP, LDA and MvDA had no parameters to

tune. For the experiments on SFEW we adopted the configuration proposed by the creators

of the dataset in [44]. The data were already split into two folds, for training and testing.

Each time the training fold was further split in 5 folds, to tune the parameters of the models

with 5-fold subject independent cross-validation. For this experiment, due to the small size of

the dataset, after tuning the parameters with the cross validation, each model was re-trained

on the whole train and validation set (the one of the two original folds of the dataset) with

the optimal parameters, before reporting the results on the test set. To report the accuracy

of facial expression recognition, we use the classification rate, where the classification was

performed on the test set using the 1-NN classifier in all the subspace-based models.

The conducted experiments are organized as follows. In Section 4.4.2, we evaluate the

performance and the convergence of DS-GPVLM in terms of different parameter choices and

settings, using the MultiPIE dataset. In Section 4.4.3, we evaluate the effectiveness of the

proposed DS-GPLVM in the task of multi-view FER on MultiPIE. Specifically, we consider

two settings: the standard multi-view setting, where images from all the views are available

during training/inference, and view-invariant setting, where images from all the views are

available during training but only a single view is available during inference. It is important

to explicitly note the inherent limitation of all models on such multi-view setting, which has to

do with the existence of instance constraints, i.e., same image captured from different views,

during the training phase. Moreover, we also evaluate the model on the feature fusion task,

where different types of features extracted within the same view are used. In addition, we

challenge the robustness of the model under different illumination, where we evaluate the

performance of the model on images with different lighting conditions within the same view.

In Section 4.4.5, we test the ability of the DS-GPLVM to generalize to spontaneously displayed

facial expressions. For this, we perform the cross-dataset evaluation of the model, where images

of SM and NE class from MultiPIE are used for training, and images of the corresponding

classes from LFPW for testing. Finally, in Section 4.4.6, we evaluate DS-GPLVM on the
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Figure 4.3: DS-GPLVM. Upper row shows mean classification rate across all 5 poses from the MultiPIE
dataset using feature-set (I) as a function of: (a) the number of training data per pose, (b) the dimen-
sionality of the latent space, and (c) the prior scale parameter β. Lower row depicts: (d) the negative
Log-Likelihood, (e) the norms of the constraints in the DS-GPLVM, and (f) the mean classification
rate, as a function of the number of the ADMM cycles.

feature fusion task using real-world images from the SFEW dataset.

4.4.2 DS-GPLVM: Theoretical Evaluation

In this section, we evaluate the performance of the proposed DS-GPLVM w.r.t. the various

parameter values. For this, we use the feature set (I), i.e., the facial points, extracted from the

MultiPIE dataset. Fig. 4.3(a)–(c) show the average classification rate (across the views) of the

DS-GPLVM for different number of training samples per view, the size of the shared-space,

and parameter β = {1, 3, 10, 30, 100, 300, 1000, 10000}. Fig. 4.3(a) shows the performance of

SBP and IBP versions of DS-GPLVM, the parameters of which are learned using a varying

number of training data, while the manifold size is fixed to 5. We see that the SBP version

of DS-GPLVM (multi-view setting) achieves a high classification rate (∼ 87%) when using a

relatively small number of training data (i.e., 100 images per view). On the other hand, the

IBP version of DS-GPLVM (view-invariant setting) requires more training data (∼ 500 images

per view) to achieve a similar performance. This is a consequence of not using the images from

all available views during the inference step. However, with the increased number of training

data, the model effectively learns the correlations among the views, rendering the information

from some views redundant during the inference. In Fig. 4.3(b), we see how the size of the
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4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

shared space affects the accuracy of the learned model. It is clear that both SBP and IBP

variants of the model find the 5-dimensional shared space optimal for classification. Lower

dimensional manifolds fail to explain the correlations among the views, while manifolds with

more than 5 dimensions do not include any additional discriminative information. Fig. 4.3(c)

illustrates the influence of the shared space discriminative prior on the classification task. In

the case of both SBP and IBP, β = 300 results in the best performance of the model, while

its further increase leads to a drop in the performance. This is expected, as for high values

of β the likelihood term in the DS-GPLVM is fully ignored, and hence, the model resembles

the LPP. Evidently, such model is prone to overfitting mainly because of the strong influence

of the labels during training. On the other hand, for small values of β the shared space is

not sufficiently informed about the class labels, resulting again in a lower performance. In

what follows, we set for both the SBP and IBP variants of the model the number of training

examples to 500, the size of the shared space to 5, and β = 300.

Fig. 4.3(d)–(f) illustrate the convergence properties of the DS-GPLVM. We see from

Fig. 4.3(d) that the regularized negative log-likelihood of the model reaches a local minimum

in less than 25 cycles of the ADMM. Fig. 4.3(e) shows the Frobenius norm [19] of the con-

straints for the SBP and IBP variants, i.e., the difference between the estimated shared space

and the back-mappings. Note that the DS-GPLVM is always initialized in the −15◦ view (it is

found to be the most informative view). Hence, we can see that the norm of this view (black

curve) starts from a low value when IBP is used. However, with more cycles of the ADMM,

the DS-GPLVM learns the shared manifold by taking into account all views, and thus, the

error of back projections from the remaining views to the shared subspace decreases, while the

one from the initialized view, i.e., the −15◦, increases slightly – the consequence of the model

trying to align the manifolds of different views. The red curve represents the error between the

learned subspace and the back projections in the case of SBP. It is clear that the SBP variant

outperforms the IBP variant of the model, since the former achieves a closer back-projection

to the shared discriminative manifold, resulting in a better classification performance. This

comes with a larger number of the ADMM cycles during learning of the DS-GPLVM with SBP,

since it uses all views simultaneously to learn the back-mapping. Finally, from Figs. 4.3(e)–(f),

we observe strong correlation between the norms of the model variants and the classification

rate. In all cases, the increased classification performance is achieved by decreasing the gap

between the shared-space and back-mappings, with both measures converging synchronously.
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Table 4.1: Average classification rate across five views from the MultiPIE dataset for three feature sets.
IBP version of DS-GPLVM was trained using all available views, and tested per view. The reported
standard deviation is across five views.

Methods
Features

I II III
kNN 76.15 ± 5.42 81.71 ± 2.86 71.80 ± 2.23
LDA 87.72 ± 6.67 86.24 ± 2.31 87.02 ± 2.59
LPP 87.81 ± 6.65 86.16 ± 2.16 86.82 ± 2.60

D-GPLVM 87.17 ± 5.80 85.92 ± 2.95 86.87 ± 3.15
GPLRF 86.93 ± 6.30 85.58 ± 2.66 86.88 ± 2.91
GMLDA 86.72 ± 6.57 85.18 ± 2.94 86.40 ± 3.40
GMLPP 87.74 ± 6.12 86.10 ± 2.13 86.21 ± 2.06
MvDA 87.84 ± 6.51 86.66 ± 2.84 86.79 ± 2.86

DS-GPLVM 90.60 ± 5.40 88.44 ± 2.84 89.18 ± 2.83

4.4.3 Comparisons with other Multi-view Learning Methods

Same Facial Features in Multiple Views

We evaluate the proposed DS-GPLVM model across views in both view-invariant and multi-

view setting. The former refers to the scenario where data from all views are used for training,

while testing is performed using data from each view separately, and the latent space is back-

constrained using the IBP. The latter refers to the scenario where data from all views are used

during training and testing, and the latent space is back-constrained using the SBP. The same

strategy was used for evaluation of other multi-view techniques i.e., GMLDA and GMLPP.

Table 4.1 summarizes the results for the three sets of features, averaged across the five views

from MultiPIE. We see that the facial points (feature set (I)) result in a more discriminative

descriptor for all methods, although we end up with higher standard deviation compared to the

appearance features (feature sets (II) and (III)). Evidently, DS-GPLVM outperforms the other

view-invariant and multi-view models on all three feature sets, showing that it can successfully

unravel the discriminative shared-space that is better suited for FER. Interestingly, in this

experiment LDA- and LPP-based linear methods achieve high accuracy, which is comparable

to that of D-GPLVM and GPLRF. Moreover, GMLDA and GMLPP perform similarly to their

single view trained counterparts, indicating that they were not able to fully benefit from the

presence of additional views. We also observe a similar performance of the MvDA and the

standard LDA. Note that the accuracy of DS-GPLVM is higher by 3% than that of GPLRF,

which is a special case of DS-GPLVM. We attribute this to the ability of the DS-GPVLM to

integrate the discriminative information from multiple views into the shared space.

Table 4.2 shows the performance of the models tested across all views, when feature set (I)

(the best for all the models from Table 4.1) is used. It is evident that the proposed DS-GPLVM
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Table 4.2: View-invariant classification rate on MultiPIE dataset for the best feature set (i.e., facial
points (I)). IBP version of DS-GPLVM is trained using all available views, and tested per view. The
reported standard deviation is across 5 folds.

Methods
Poses

−30◦ −15◦ 0◦ 15◦ 30◦

kNN 80.88 ± 0.007 81.74 ± 0.014 68.36 ± 0.054 75.03 ± 0.024 74.78 ± 0.012
LDA 92.52 ± 0.015 94.37 ± 0.013 77.21 ± 0.014 87.07 ± 0.040 87.47 ± 0.007
LPP 92.42 ± 0.017 94.56 ± 0.011 77.33 ± 0.021 87.06 ± 0.045 87.68 ± 0.011

D-GPLVM 91.65 ± 0.017 93.51 ± 0.009 78.70 ± 0.021 85.96 ± 0.040 86.04 ± 0.010
GPLRF 91.65 ± 0.017 93.77 ± 0.007 77.59 ± 0.021 85.66 ± 0.026 86.01 ± 0.008
GMLDA 90.47 ± 0.012 94.18 ± 0.007 76.60 ± 0.029 86.64 ± 0.032 85.72 ± 0.015
GMLPP 91.86 ± 0.013 94.13 ± 0.002 78.16 ± 0.013 87.22 ± 0.023 87.36 ± 0.008
MvDA 92.49 ± 0.011 94.22 ± 0.014 77.51 ± 0.022 87.10 ± 0.031 87.89 ± 0.010

DS-GPLVM 93.55 ± 0.019 96.96 ± 0.012 82.42 ± 0.018 89.97 ± 0.023 90.11 ± 0.028

performs consistently better than the compared models across all views. Note that all models

achieve the lowest classification rate in the frontal view. However, the DS-GPLVM significantly

improves the performance attained by the other models in this view. We attribute this to the

fact that DS-GPLVM performs the classification in the shared space, where the classification

of the expressions from the frontal view is facilitated due to the discriminative information

learned from the other views. Furthermore, it is worth noting that the models’ accuracy on the

negative pan angles (the left side of the face) is higher than on the corresponding positive pan

angles (the right side of the face). Since MultiPIE contains more examples of negative emotion

expressions, this confirms recent findings in [138] showing that the left hemisphere of the face

is more informative when it comes to expressing negative emotions (e.g., Disgust). The right

hemisphere is more informative for positive emotions (e.g., Happiness). In other words, due

to the imbalance of the emotion categories in the used dataset, the learned classifiers were

biased toward negative emotion expressions, and, hence, to the negative pan angles.

Table 4.3 compares the performance of the SBP variant of DS-GPLVM with other multi-view

learning methods on three feature sets. The poor performance of KCCA can be attributed to its

inherent propensity to overfitting the training data, as also observed in, e.g., [79]. In addition,

both CCA and KCCA do not use any supervisory information during the subspace learning,

which further explains their low performance. By comparing GPLRF (with concatenated

features from different views) and DS-GPLVM, we see that the former, although not a multi-

view method, performs comparably to our DS-GPLVM in the case of feature set (I). We

attribute this to the fact that GPLRF can effectively explain the variations in facial points

from multiple views using a single GP. Yet, because of the large variation in the appearance of

facial expressions from different views, the same is not the case when feature sets (II) and (III)

are used. When compared to the state-of-the-art methods for multi-view learning (GMA and
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Table 4.3: Classification rate for the multi-view testing scenario using the SBP version of DS-GPLVM.
The reported standard deviation is across the 5 folds.

Methods
Features

I II III
PW-CCA 72.42 ± 0.020 73.56 ± 0.025 56.07 ± 0.028

PW-KCCA 52.92 ± 0.039 69.15 ± 0.017 42.42 ± 0.026
GPLRF (conc.) 97.37 ± 0.014 89.42 ± 0.012 89.94 ± 0.012

GMLDA 96.33 ± 0.015 93.04 ± 0.011 92.15 ± 0.013
GMLPP 96.20 ± 0.014 91.37 ± 0.019 90.83 ± 0.017
MvDA 97.12 ± 0.017 93.56 ± 0.011 92.81 ± 0.015

DS-GPLVM 97.98 ± 0.008 93.96 ± 0.015 93.29 ± 0.010

MvDA), DS-GPLVM performs similarly or better on all three feature sets. Furthermore, the

SBP version of DS-GPLVM during inference succeeds to model complementary information

from all available views, resulting in a higher accuracy compared to the best performing view,

i.e., −15◦, of the IBP variant of DS-GPLVM (see Table 4.2).

Feature Fusion

We next evaluate DS-GPLVM in the feature fusion task, where the goal is to augment view-

invariant facial expression classification by fusing different feature sets. Specifically, we trained

the SBP version of DS-GPLVM using the three feature sets extracted from the frontal view

only. This choice has been made because the frontal view is not the most informative one

(−15◦ is), and hence, there is a lot space for improvement. From Table 4.4, we see that

the accuracy of DS-GPLVM in the frontal view outperforms that achieved by the GPLRF

by more than 3%, where the features are simply concatenated and used as input. This is

because GPLRF cannot fully account for the variations in all three feature sets using a single

GP. By contrast, DS-GPLVM learns separate GPs for each feature set, resulting in improved

classification performance in the frontal view. It is also important to mention that by training

GPLRF using each feature set separately, we obtained the following classification rates: 77.6%,

81.3% and 82.1%, for feature sets (I), (II), and (III), respectively. Compared to the accuracy

of DS-GPLVM in Table 4.4 (87.1%), the proposed feature fusion significantly outperforms

each of the feature sets used independently. This is expected since the appearance features

(LBPs and DCT), extracted from local patches, do not encode global information about face

geometry, which is efficiently encoded by facial points. On the other hand, facial points are

not informative regarding transient changes in facial appearance (e.g., wrinkles and bulges)

which are successfully captured by the appearance features. Thus, the combination of these

features within the proposed framework turns out to be highly effective. The other multi-view

methods also achieve significant increase in their performance (apart from GMLDA). However,
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4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

Table 4.4: Accuracy of the augmented classification in the frontal pose. Feature fusion is attained with
the SBP version of DS-GPLVM.

Methods
GPLRF (conc.) GMLDA GMLPP MvDA DS-GPLVM
83.16 ± 0.021 78.94 ± 0.018 85.95 ± 0.019 86.19 ± 0.014 87.13 ± 0.019

DS-GPLVM outperforms (although marginally in some cases) all these state-of-the-art models.

Same Facial Features in Different Illumination

Herein, we evaluate the proposed DS-GPLVM under different illumination on MultiPIE, where

the goal is to learn an illumination-free manifold for facial expression classification. For the

purposes of this experiment, we use only images from the frontal view with two different

lighting conditions: (i) no lighting source (dark view), and (ii) lighting from the flash of the

corresponding camera (bright view). Each lighting condition has been considered as a separate

view to train the IBP variant of DS-GPVLM with feature set III. DCT features are selected,

since they are less robust to illumination variations than LBPs, and thus a difference in the

performance between the two illumination conditions is expected. In Table 4.5 we see that

this difference is present in the results of the single-view method, i.e., the GPLRF. The latter

is trained separately for each lighting condition, and hence, the two learned manifolds falsely

encode the illumination as important information, resulting in a considerable gap between

the performance of the bright and the dark view. Contrary to that, the compared multi-view

methods, i.e., GMLDA, GMLPP and MvDA, manage to remove, to some extent, the lighting

condition of the views under the common space. This is evidenced by the improvement on the

performance of the dark view, although a notable difference between the performance of the

two views still exists. On the other hand, the proposed DS-GPLVM, not only achieves better

results under both illumination conditions, but it also manages to align them by discarding the

illumination under the shared space. Note that the DS-GPLVM reports similar classification

rate, regardless the original lighting condition of the view.

4.4.4 Comparisons with other Multi-view Methods

Herin, we compare DS-GPLVM (with the IBP variant using feature set (III)) to the state-

of-the-art methods for view-invariant facial expression classification. The results for the

LGBP-based method, where the LBP features are extracted from Gabor images, are obtained

from [127]. For the method in [175], we extracted the sparse SIFT (SSIFT) features from

the same images that we used from MultiPIE. In both of the aforementioned methods, the
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Table 4.5: Classification rate on the frontal view under different illumination for feature set (III). The
IBP variant of DS-GPLVM was used. The reported standard deviation is across the 5 folds.

Methods
Illumination

Frontal flash No flash

GPLRF 82.09 ± 0.015 77.00 ± 0.025
GMLDA 82.76 ± 0.017 84.01 ± 0.029
GMLPP 82.10 ± 0.029 84.75 ± 0.030
MvDA 83.80 ± 0.015 84.20 ± 0.019

DS-GPLVM 85.51 ± 0.032 85.68 ± 0.021

target features (LGBP and SSIFT) are extracted per-view, and then fed into the view-specific

SVM classifiers. We also compared our model to the coupled GP (CGP) [148], where first

view-normalization is performed by projecting a set of facial points (feature set (I)) from non-

frontal views to the canonical view. In our experiments with CGP, we set the canonical view

to the most discriminative view among the positive pan angles (i.e., 15◦). This was followed by

classification using the SVM learned in this view. Table 4.6 shows the comparative results. We

observe first that all methods (except [175]) achieve the best results for the 15◦ view, indicating

that regardless of the method/features employed, this view is more discriminative (among the

positive pan angles) for the target task. We also note that DS-GPLVM outperforms on average

the other two methods, which are based on the appearance features. This difference is in part

due to the features used and in part due to the fact that the methods in [127] and [175] both

fail to model correlations between different views. By contrast, the CGP method accounts for

the relations between the views in a pair-wise manner, while DS-GPLVM does so for all the

views simultaneously. Hence, the proposed DS-GPLVM shows superior performance to that

of CGP. This is because CGP performs view alignment (i) directly in the observation space,

and (ii) without using any discriminative criterion during this process. Thus, the effects of

high-dimensional noise and the errors of view-normalization adversely affect its performance

in the classification task. On the other hand, DS-GPLVM imposes further constraints on the

shared manifold, resulting in a better performance on the target task. This is also reflected in

the confusion matrices in Fig. 4.4. Note that the main source of confusion is between the fa-

cial expressions of Disgust and Squint. This is because they are characterized by similar facial

changes in the region of the eyes. However, the proposed DS-GPLVM improves significantly

the accuracy on Squint, compared to the other models.
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Table 4.6: Comparison of state-of-the-art methods on the MultiPIE database. The IBP version of
DS-GPLVM with feature set (III), outperforms the state-of-the-art methods for view-invariant facial
expression classification. The reported standard deviation is across 5 folds.

Methods
Poses

0◦ 15◦ 30◦

LGBP [127] 82.1 87.3 75.6
SSIFT [175] 81.14 ± 0.009 79.25 ± 0.016 77.14 ± 0.019
CGP [148] 80.44 ± 0.017 86.41 ± 0.013 83.73 ± 0.019

DS-GPLVM 84.31 ± 0.025 89.21 ± 0.015 90.26 ± 0.025
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Figure 4.4: Comparative confusion matrices for facial expression classification over all angles of view
for the (a) DS-GPLVM, (b) CGP, (c) SSIFT and (d) LGBP.

4.4.5 Cross Dataset Experiments on MultiPIE and LFPW

In this section, we test the ability of DS-GPLVM (the IBP variant) to generalize to unseen

real-world spontaneous data. We evaluate different models on the smile detection task, where

the feature set (I) extracted from images from MultiPIE is used for training. Images from

LFPW are used for testing. This is a rather challenging task mainly because the test images

are captured in an uncontrolled environment, which is characterized by large variation in head

poses and illumination, and occlusions of parts of the face. Also, the models are trained using

data of posed (deliberately displayed as opposed to spontaneous and ‘in the wild’) expressions,

which can differ considerably in subtlety compared to the spontaneous expressions used for

testing. The difficulty of the task is evidenced by the results in Table 4.7, where we observe a

significant drop in accuracy of all methods. Furthermore, we observe that the most informative

views for smile detection are the ones with positive degrees (the right side of the face). This,

again, is for the same reasons as explained in Sec. 4.4.3. However, all methods attain the

highest accuracy in the frontal pose. We attribute this to the fact that the faces with non-

frontal poses do not exactly belong in the discrete set of poses, but rather in a continuous

range from 0◦ to ±30◦. Thus, the accuracy of the pose registration significantly affects the

performance of the models. Nevertheless, the proposed DS-GPLVM outperforms the other

models by a large margin in all poses except −30◦. To explain this, we checked the number of
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Table 4.7: Smile detection on images from the LFPW dataset. The methods were trained on images
from the MultiPIE dataset using feature set (I). We used the IBP version of DS-GPLVM for the
view-invariant facial expression classification.

Method
Poses

−30◦ −15◦ 0◦ 15◦ 30◦

GMLDA 69.00 43.00 80.94 55.76 76.00
GMLPP 70.00 47.50 81.25 57.58 79.66
MvDA 70.00 50.00 81.25 51.52 80.00

DS-GPLVM 55.33 58.00 90.00 74.55 80.00

Table 4.8: Classification rates per expression category obtained by different models trained/tested using
the SFEW dataset.

Anger Disgust Fear Happiness Neutral Sadness Surprise Average
Baseline 23.00 13.00 13.90 29.00 23.00 17.00 13.50 18.90
GMLDA 23.21 17.65 29.29 21.93 25.00 11.11 10.99 19.90
GMLPP 16.07 21.18 27.27 39.47 20.00 19.19 16.48 22.80
MvDA 23.21 17.65 27.27 40.35 27.00 10.10 13.19 22.70

DS-GPLVM 25.89 28.24 17.17 42.98 14.00 33.33 10.99 24.70

test examples of smiles in this pose, and found that only few were available (contrary to other

poses, which contained far more examples). Therefore, the misclassification of some resulted

in a significant drop in the performance of DS-GPLVM.

4.4.6 Expression Recognition on Real World Images from SFEW

Finally, we evaluate the models on the feature fusion task, where the features are extracted

from images of spontaneously displayed facial expressions in real-world environment. Spe-

cifically, we used LPQ [132] and PHOG [22] features from expressive images from the SFEW

dataset. Contrary to the cross-dataset evaluation from the previous section, here both training

and testing are performed using real-world spontaneous facial expressions. Note that LPQ is

a texture descriptor that captures local information over a neighborhood of pixels, resulting in

its being robust to illumination changes. On the other hand, PHOG is a local descriptor which

is capable of preserving the spatial layout of the local shapes in an image. Thus, we expect

the fusion of these two to achieve improved performance on the target task. The provided

images of SFEW were originally divided into two subject independent folds, and we report

the average results over the folds.

Table 4.8 shows the results obtained for different methods. We employ the SBP variant of

the DS-GPLVM. As a baseline we use the results obtained by the database creators [44]. The

authors used a non-linear SVM classifier on the concatenation of the features to report the

classification rate for the fusion task. We can see that all the employed multi-view learning
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4. Gaussian Processes for Multi-view and View-invariant Facial Expression Recognition

methods outperform the baseline, on average. This is due to their ability to effectively exploit

the discriminative information that is embedded in both feature spaces. However, in most

cases, the linear multi-view learning methods are outperformed by the proposed DS-GPLVM.

We attribute this to the fact that the linear models are unable to fully fuse the employed

features on a linear shared space. By contrast, better fusion is attained by the non-linear

mappings in the DS-GPLVM, resulting in its average performance being the best among the

tested models. Note, however, that in the case of Surprise, Fear and Neutral, DS-GPLVM

reports the lowest performance. By inspecting the back-projected test examples of these

two expressions on the shared manifold, we observed that Neutral was spread around other

emotion categories. This finding suggests that the learned back-projections of DS-GPLVM

cannot effectively explain the varying level of expressiveness among the different subjects.

Hence, examples of expressive images with low-intensity levels are being recognized as Neutral.

Nevertheless, DS-GPLVM outperforms the other models on the remaining expressions, with a

considerable improvement on Disgust, Happiness and Sadness.

4.5 Conclusion

In this chapter, we proposed the DS-GPLVM model for learning a discriminative manifold

shared among expressive images from multiple views. Due to the introduced prior, which

explicitly encodes the class information from the available labels, the recovered latent space

is optimial for the expression classification task. The DS-GPLVM can be regarged as a multi-

view generalization of latent variable models that learn a discriminative subspace from a single

observation space. As such, DS-GPLVM constitutes a complete non-parametric multi-view

framework that can instantiate other non-linear single-view models (i.e., D-GPLVM [183] and

GPLRF [212]), and can also extend the linear multi-view techniques (i.e., GMA [165] and

MvDA [95]) to their non-linear counterparts. The conducted experimental analysis on posed

and spontaneously displayed facial expressions, indicates that modeling of the manifold shared

across different views and/or features using the proposed framework considerably improves

both multi- and per- view/feature classification of facial expressions.
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Latent Variable Models for Joint

Action Unit Detection
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5.1 Introduction

As we have already discussed, facial expressions are typically encoded as a combination of

facial muscle activations, i.e., action units (AUs). Depending on context, these AUs co-occur

in specific patterns, and rarely operate in isolation. Yet, most existing methods for automatic

AU detection fail to exploit dependencies among them, and even if they do so, they cannot

exploit correlations between different types of facial features. This has an adverse impact

on the detection task. Hence, a desired model should be able to account for the variations

in both sources, i.e., input features and output labels. To our knowledge, the only methods

that attempt both are [194, 215, 206]. However, these methods either suffer from the curse of

dimensionality as they perform feature fusion by concatenation of geometric- and appearance-

based features using parametric models [194, 215], or cannot model more than a few AUs

jointly due to the computational burden of their (non-parametric) inference methods [206].
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Figure 5.1: The proposed MC-LVM. The geometrical and appearance input features, y(1) and y(2),
are first projected onto the shared manifold X. The fusion is attained via GP conditionals, p(y(1)|x)
and p(y(2)|x), that generate the inputs. Classification is performed on the manifold via jointly learned
logistic functions p(z(c)|x) for multiple AU detection. The subspace is regularized using constraints
imposed on both latent positions and output classifiers, encoding local and global dependencies among
the AUs.

In this chapter, we propose a multi-conditional latent variable model (MC-LVM) that

performs simultaneously the fusion of different facial features and joint detection of AUs.

Instead of performing the AU detection in the original feature space, as done in existing

works [194, 206, 215], the MC-LVM attains the feature fusion via a low-dimensional subspace

shared across the feature sets. This subspace is learned by employing the framework of shared

GPs [167]. Here, the learning is constrained by two types of newly introduced constraints.

Topological constraints encode local dependencies (from image pairs) among multiple AUs

by means of string kernels [146]. Relational constraints, enforce the co-occurrences of the

model predictions to match those of the target labels. The learning of the subspace is per-

formed jointly with the AU detectors. The latter are modeled via multiple logistic regressors

which operate on the shared subspace of the fused features. Note that, in contrast to exist-

ing multi-output subspace learning methods (e.g., [202, 1]), the MC-LVM learns a subspace

for multiple AU detection that combines both the generative and discriminative properties of

probabilistic models, while simultaneously modeling the AU correlations at both feature level

(via the proposed fusion approach) and model level (via the introduced regularizers). Due to

its multi-conditional likelihood function, the proposed model is less susceptible to overfitting

compared to purely discriminative models. Its generative part acts as an efficient regularizer

during the learning stage. The proposed multi-conditional learning is motivated by the fact

that discriminative learning usually yields better results when provided with sufficient train-

ing data. On the other hand, generative models, if specified well, can generalize better with

fewer training data [97]. Thus, leveraging the advantages of the two approaches during the

model learning process is expected to lead to better generalization performance. To further

improve the robustness and efficiency of the parameter estimation, a Bayesian learning of the
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Figure 5.2: Graphical representation of the proposed MC-LVM. The definition of the conditionals is
given in Section 5.2.3.

data subspace is facilitated through Monte Carlo sampling, and an expectation-maximization

(EM)-like learning approach. During inference, the simultaneous detection of multiple AUs is

performed by applying the learned back-mappings from inputs to the shared subspace, where

the detection of target AUs is performed consequently. The outline of the proposed approach

is illustrated in Fig. 5.1. Note that the contents of this chapter are published in [62, 63].

5.2 Multi-conditional Latent Variable Model

5.2.1 Notation and Preliminaries

Let us denote the training set as D = {Y ,Z}, which is comprised of V observed and corres-

ponding input channels Y = {Y (v)}Vv=1, and the associated output labels Z. Each observed

channel is comprised of N i.i.d. multivariate samples Y (v) = {y(v)i }Ni=1, where y
(v)
i ∈ RDv

denote corresponding facial features across the multiple channels. Furthermore, Z = {zi}Ni=1

denote multiple binary labels, with zi ∈ {−1,+1}C encoding C (co-occurring) outputs. Let

us further assume the existence of a latent space X = {xi}Ni=1, where xi ∈ Rq, q � Dv, which

is a low-dimensional representation of the original observations Y . This implies that there

exists a set of latent functions f (v), that can generate y
(v)
i from xi, i.e., y

(v)
i = f (v)(xi) + ε,

where ε ∼ N (0, σ2vI) is additive Gaussian noise. In the proposed approach we model these

functions using the framework of GPs [146]. For notation simplicity, we set the number of

input spaces to V = 2, as generalization to more than two input spaces is straightforward.

The model outline is depicted in Fig. 5.2.
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5.2.2 MC-LVM: Model Definition

Our goal is to learn a model that simultaneously combines different inputs and detects ac-

tivations of multiple outputs. We are interested in finding the latent representations x, that

jointly generate y and z. In a Bayesian approach, this requires the computation of the joint

marginal likelihood:

p(y, z) =

∫
p(y(1)|x)p(y(2)|x)p(z|x)p(x)dx, (5.1)

where we exploited the property of conditional independence, i.e., {y(1),y(2), z} are inde-

pendent given the latent variable x. Note that in order to compute the above integral, we

need to marginalize out x. However, for the non-linear conditional models, which we detail

in Section 5.2.3, the integral in Eq. (5.1) is intractable. To overcome this, we numerically

approximate the marginal likelihood using Monte Carlo sampling [19]

p(y, z) ≈ 1

S

S∑
s=1

p(y(1)|xs)p(y(2)|xs)p(z|xs). (5.2)

The samples xs, s = 1, . . . , S are drawn from p(x), which is defined in Section 5.2.3. Using

the Bayes’ rule, we can derive the posterior over the latent variable

p(x|y(1),y(2), z) =
p(z|x)p(y(1),y(2)|x)p(x)

1
S

∑S
s=1 p(y

(1),y(2)|xs)p(z|xs)
. (5.3)

We then calculate the above probability for all pairs of training data i and Monte Carlo

latent samples s, to obtain the membership probabilities p(s, i) = p(xs|y(1)i ,y
(2)
i , zi). Hence,

p(s, i) denotes the posterior probability of acquiring the sample xs, having observed the inputs

y
(1)
i ,y

(2)
i and outputs zi. This gives rise to the expectation of the latent points under the

sampling distribution:

xi = E{x|y(1)i ,y
(2)
i , zi} =

S∑
s=1

p(s, i)xs, (5.4)

which allows us to obtain the point estimates of the shared latent positions without explicitly

optimizing them for each training pair. In this way, not only we end up with a probabilistic

estimate of the latent space, but we also considerably reduce the number of model parameters,

and hence, avoid overfitting the latent coordinates.

5.2.3 MC-LVM: Conditional Models

From Eq. (5.1), we see that the marginal likelihood of the desired model is composed of the

conditional probabilities p(y(v)|x) and p(z|x), while it also depends on the sampling distribu-

tion p(x). Hence, the correct choice of these distributions critically affects the representation
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abilities of the shared subspace, and thus, the model’s performance. Effectively, this requires

the learning of the conditional models that facilitate: (i) generative mappings from the latent

space to the inputs (x → y(v), v = 1, 2, · · · , V ); (ii) projection mappings from the inputs to

latent space (y(v) → x); (iii) discriminative mappings from latent space to multiple binary

outputs (x→ z), as depicted in Fig. 5.2.

Generative mappings. Different probabilistic models such as Gaussian models [21] or naive

Bayes models [123] can be employed to recover the generative mappings. Yet, parametric

models are limited in their ability to recover non-linear mappings from the latent space to

high-dimensional input features. Herein, we place GP priors on the functions that generate

the observed features. This gives rise to the likelihood:

p(Y (v)|X,θ(v)) =
1√

(2π)NDv |K(v)
Y + σ2vI|Dv

exp

[
−1

2
tr
(

(K
(v)
Y + σ2vI)−1Y (v)Y (v)T

)]
,

(5.5)

whereK
(v)
Y is an N×N kernel matrix, obtained by applying the covariance function k(v)(x,x′)

to the elements of X, and it is shared across the dimensions of Y (v). As a covariance function

we choose again the sum of the RBF, bias and noise terms

k(v)(x,x′) = θ
(v)
1 exp(−θ

(v)
2

2
‖x− x′‖2) + θ

(v)
3 +

δx,x′

θ
(v)
4

, (5.6)

where δx,x′ is the Kronecker delta function, and θ(v) = {θ(v)1 , θ
(v)
2 , θ

(v)
3 , θ

(v)
4 } are the kernel

hyper-parameters. The predictive probability of the specified GP for a new x∗ is given by

p(y
(v)
∗ |x∗,X,Y (v)) = N (µ

y
(v)
∗
, σ2
y
(v)
∗

), (5.7)

with µ
y
(v)
∗

and σ2
y
(v)
∗

as:

µ
y
(v)
∗

= k
(v)
∗

T
(K

(v)
Y + σ2vI)−1Y (v) (5.8)

σ2
y
(v)
∗

= k
(v)
∗∗ − k(v)∗

T
(K

(v)
Y + σ2vI)−1k

(v)
∗ + σ2v . (5.9)

The kernel values k
(v)
∗ and k

(v)
∗∗ are computed by applying Eq. (5.6) to the pairs (X,x∗)

and (x∗,x∗), respectively, and σ2v is the noise of the process. Hence, the conditional model

p(y(v)|x), v = 1, 2, in Eq. (5.3) is now fully defined by the Gaussian distribution in Eq. (5.7),

where the latent sample xs acts as the new latent position x∗.

Projection mappings and sampling. To model the sampling distribution p(x), the

simplest choice is to assume a spherical Gaussian prior over the latent points x. However,
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such an uninformative prior would give rise to latent representations that cannot effectively

exploit the structure of input data. Thus, we define a sampling distribution that constraints

the samples xs by conditioning them on the inputs, i.e., p̃(x) = p(x|y(1),y(2)). This is mo-

tivated by the notion of back-constraints in GPLVM [106], where this type of conditional

distribution is used to learn the mappings from the input to the latent space. We learn the

conditional model for p̃(x) using GPs, as done for the generative mappings. The use of GPs

in the projection mappings, apart from modeling the sampling distribution, also allows us to

easily combine multiple features within its kernel matrix as KX = K
(1)
X +K

(2)
X , corresponding

to the sum of the kernel functions defined on y(1) and y(2), respectively. Hence, the resulting

kernel is responsible for effectively performing the non-linear fusion of the input features into

a single latent point. It can be regarded as an automatic MKL approach with non-parametric

GP regression functions. Finally, the resulting conditional model p(x∗|y(1)∗ ,y
(2)
∗ ) has the form

of Eq. (5.7) (with the relations between y(v) and x being reverted), and since it is a low-

dimensional Gaussian distribution, sampling from it can be performed efficiently.

Discriminative mappings. Since we are interested in binary detection of activations of

multiple AUs, we use the conditional models based on the logistic regression [146] to model

p(z|x). By assuming conditional independence given the latent positions x, we can factorize

this conditional as:

p(z|x,W ) = p(z(1)|x,w1) . . . p(z
(C)|x,wC), (5.10)

p(z(c)|x,wc) = (1 + e−x
Twcz(c))−1, c = 1, . . . , C, (5.11)

where W = [w1, . . . ,wC ] ∈ Rq×C contains the weight vectors of the individual functions.

During inference, if p(z
(c)
∗ |x∗) > 0.5, the c-th output is active, i.e., z

(c)
∗ = 1.

5.2.4 MC-LVM: Output Constraints

Due to the potentially large number of outputs, the topology of the latent space needs to be

constrained to avoid the model focusing on unimportant variation in the data (e.g., modeling

relations between rarely co-occurring outputs). Furthermore, we need to encourage the model

to produce similar predictions for outputs that are more likely to co-occur (e.g., AU6+12),

and competing predictions for those that rarely co-occur (e.g., AU12 and AU17). We describe

below how we construct appropriate constraints based on the output relations, and how these

are incorporated into the MC-LVM framework.1

1For the mathematical analysis of this subsection, the negative class in the output labels z will be denoted
with 0 instead of the used −1.
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Topological constraints. Herein, we define the constraints that encode co-occurrences of

the output labels using the notion of graph regularization [29]. This process resembles the

one we described in Section 4.2.2 for constraining the DS-GPLVM with the discriminative

information. However, the challenge here is to design a similarity matrix that would encode

the discriminative information from the multiple available labels. Hence, we construct the

matrix by measuring the similarity between the output label vectors using the notion of string

kernels [146] as:

S(x,x′) =
∑
l∈A

zTl,xzl,x′ , (5.12)

where A is the set of all possible 2C combination of the output labels and l is the set of

possible sub-labels of tuples, triples, etc. zl,x denotes the specific sub-label of x and holds

the currently active ‘sub-string’ l of the actual labels. Hence, Sij contains the number of co-

activated outputs in all sub-labels between two instances i and j. Note that contrary to [209],

we measure the similarity of the outputs based on all possible groups of co-occurring AUs,

and not only on pairs of AUs. The graph Laplacian matrix is then defined as L = D − S,

where D is a diagonal matrix with Dii =
∑

j Sij . Finally, using Eq. (5.4), we arrive at the

Laplacian regularization term

C = tr(XTLX) =
N∑
i,j

S∑
s=1

S∑
t=1

Lijp(s, i)p(t, j)x
T
s xt. (5.13)

Eq. (5.13) incurs higher penalty if latent projections of co-occurring AUs are distant in the

manifold. Thus, projections with strongly related AUs are placed close to each other.

Global relational constraints. In order for the MC-LVM to fully benefit from the above

topological constraint, it is important to ensure that the model produces similar predictions

for frequently co-occurring AUs. Therefore, we introduce the global relational constraints as:

R = ‖P T
zP z −ZTZ‖2F , (5.14)

where P z = [p(z1|x1), . . . , p(zN |xN )]T are the predictions from Eq. (5.11) for each xi, and

Z is the true label set. Thus, Eq. (5.14), incurs a high penalty if correlated outputs have

dissimilar predictions. In this way, the co-occurrence matrix of the predictions is forced to be

similar to that of the true labels, and hence, the discriminative power of the output detectors

is increased.
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5.2.5 MC-LVM: Learning and Inference

The objective function of our model is the sum of the complete data log-likelihood of the

(weighted) joint distribution in Eq. (5.2) penalized by the constraints in Eq. (5.13)–(5.14)

L(Θ) =
N∑
i=1

log
S∑
s=1

p(y
(1)
i ,y

(2)
i |xs)︸ ︷︷ ︸

pgen

1−α
p(zi|xs)︸ ︷︷ ︸
pdisc

α − λCC − λRR, (5.15)

where Θ = {θ(v),W }. Note that in contrast to the standard maximum likelihood (ML)

optimization, we set the parameter α ∈ [0, 1] to find an optimal balance between the generative

(pgen) and discriminative (pdisc) components of our MC-LVM. The generative component has

the key role in unraveling the latent space of the fused features, while the discriminative

component regularizes the manifold by using the labels’ structure information. Large α values

give rise to models that depend more on the labels to define the decision boundaries for

the detection, while for small α the model expends more effort on capturing the variations

in the features (e.g., due to various sources of noise in data such as head-pose variation in

spontaneous data). By finding optimal α via a cross-validation procedure based on a grid

search, as explained in Section 5.4.2, we allow the model to find a trade-off between the

discriminative and generative part.

Another key difference to the ML approach, is that the Bayesian optimization requires the

computation of the posterior of the latent space. The latter depends on the parameters Θ,

and thus, direct optimizing of the objective in Eq. (5.15) w.r.t. Θ is not possible. Hence, we

propose an EM-based approach for parameter learning. In the E-step, we find the expectation

of the complete data log-likelihood in Eq. (5.15) under the posterior in Eq. (5.3), which is

given by

Q(Θ,Θ(old)) =

N∑
i=1

S∑
s=1

p(s, i) log

(
p(y

(1)
i ,y

(2)
i |xs)

1−α
p(zi|xs)α

)
, (5.16)

where the membership probabilities, p(s, i), are computed with Θ(old). In the M-step, we find

Θ(new) by optimizing

Θ(new) = arg max
Θ

Q(Θ,Θ(old))− λCC − λRR, (5.17)

w.r.t. Θ using the conjugate gradient method.2

The full training of the model is split into two stages, where in each stage we compute

p(x|y(1),y(2)) and p(y(1),y(2), z|x) in an alternating fashion. Specifically, we first initialize

2We used Rasmussen’s minimize.m function provided from http://learning.eng.cam.ac.uk/carl/code/minimize/.
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the latent coordinates X, using a dimensionality reduction method, e.g., PCA, on the con-

catenation of the two feature sets. Then, we learn the sampling distribution p(x|y(1),y(2)) by

training a GP on the projection mappings, as explained in Section 5.2.3, and collect S samples

from corresponding GP posterior. During the second stage, we employ the EM algorithm

described above to learn the parameters Θ. Note that both the topological and relational

constraints implicitly depend on the posterior, which is a function of the current estimate of

Θ, hence, we need to compute their derivatives w.r.t to Θ. The penalized log-likelihood can

be optimized jointly [21] or separately [80] without violating the EM-optimization scheme,

since the updates from the penalty terms do not affect the computation of the expectation.

After the M-step we refine our original estimate of the latent space X, using Eq. (5.4). We

iterate between stage 1 and 2 until convergence of the objective function in Eq. (5.17).

Algorithm 2 MC-LVM: Learning and Inference

Learning
Inputs: D = (Y (v),Z), v = 1, . . . , V

Initialize X using PCA on the concatenated Y (v).
repeat

Stage 1
Learn p̃(x) = p(x|y(1),y(2)) by training the specified GP.
Draw S samples xs from the Gaussian distribution p̃(x).

Stage 2
E-step: Use the current estimate of the parameters Θ(old) to compute

the membership probabilities in Eq. (5.3).
M-step: Update Θ by maximizing Eq. (5.17).

Stage 3
Update the latent space using Eq. (5.4).

until convergence of Eq. (5.17).
Outputs: X, Θ

Inference
Inputs: y

(1)
∗ ,y

(2)
∗

Step 1: Find the projection x∗ to the latent space using Eq. (5.8).
Step 2: Apply the logistic classifiers from Eq. (5.11) to the obtained embedding to compute

the outputs z∗.
Output: z∗

Inference: Inference in the proposed MC-LVM is straightforward. The test data y
(1)
∗ ,y

(2)
∗ ,

are first projected onto the manifold using Eq. (5.7). In the second step, the activation of each

output is detected by applying the classifiers from Eq. (5.11) to the obtained latent position.

The learning and inference procedure described above is summarized in Alg. 2.
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Structure from Eq. (5.12) PCA initialization iteration #5 iteration #10 iteration #15

Figure 5.3: Evolution of the learned data structure in K
(1)
Y , through the EM-iterations during the

optimization on CK+ dataset. The kernels are sorted in order to depict the structure of AU12 (bottom
right square) compared to other AU activations (upper right square).

Theoretical Analysis: The optimization scheme described earlier in this section does not

have theoretical guarantees that it increases the penalized complete log-likelihood after each

EM cycle. The reasons behind this are twofold: (i) Eq. (5.17) cannot be solved analytically,

and thus, we need to resort to an iterative procedure based on the conjugate gradient method.

Therefore, in each M-step we can only guarantee that a local optimum of the posterior will

be recovered. (ii) The expectation of the complete log-likelihood in Eq. (5.16) is numerically

approximated via Monte Carlo sampling, and thus, as in every stochastic optimization problem

there is no guarantee that the objective function will strictly increase after each iteration.

Hence, it is required to take cautious steps in order not to derive diverge solutions. By

carefully initializing the latent coordinates (e.g., via PCA) and the kernel hyper-parameters

(e.g.via following common heuristics regarding the length scales etc.), and appropriate selection

of the number of samples, S, we can effectively learn a latent space with correctly recovered

data structure. This is illustrated in Fig. 5.3, where we can see how the topological constraint

imposes the structure of AU12 on the manifold, through the evolution of the iterative EM

algorithm. In the initialization step the latent space can roughly model the structure of

the positive class (AU12). As the EM iterations progress we see that MC-LVM not only

uncovers the structure of AU12 (iteration #5), but it also differentiates it from the structure

of the remaining AUs (iteration #15). Additional experimental evaluations regarding the

convergence of MC-LVM and the effect of the various parameters to the solution are given in

Sec. 5.4.2.

Complexity: Since MC-LVM is based on the framework of GPs, each iteration during train-

ing (within an EM cycle) requires O(N3) computations. On the other hand, inference for a

new test sample is far more efficient and can be achieved in real-time, since the evaluation of

the predictive mean requires O(N) (predictive variance is not required for classifying a new

test point).
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5.3 Relation to Prior Art

5.3.1 Multi-label Classification

The proposed MC-LVM is related to existing works on multi-label classification that attempt

to learn robust classifiers by exploiting efficiently the label dependencies. For an extensive

overview, the reader is referred to [182, 172]. For instance, [204] extended the k-nearest neigh-

bor (kNN) to the multi-label scenario by using the number of neighboring instances belonging

to each possible class, as prior information to determine the label set for an unseen instance.

In [203] the authors derived the back-propagation algorithm of the neural networks for the

multi-label classification. [66] proposed an approximate learning approach in order to exten-

ded the work of structured SVM [181] to multi-label classification. The latter is also highly

related to multi-task learning techniques. These techniques rely on the introduction of an in-

ductive bias on the joint space of all tasks (e.g., AUs) that reflects our prior beliefs regarding

the related structure. A popular approach is to jointly learn the tasks under a regularization

framework [64]. The regularization operates on the parameter space and penalizes distances

between the different tasks, which results in uncovering a common set of parameters across the

tasks. Hence, it allows to capture the similarities among the outputs through parameter shar-

ing. Based on this idea, [1] introduced a manifold regularization approach to the multi-task

learning. The key assumption is that the task parameters lie on a low dimensional manifold,

and thus, they cannot vary arbitrarily. Instead of explicitly learning the manifold, the authors

model the projection functions in a parametric formulation, and alternate between solving for

the task parameters and minimizing their distances in the projected manifold. Similarly, [202]

defines a latent variable model, which generates the task specific parameters in a probabilistic

fashion. Due to its probabilistic formulation, several priors can be imposed on the latent

variables to induce a desired structure to the task specific manifold.

The above methods rely on implicit assumptions that all tasks are related to each other.

Contrary to this belief, [102] aims to uncover a structured pattern among the tasks, and

combine them into different groups. Each task parameters are assumed to be a sparse, linear

combination of underlying latent basic tasks. The overlap in the sparsity patterns of any two

tasks controls the amount of sharing between them. In a similar fashion, [128] introduced

the use of multi-output GP, for modeling task dependent regressors (latent functions) via

GP priors. The output of each task is a weighted combination of a number of shared latent

functions, which enables the collaboration among the tasks, plus an individual task-specific

latent function. In order to deal efficiently with the problem of large number of output

tasks and input data points, the authors derived a formulation based on variational inference.
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Following a different approach, [7] used the notion of spectral graph regularization to jointly

learn clusters of closely related tasks. Relationships between the tasks are defined in terms

of the graph Laplacian, which favors similar tasks to be close in the parameter space. The

authors proposed an alternating optimization algorithm based on proximity operators, in order

to jointly learn the tasks and the graph. While applicable to the task of multiple AU detection,

these methods do not perform simultaneous feature fusion and multi-label classification. By

contrast, the proposed MC-LVM can be seen as a multi-task learning approach, where the

relations of different tasks (i.e., AUs) are learned directly in the shared subspace, by implicitly

relating them through their feature and label dependencies. The latter are encoded by the

local and global priors proposed in our model.

More recent works in the GP and multi-label classification context [185, 36] try to combine

multi-task learning and feature fusion via subspace learning. [185] jointly optimizes latent

variables in order to reconstruct the input data, and account for multiple tasks in the output.

A downside of this method is that the learning of the latent space is achieved via MAP

estimation, i.e., the latent space is directly optimized during learning. In the case of large

amount of data, this can easily lead to overfitting [192]. To ameliorate this, [36] proposed a

fully Bayesian framework, based on variational inference, to integrate out the latent space.

In contrast to these methods, MC-LVM employs multi-conditional learning strategies to re-

weight the generative and discriminative conditionals, in order to unravel a suitable subspace

for joint feature fusion and multi-label classification. In our Bayesian approach, the latent

space is approximated via an efficient Monte Carlo sampling, where the conditional models

determine the importance of each sample. Moreover, the inference step is efficiently performed

via the learned projection mappings to the manifold. This overcomes the requirement of [36]

to learn another approximation to the posterior of the test inputs. Finally, note that none of

these approaches have been evaluated in the task of multiple AU detection.

5.3.2 Multi-conditional Models and GPLVM

In the proposed MC-LVM, we employ the GP framework to derive a latent variable model with

a joint distribution given by Eq. (5.1). We then introduce a set of conditional distributions

(observed variables given latent positions p(y, z|x), and latent positions given the observed

data p(x|y)) to form the multi-conditional objective function. The idea of multi-conditional

learning has originally been explored in [123, 21]. However, these approaches are based on

simple parametric conditional models and can deal with single-input single-output scenarios

only. The proposed MC-LVM is a generalization of these approaches to multi-input multi-
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output settings and non-parametric conditionals, modeled via GPs.

Modeling of the aforementioned conditionals in MC-LVM resembles the process we followed

in Chapter 4 for the DS-GPLVM, and in general for various models that are based on the

GPLVM [105]. Most of these models, as purely generative methods, try to model the joint

likelihood

p(Y ,X) = p(Y |X)p(X). (5.18)

As we have already seen, the learning in these methods consists of maximizing the (marginal)

log-likelihood of the joint given above, by following either a MAP optimization or variational

approximations. By contrast, in MC-LVM we model the distribution of both observed inputs

and latent variables by employing the predictive posterior of the GP. This results in learning

a more robust mapping x → y, and also allows us to efficiently estimate an instance of the

latent space using the Monte Carlo sampling.

Finally, our proposed sampling distribution is closely related to the notion of ‘back-

constraints’ in the GP literature. Recall from Chapter 3 that back-constraints were introduced

in [106] as a deterministic, parametric mapping that pairs the latent variables of the GPLVM

with the observations. This mapping facilitates a fast inference mechanism and enforces struc-

ture preservation in the manifold. The same mechanism has been used in Chapter 4 for making

inference in the proposed DS-GPLVM. On the contrary, MC-LVM learns probabilistic map-

pings via the non-parametric GPs, which can result in latent projections, that are less prone

to overfitting.

5.4 Experiments

In this section we evaluate the proposed MC-LVM on the joint task of feature fusion and

multiple AU detection on data from both posed and spontaneous expressions.

5.4.1 Experimental Protocol

Datasets. We evaluate the proposed model on three publicly available datasets: Extended

Cohn-Kanade (CK+) [114], UNBC-McMaster Shoulder Pain Expression Archive (Shoulder-

pain) [116], and Denver Intensity of Spontaneous Facial Actions (DISFA) [122]. These are

benchmark datasets of posed (CK+), and spontaneous (Shoulder-pain, DISFA) data, contain-

ing a large number of FACS coded AUs.
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Figure 5.4: Example images with activated AUs from CK+ (top), DISFA (middle) and Shoulder-pain
(bottom) datasets.

• The CK+ dataset [114] contains 593 video recordings of 123 subjects displaying posed

facial expressions in near frontal views. The image sequences begin from neutral and

proceed to the target expression. The last frame (peak frame) is annotated in terms of

AU activations (presence/absence). For our experiments, we used the peak frames of all

available subjects.

• The Shoulder-pain dataset [116] contains video recordings of 25 patients suffering from

chronic shoulder pain while performing a range of arm motion tests. Each frame is coded

in terms of AU intensity on a six-point ordinal scale.

• DISFA dataset [122] contains video recordings of 27 subjects while watching YouTube

videos. Again, each frame is coded in terms of the AU intensity on a six-point ordinal

scale.

For both DISFA and Shoulder-pain datasets, we treated each AU with intensity larger than

zero as active. Sample images from the three datasets, along with examples of AUs present, are

shown in Fig. 5.4. Fig. 5.5 depicts the AU relations, and the distribution of the AU activations

for the data used from each dataset. Note that the co-occurrence patterns and the relations

among the AUs differ significantly across all three datasets.
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Table 5.1: Definitions of the used AUs from CK+, DISFA, and Shoulder-pain datasets.

AU Definition
1 Inner brow raiser 7 Lid tightener 15 Lip corner depress.
2 Outer brow raiser 9 Nose wrinkler 17 Chin raiser
4 Brow lowerer 10 Upper lip raiser 43 Eyes closed
6 Cheek raiser 12 Lip corner puller

Features. In each frame of an input sequence 49 fiducial facial points were extracted using

the 2D Active Appearance Model [120]. Based on these points, we registered the images to

a reference face (average face for each dataset) using an affine transformation. As input to

our model, we used both geometric features, i.e., the registered facial points (feature set I),

and appearance features, i.e., local binary patterns (LBP) histograms [131] (feature set II)

extracted around each facial point from a region of 32×32 pixels. We chose these features as

they showed good performance in variety of AU recognition tasks [162]. To reduce the dimen-

sionality of the extracted features we applied PCA, retaining 95% of the energy. This resulted

in approximately 20D (geometric) and 40D (appearance) feature vectors, for each dataset.

Evaluation procedure. Some AUs occur rarely (e.g., AU9,11,26 in CK+). Others do not

exhibit strong co-occurrence patterns (e.g., AU5 in DISFA). Hence, we selected the following

subsets of highly correlated AUs: AUs (1, 2, 4, 6, 7, 12, 15, 17) for CK+, AUs (1, 2, 4, 6,

12, 15, 17) for DISFA and AUs (4, 6, 7, 9, 10, 43) for Shoulder-pain. The selected AUs occur

jointly in the context of recorded expressions (e.g., pain expression, see [116]).3 In order to

prove the model’s ability to deal with large number of outputs, we also show the performance

when all AUs (from CK+) are used. A detailed description of the AUs used for the model

evaluation is shown in Table 5.1. We report the F1 score and the area under the ROC curve

(AUC) as the performance measures. Both metrics are widely used in the literature as they

quantify different characteristics of the classifier’s performance. Specifically, F1, defined as

F1 = 2·Precision·Recall
Precision+Recall , is the harmonic mean between the precision and recall. It puts emphasis

on the classification task, while being largely robust to imbalanced data (such as examples

of different AUs). AUC quantifies the relation between true and false positives, showing the

robustness of a classifier to the choice of its decision threshold. In all our experiments, we

performed a 5 fold subject independent cross-validation.

Models compared. We compare the proposed MC-LVM to GP methods with differ-

ent learning strategy. Specifically, we compare to the manifold relevance determination

3We do not include the frequently occurring AU25 in our subsets because the associated action, i.e., ’lips
part’, is also present during speech, and when this is the case it is not coded as active. Hence, a static model
cannot determine whether the action happened during the speech or not.
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Figure 5.5: The global AU relations (in terms of correlation coefficients) (upper row), and the distri-
bution of AU activations within the datasets (lower row).

(MRD) [36], which uses the variational approximation, to the DS-GPLVM from Chapter 4

and multi-task latent GP (MT-LGP) [185], which perform MAP estimation. We also compare

to the multi-label backpropagation and kNN (k=1), i.e., the BPMLL [203] and ML-KNN [204],

respectively. Lastly, we compare to the state-of-the-art methods for multiple AU detection:

the parametric methods Bayesian group-sparse compressed sensing (BGCS) [171], hierarchical

RBM (HRBM) [194], joint patch multi-label learning (JPML) [209], and the kernel method

lp-regularized multi-task MKL (lp-MTMKL) [206]. All the compared methods are evaluated

using the same previously described input features. Note that implementation of JPML [209]

was not available, and thus, in our comparison we report the results from the correspond-

ing paper ([209] employed the SIFT appearance descriptor). For the single input methods

(i.e., BGCS, HRBM, BPMLL and ML-KNN), we concatenated the two feature sets. For the

kernel-based methods, we used the RBF kernel. For lp-MTMKL we also used the polynomial

kernel, as suggested in [206]. Due to the high learning complexity of lp-MTMKL (O(N2T 2)),

where T is the number of target AUs), we followed the training scheme in [206] where multiple

AUs were split into groups: {{AU1, AU2, AU4}, {AU6, AU7, AU12}, {AU15, AU17}} for CK+,

the same groups (without AU7) for DISFA, and {{AU4, AU43, AU7}, {AU6, AU9, AU10}} for

Shoulder-pain. The parameters of each method were tuned as described in the corresponding

papers. For the MC-LVM, optimal values for the weighting parameters α, the regularization

parameters λC , λR, as well as the size of the latent space were found via a validation procedure

on the training set.
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5.4.2 MC-LVM: Theoretical Evaluation
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Figure 5.6: The penalized negative log-likelihood of the MC-LVM for different number of samples used
to estimate the posterior of the latent space (left), and average F1 score for multiple AU detection as a
function of the dimensionality of the latent space (middle), and the regularization parameter α (right).

This section analyzes MC-LVM performance in terms of different parameter choices and

settings. Fig. 5.6 (left) shows the convergence of the learning criterion in MC-LVM as a

function of the used Monte Carlo samples during training on the CK+ dataset. We see that

for small number of samples, the model does not converge to a (local) minimum. This is

expected, since with 100 − 500 samples the posterior in Eq. (5.3) cannot be approximated

well. The model converges when 1000 samples are used, and its convergence does not change

considerably after that. Thus, we fixed the number of samples to 1000. From Fig. 5.6 (middle),

we see how the size of the latent space affects the performance of the learned model. It is

clear that for both posed and spontaneous data, an 8-dimensional latent space is sufficient for

the task of joint feature fusion and multiple AU detection, and results in the best average F1-

score. Lower dimensional manifolds fail to explain the correlations between the input features

and to capture the dependencies among multiple AUs, while manifolds with more than 8D

do not include any additional discriminative information. Hence, in what follows, we fixed

the size of the latent space to 8D. Fig. 5.6 (right) shows the effect of changing α on the

discriminative power of the model. We observe that the model prefers a weighted conditional

distribution over a fully generative or discriminative component. The optimal value of α is

around 0.4 for posed, and 0.8 for spontaneous data. This difference is due to the fact that

in case of spontaneous data (DISFA, Shoulder-pain), the model puts less focus on explaining

unnecessary variations for the AU detection task, e.g., due to the subject-specific features

and errors due to the pose registration. Therefore, the influence of the generative component

is lower (higher α) than in the case of posed facial expressions from CK+. Moreover, the

CK+ dataset contains significantly less data (around 600 annotated frames) than DISFA and

Shoulder-pain. Hence, MC-LVM prioritizes the generative component, to avoid overfitting

the training data. On the other hand, when we have sufficient training examples (DISFA,

79



5. Latent Variable Models for Joint Action Unit Detection

Shoulder-pain), MC-LVM prefers to give less emphasis to the conditional distribution of the

features (generative component). Such behavior of multi-conditional models has been also

observed in other domains (e.g., in [97] for pixel classification).
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Figure 5.7: Joint AU detection with MC-LVM on CK+ (left), DISFA (middle) and Shoulder-pain (right)
for different value of α. The comparisons are between the discriminative-only conditional (α = 1) and
the optimal weighted conditionals (α = 0.4 for CK+ and α = 0.8 for DISFA and Shoulder-pain)
obtained after cross-validation of α.

To provide a better insight regarding the advantages of selecting a weighted conditional

distribution, in Fig. 5.7 we compare the performance of the MC-LVM when the likelihood term

consists of only the discriminative conditional (α = 1), and the optimal weighted conditional

(α = 0.4 for CK+ and α = 0.8 for DISFA and Shoulder-pain). We can see that the weighted

conditional improves the performance on most of AUs, with significant enhancement in the

performance on certain AUs (3% on AU7,15 on CK+, 6% on AU1 and 3% on AU6,15 on

DISFA, and 10% on AU7,9,10 on Shoulder-pain).

In Fig. 5.8 (left) we see the effect of the introduced relational constraints on the model’s

performance. At first we observe that when no regularization is used (λC , λR = 0), MC-LVM

achieves the lowest performance for both posed and spontaneous data. By including only

the topological constraint (λC 6= 0, λR = 0), MC-LVM attains a better representation of the

CK+ DISFA Shoulder−pain

0.5

0.6

0.7

0.8

F
1

 

 λ
C

 = 0, λ
R

 = 0

λ
C

 ≠ 0, λ
R

 = 0

λ
C

 ≠ 0, λ
R

 ≠ 0

CK+ DISFA Shoulder−pain

0.5

0.6

0.7

0.8

F
1

 

 
Points
LBP
Fusion

Figure 5.8: Average F1 score on all three datasets. The effect of the relational constraints (left), and
the feature fusion (right) on the joint AU detection task.
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data in the manifold, which results in higher F1 scores. Finally, with the addition of the

global relational constraint (λC , λR 6= 0) MC-LVM achieves the highest scores. Note that the

difference is more pronounced in data from DISFA and Shoulder-pain. This evidences the

importance of modeling the global relations for the detection of spontaneous (more subtle)

AUs. This is because the features of these AUs are corrupted by higher noise levels and thus,

their joint prediction can help to reduce uncertainty of the classifiers, as has been reported

in [121]. Fig. 5.8 (right) shows the average performance of the model for different feature

combinations. In the single input case, we observe that, on average, geometric features (I)

outperform the appearance features (II) (apart from DISFA where features (I) suffer from

residual errors from the pose registration due to large variations in the head pose). This is

because, by concatenating the LBP histograms obtained from each patch, the local information

of the data is lost, and thus, the model obtains lower scores. However, when both inputs are

used, MC-LVM can unravel a very informative shared latent space. This results in the highest

F1 score, with significant improvement on the spontaneous data of DISFA and Shoulder-pain.

In general, from Fig. 5.8 we see that the effect of the introduced regularization and the feature

fusion is far more pronounced in the case of spontaneous facial expressions, where a limited

and imbalanced number of examples of each AU is available (e.g., AU1,2,15,17 for DISFA, and

AU4,9,10 for Shoulder-pain).

5.4.3 Model Comparisons on Posed Data

We next compare the proposed MC-LVM to several state-of-the-art methods on the posed

data from CK+. We first inspect the performance of MC-LVM and the GP-related methods.

From Table 5.2, we can see that the MAP-based methods, i.e., the MT-LGP [185] and DS-

GPLVM, achieve similar performance on average since they are based on the same learning

scheme. On the other hand, MRD [36], uses a variational distribution to approximate a

manifold shared across multiple inputs and outputs, without any additional constraints over

the latent variables. This results in a poor accuracy. Also, MRD learns an approximation

to the posterior, in order to predict the variational latent positions that best generate the

inputs, while MT-LGP and DS-GPLVM learn accurate back mappings from the input spaces

to the manifold. By contrast, the combination of the approximate learning with the relational

constraints used in the proposed MC-LVM results in a significant increase in performance

over the GP-based methods. We partly attribute this to the explicit modeling of AU co-

occurrences through the introduced constraints, as well as to the multi-conditional learning

based on the proposed sampling scheme. The importance of the latter is further evidenced in

the performance of the single output instance of MC-LVM, which for the case of the posed data
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Table 5.2: F1 score (a) and AUC (b) for joint AU detection on CK+ dataset. Comparisons to state-
of-the-art.

(a)

Methods (I+II)
F1 score

AU1 AU2 AU4 AU6 AU7 AU12 AU15 AU17 Avg.

MC-LVM 84.39 86.55 81.60 68.42 61.67 88.48 82.54 87.40 80.14
MC-LVM (SO) 86.06 88.37 82.93 70.80 57.27 87.16 73.26 85.57 78.93
MRD [36] 80.72 79.18 69.93 69.81 53.24 77.83 65.70 85.20 72.70
MT-LGP [185] 89.12 83.70 79.79 67.16 60.89 80.53 64.63 85.97 76.47
DS-GPLVM 87.41 81.78 79.70 68.48 63.29 81.04 60.33 84.29 76.17
BGCS [171] 84.57 86.19 81.17 69.82 59.48 87.77 74.77 84.84 78.58
HRBM [194] 87.62 84.00 74.10 62.90 50.74 82.38 66.06 84.56 74.04
lp-MTMKL [206] 87.50 85.50 51.43 72.65 58.82 85.95 74.21 75.44 73.93

BPMLL [203] 75.41 84.31 64.85 69.14 64.34 83.98 69.50 76.25 73.47
ML-KNN [204] 76.83 84.34 63.28 67.23 53.19 82.88 65.88 78.71 71.54

JPML∗ [209] 91.2 96.5 - 75.6 50.9 80.4 76.8 80.1 78.8

(b)

Methods (I+II)
AUC

AU1 AU2 AU4 AU6 AU7 AU12 AU15 AU17 Avg.

MC-LVM 95.66 96.80 93.97 92.07 87.84 97.78 94.60 96.10 94.35
MC-LVM (SO) 98.22 97.25 93.95 92.20 85.71 97.41 94.05 95.80 94.33
MRD [36] 95.58 92.53 91.85 92.73 82.69 94.50 91.32 94.78 92.00
MT-LGP [185] 96.70 97.33 90.90 91.45 86.37 96.92 94.25 94.80 93.59
DS-GPLVM 96.10 96.69 89.56 89.83 85.91 95.69 92.56 94.03 92.55
BGCS [171] 97.76 96.63 93.21 91.59 85.06 97.69 94.04 95.43 93.85
HRBM [194] 95.99 95.13 88.00 88.37 78.09 93.73 93.49 95.60 91.05
lp-MTMKL [206] 93.19 94.99 90.95 90.01 84.41 95.67 91.06 92.97 91.65

BPMLL [203] 89.06 95.21 76.88 90.53 85.51 95.48 90.20 88.19 88.88
ML-KNN [204] 89.07 95.54 76.46 90.58 90.71 94.31 92.65 89.13 89.81

JPML∗ [209] - - - - - - - - -

achieves comparable scores to the multi-output. We see that joint learning does not improve

detection of all AUs. It even shows reduced performance for certain AUs. For example, from

Fig. 5.5, we see that AU1,2 are strongly correlated, yet single output achieves higher F1 on

both AUs compared to the multi-output setting. This shows that for given data, these two

AUs can be predicted well without relying on each other. On the other hand, the performance

of AU15, which is strongly correlated with AU17, and has significantly less examples than

other AUs, is considerably improved (F1 9% higher). The similar performance between the

two settings is also explained from the nature of the posed data of CK+. Joint AU learning

is expected to be advantageous, in cases where the input data suffer from high-dimensional

noise [121]. Hence the superior performance of the multi-output setting will be evidenced in

the evaluations on the spontaneous data from DISFA and Shoulder-pain in Sec. 5.4.4.
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Table 5.3: F1 score for joint AU detection (all 17) on CK+ dataset. Comparison to state-of-the-art.

(a)

Methods (I+II) AU1 AU2 AU4 AU5 AU6 AU7 AU9 AU11 AU12

MC-LVM 82.49 86.96 79.16 73.47 72.80 57.52 87.94 31.11 87.60
BGCS [171] 83.04 85.10 77.45 72.21 69.26 55.94 89.03 29.41 86.79
HRBM [194] 86.86 85.47 72.58 72.04 61.74 54.47 85.91 26.51 72.65

(b)

Methods (I+II) AU15 AU17 AU20 AU23 AU24 AU25 AU26 AU27 Avg.

MC-LVM 76.40 86.76 70.27 67.27 51.02 91.81 21.05 91.14 71.45
BGCS [171] 74.92 83.33 71.10 68.01 48.14 76.60 34.21 88.55 70.12
HRBM [194] 72.53 81.66 47.46 56.64 35.29 92.57 37.61 87.65 66.45

Table 5.2, also summarizes the performance of the state-of-the-art models for joint AU detec-

tion: BGCS, HRBM and lp-MTMKL. These models, manage to improve the detection of AU1

and AU6, by successfully modeling their co-occurrences between the related AUs (AU2 and

AU12 respectively) in the expressions of Surprise and Happiness. However, their performance

on more subtle AUs, e.g., AU7,15,17 is significantly lower than that of the proposed MC-LVM.

This is due to the fact that the parametric models BGCS and HRBM cannot handle simul-

taneously the fusion of the concatenated features and the modeling of the AU dependencies

using compressed/binary latent variables. On the other hand, lp-MTMKL can perform the

fusion through the MKL framework. However, due to its modeling complexity, it is trained

on subsets of AUs, which affects its ability to capture all AU relations. More importantly,

in contrast to MC-LVM, these models lack the generative component, which, evidently, acts

as a powerful regularizer. The results of JPML were obtained from [209], thus, they are not

directly comparable to the other models. Yet, we report this performance as a reference to the

state-of-the-art. Finally, the baseline multi-label methods, BPMLL and ML-KNN attempt to

model the AU dependencies directly in the classifier level, as in lp-MTMKL, but they cannot

perform the fusion of the input features. Hence, they achieve the lowest average scores.

To demonstrate the model’s scalability when dealing with large number of outputs, we com-

pare the proposed approach to the state-of-the-art HRBM and BGCS for joint AU detection on

all 17 AUs from CK+ (lp-MTMKL cannot be evaluated on this experiment due to its learning

complexity). As we can see from Table 5.3, modeling the remaining (less frequently occurring)

AUs affects the overall performance of all three models, i.e., MC-LVM, BGCS and HRBM,

which suffer a drop of 8.6%, 8.4% and 7.6%, respectively. However, MC-LVM outperforms

HRBM on 14 out of 17 AUs and BGCS on 12 out of 17 AUs, which demonstrates the ability
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Table 5.4: F1 score and AUC for joint AU detection on the DISFA dataset. Comparisons to the
state-of-the-art.

Methods (I+II)
F1 score AUC

AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg. AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg.

MC-LVM 58.55 62.99 72.85 52.32 84.74 49.44 48.63 61.36 79.58 84.01 84.87 62.75 92.43 78.97 73.87 79.50
MC-LVM (SO) 35.50 52.68 70.99 54.67 82.58 37.11 47.76 54.47 64.71 85.21 82.52 68.15 92.20 79.22 72.39 77.77
MT-LGP [185] 41.44 36.84 61.19 45.98 49.78 40.12 43.01 45.48 69.28 79.31 74.23 62.08 70.22 58.61 67.69 68.27
BGCS [171] 50.13 36.49 72.05 59.64 78.47 39.93 40.29 53.86 69.54 49.72 78.93 66.76 86.55 73.67 63.36 69.79
HRBM [194] 39.67 55.92 61.56 54.01 79.16 38.72 38.82 52.55 61.55 85.88 67.10 58.08 81.74 64.93 64.41 69.10
lp-MTMKL [206] 42.21 45.81 47.18 62.79 76.33 34.47 41.40 50.03 71.77 73.42 62.49 66.27 78.83 59.16 63.98 67.98

of the former to better model the relations among AUs, even in case of many AU classes.

5.4.4 Model Comparisons on Spontaneous Data

Table 5.5: F1 score and AUC for joint AU detection on the Shoulder-pain dataset. Comparisons to the
state-of-the-art.

Methods (I+II)
F1 score AUC

AU4 AU6 AU7 AU9 AU10 AU43 Avg. AU4 AU6 AU7 AU9 AU10 AU43 Avg.

MC-LVM 47.20 97.75 67.88 37.13 58.23 72.51 63.45 53.58 82.27 57.80 54.65 87.80 66.13 67.04
MC-LVM (SO) 57.76 95.57 63.59 34.54 49.93 64.49 60.98 66.36 50.47 60.04 53.23 64.20 65.81 60.02
MT-LGP [185] 50.42 50.48 63.52 33.38 61.62 61.00 53.40 61.35 44.40 60.96 52.47 90.39 60.90 61.75
BGCS [171] 61.42 71.52 60.40 37.86 54.50 63.49 58.20 63.28 59.29 59.93 59.23 69.96 67.10 63.13
HRBM [194] 47.20 93.93 63.67 29.80 52.39 69.54 59.42 57.33 77.41 62.56 53.21 71.36 73.19 65.85
lp-MTMKL [206] 37.69 97.75 70.08 33.28 41.79 44.03 54.10 54.95 71.86 64.15 53.84 68.62 64.69 63.01

We further investigate the models’ performance on spontaneous data from DISFA and

Shoulder-pain datasets. We focus here on the best performing methods from Table 5.2. From

Tables 5.4–5.5, we can observe a significant drop in the performance of all methods on both

datasets. This evidences the difficulty of the task of AU detection in realistic environments,

where spontaneous expressions are present. Also, typical for naturalistic data, the distribu-

tion of the activated AUs is more imbalanced than in the case of the posed dataset. This

poses an additional modeling challenge since training data for certain AUs (e.g., AU2,15 for

DISFA, and AU9,10 for Shoulder-pain) are limited. Consequently, the models need to put

more emphasis on the AU co-occurrences for detection of these AUs. As evidenced by the res-

ults in Tables 5.4–5.5, this adversely affects the single output MC-LVM. Contrary to the high

achieved performance on the posed data, the single output instance reports here significantly

lower scores for the aforementioned AUs in both datasets. Furthermore, the small amount of

training data for some AUs, imposes an additional difficulty when modeling the global AU

relations. Consequently, the parametric discriminative models, BGCS and HRBM, overfit the

data and report low performance. This exemplifies the importance of modeling the relations

among the features via the generative component, in the proposed approach. Note that for

some AUs with sufficient training data, e.g., AU4,6 in DISFA, BGCS and HRBM achieve
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Table 5.6: Cross-dataset evaluations of the state-of-the-art models on 7 AUs present in both CK+ and
DISFA datasets. The models are trained on data from CK+ dataset and tested on data from DISFA
dataset (C→D), and the other way around (D→C).

(a)

Train→Test Methods (I+II)
F1 score

AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg.

C→D

MC-LVM 53.92 54.69 68.37 51.99 70.77 37.14 42.81 54.24
BGCS [171] 59.01 49.37 68.34 57.75 80.26 36.59 43.54 56.41
HRBM [194] 43.20 36.83 52.10 36.15 40.70 35.61 51.13 42.25
lp-MTMKL [206] 39.13 41.24 44.77 49.42 69.67 31.55 39.12 44.98

D→C

MC-LVM 72.22 85.85 75.05 59.94 63.45 54.81 73.35 69.24
BGCS [171] 61.11 71.90 67.84 65.05 80.46 54.23 69.98 67.22
HRBM [194] 66.81 64.52 60.12 54.11 65.60 60.47 66.67 62.61
lp-MTMKL [206] 68.10 61.94 56.06 57.86 66.26 43.30 63.66 59.60

(b)

Train→Test Methods (I+II)
AUC

AU1 AU2 AU4 AU6 AU12 AU15 AU17 Avg.

C→D

MC-LVM 76.78 86.80 79.74 73.21 86.73 62.28 67.83 76.20
BGCS [171] 86.75 91.75 78.97 69.97 87.83 64.83 69.67 78.54
HRBM [194] 67.41 71.84 65.62 59.32 62.62 60.77 74.05 65.95
lp-MTMKL [206] 71.77 73.42 72.70 68.38 67.46 69.31 65.85 65.56

D→C

MC-LVM 92.51 96.60 90.51 84.24 95.02 87.21 90.82 90.99
BGCS [171] 84.44 91.21 88.21 84.91 94.54 84.12 84.97 87.49
HRBM [194] 88.88 92.26 81.47 88.23 94.19 87.91 91.61 89.22
lp-MTMKL [206] 80.21 82.41 69.45 79.59 86.28 74.64 78.88 78.78

similar or better scores than the MC-LVM. This is in part due to modeling the multiple AU

detectors under a joint cost function – each method selects to put more emphasis on modeling

different AUs than the others. However, the MC-LVM outperforms these models on average.

lp-MTMKL obtains very low scores (especially in the Shoulder-pain), which is a result of not

modeling global relations, due to its training scheme. MT-LGP also fails to model explicitly

the relations between AUs, achieving low scores as well. The proposed MC-LVM is more ro-

bust to the data imbalance, and can better discover the AU relations, which in turn gives not

only the best average F1 scores, but also achieves more robust performance as evidenced by

the higher AUC.

5.4.5 Cross Dataset Experiments on CK+ and DISFA

In this section, we evaluate the robustness of the models in a cross dataset experiment, in

order to assess the generalizability of each model when dealing with new instances obtained

under different settings. Specifically, we perform two different cross-dataset experiments,
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Figure 5.9: The learned global AU relations (in terms of correlation coefficients) for within datasets
(a),(b) and cross-datasets (c),(d) experiments.

CK+→DISFA and DISFA→CK+.4 We evaluate the models’ performance on 7 AUs (i.e.,

1, 2, 4, 6, 12, 15, 17) that are present in both datasets. This is a rather challenging task due to

the different characteristics of the data. First of all, as shown in Fig. 5.4, the facial images differ

in terms of illumination, pose and size, which imposes a further difficulty on the alignment

of the input facial features. Another key challenge is the difference in the context of the two

datasets. The data from CK+ contain posed expressions, which vary considerably in subtlety

compared to the spontaneous data of DISFA. The latter also affects the co-occurrence patterns

among the AUs, as can be seen from Fig. 5.5.

From Table 5.6, we see that the performance of the models is lower for most of AUs com-

pared to that attained on the original dataset (see Tables 5.2-5.5). This is expected for the

reasons mentioned above. Interestingly, BGCS achieves higher performance on the cross data-

set experiment CK+→DISFA, than when both training and testing is performed on DISFA

dataset. This confirms our claims in Section 5.4.4 that this method cannot fully unravel the

dependencies among the AUs when dealing with imbalanced data in the training phase. The

parametric model, i.e., BGCS, can better model the AU relations with small (but well distrib-

uted) amount of training data, as in CK+. Hence, it achieves higher performance compared

to MC-LVM. However, on the DISFA→CK+ experiment, we see that the proposed MC-LVM,

benefits from the use of the non-parametric feature fusion, and manages to successfully unravel

the structure and the co-occurrence patterns in the data, regardless of the imbalances in the

amount of training examples and the subtlety of the spontaneous facial expressions. Thus, it

attains superior performance compared to the BGCS, especially for AU1,2,4, where the two

models achieve similar predictions for training and testing on CK+ (see Table 5.2). Finally,

the proposed MC-LVM consistently outperforms HRBM and lp-MTMKL on both cross-dataset

experiments, as evidenced from both F1 and AUC results.

4‘A→B’ denotes the training on dataset A and testing on dataset B.
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Finally, in Fig. 5.9 we see the recovered AU dependencies from the MC-LVM, on the test data

in both within and cross-dataset experiments. As we observe from Fig. 5.9(a) and Fig. 5.9(c),

the recovered AU dependencies for CK+ are similar to the original co-occurrence patterns

from Fig. 5.5. Hence, the proposed MC-LVM attains competitive results for CK+ and the

DISFA→CK+ experiments. On the other hand, by comparing Fig. 5.9(d) to Fig. 5.9(b) and

Fig. 5.5, we observe that MC-LVM has falsely recovered strong correlations between AU1,2

and AU15,17, which results in the low performance in the CK+→DISFA experiment. We

attribute this to the fact that AU1,4,17, as we can see in Fig. 5.5, are the dominant AUs in

CK+, which is not the case for DISFA. Thus the model trained on CK+ seems to have a bias

on predicting AU1,4,17. Due to their strong relations with AU2,15 MC-LVM recovers the false

dependencies on DISFA dataset.

5.5 Conclusions

To conclude, in this chapter we proposed the multi-conditional latent variable model that

brings together GPs and multi-conditional learning to achieve a feature fusion for multi-label

classification of facial AUs. The majority of existing approaches perform feature fusion via

simple vector concatenation. However, this leads to the false assumption that the multiple

feature sets are identically distributed. By assuming conditional independence given the sub-

space of AUs, MC-LVM learns different distributions for each feature set via separate GPs,

resulting in more accurate fusion in the manifold, and hence, more discriminative features for

the detection task. More importantly, the newly introduced multi-conditional objective allows

the generative and discriminative costs to act in concert during the model learning – the gen-

erative component has the key role in unraveling the latent space for the feature fusion, while

the discriminative component endows the space with the relational/class information of the

outputs. Consequently, the proposed model learns a discriminative manifold structure that is

regularized by the amount of shared information between the input features. The retrieved

manifold, which is a trade-off between the generative/discriminative components, leads to

superior performance compared to other solely discriminative or generative approaches. We

further proved that the novel topological and relational constraints can increase the discrim-

inative power of the model, by successfully encoding the AU dependencies into the learned

manifold. We demonstrated the effectiveness of these properties on three publicly available

datasets, and showed that the proposed model outperforms the existing works for multiple AU

detection, and several methods for feature fusion and multi-label learning. We also showed

that the proposed model is able to generalize across different contexts (datasets), however,
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with reduced performance.
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Chapter 6

Gaussian Process Auto-encoders for

Joint Action Unit Intensity Estimation
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6.1 Introduction

To date, most existing work on automated analysis of facial expressions, including the MC-

LVM from the previous chapter, focuses on the detection of AU activations, i.e., presence/ab-

sence of an AU. The problem of AU intensity estimation is relatively new in the field. Most

of the research in this area focuses on independent modeling of AU intensities, and cast the

problem as a classification [151, 118, 122, 125, 186] or regression [158, 92, 89, 93] task, which

is a sub-optimal modeling practice, given the ordinal nature of the output labels. Similarly,

the models that do attempt multiple AU intenisty estimation (e.g., [109, 156, 94, 129, 126])

adopt the same sub-optimal approach to deal with the nature of the output as the independent

methods. Furthermore, they do not exploit potential correlations among different type of in-

put features. Hence, they cannot fully benefit from the joint modeling of AU co-occurrences.

Apart from a few exceptions that treat each AU independently [158, 92, 125], none of the

aforementioned approaches successfully addresses the task of joint output modeling (i.e., mul-
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tiple AUs) while accounting for different modalities in the input (i.e., fusion of geometric and

appearance features). These limitations can naturally be addressed by following recent ad-

vances in manifold learning [36, 185, 23] and, in particular, using the framework GPs [146].

As we have presented in Chapters 4&5, within this framework, we can transform the problem

of feature fusion to that of learning from multiple views, while continuous-valued predictions

can be handled efficiently, for more than one output. However, as with the regression-based

models described above, these models treat the ordinal labels as continuous values. This also

limits their potential to unravel an ‘ordinal’ manifold, needed to facilitate estimation of target

ordinal intensities.

In this chapter, we propose a novel manifold-based GP approach based on the Bayesian

GP latent variable model (B-GPLVM) [178] that performs simultaneously the feature fusion

and joint estimation of the AU ordinal intensity. Specifically, we propose the variational

GP auto-encoder (VGP-AE), which is composed of a probabilistic recognition model, used

to project the observed features onto the manifold, and a generative model, used for their

reconstruction. Our probabilistic recognition model, contrary to our previous defined DS-

GPLVM from Chapter 4 that learns deterministic parametric back-mappings, allows us to

explicitly model the uncertainty in the projections onto the learned manifold and propagate it

to the final predictions. Compared to the MC-LVM from Chapter 5, which also employs the

GPs for the back-mappings, in this chapter we propose an optimization scheme in order to

learn both the latent space and the recognition model in a single pass, without the requirement

of alternating between learning the two. Furthermore, we endow the proposed VGP-AE with

ordinal outputs [2]. The fusion of the information from the input features and learning of

the joint ordinal output is performed simultaneously in a joint Bayesian framework. In this

way, we seamlessly integrate the ordinal structure into the recovered manifold while attaining

robust fusion of the target features. To the best of our knowledge, this is the first approach

that achieves simultaneous feature fusion and joint AU intensity estimation in the context of

facial behavior analysis. Note that the contents of this chapter are published in [58].

6.2 Variational Gaussian Process Auto-Encoder

Similarly to Chapter 5, we assume that we have access to a training data set D = {Y ,Z},
which is comprised of V observed input channels Y = {Y (v)}Vv=1, and the associated output

labels Z. Each input channel consists of N i.i.d. samples Y (v) = {y(v)i }Ni=1, where y
(v)
i ∈ RDv

denotes corresponding facial features. Z = {zi}Ni=1 is the common label representation, where

zic ∈ {1, . . . , S} denotes the discrete, ordinal state of the c-th output (i.e., AU intensity
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Figure 6.1: The proposed VGP-AE. (a) f (v) and fr are the GP-decoder and GP-encoder, respectively.
The projection of the latent variable x to the labels’ ordinal plane is facilitated through the ordinal
regression g(x). (b) Compact representation of the model. (c) The proposed recognition model (GP-
encoder) with the intermediate variable m.

level), c = 1, . . . , C. We are interested in simultaneously addressing the tasks of feature fusion

and ordinal prediction of the multiple outputs. For this purpose, we propose an approach

that resembles recent work of generative models [98, 147]. In these models, auto-encoders are

employed to learn compact representations of the input data. In a standard auto-encoding set-

ting, the encoding/decoding functions are modeled via neural networks. Here we replace these

functions with probabilistic non-parametric mappings, significantly reducing the number of op-

timized parameters, and naturally modeling the uncertainty in the mappings. The proposed

approach can be regarded as a B-GPLVM (generative model) with a fast inference mechanism

based on the non-parametric, probabilistic mapping (recognition model). To achieve this, we

impose GP priors on both models, and hence, obtain a well-defined GP-encoder, in accordance

to the GP-decoder.

6.2.1 The Model

Within the above setting, we assume that the observed features Y (v) are generated by a ran-

dom process, involving a latent (unobserved) set of variables X = {xi}Ni=1,xi ∈ Rq, with

q � Dv. The data pairs D = {Y ,Z} are assumed to be conditionally independent given the

latent variables, i.e., Y ⊥⊥ Z|X. The random process of recovering the latent variables has

two distinctive stages: (a) a latent variable xi is generated from some general prior distri-

bution p(x) = N (0, I), and further projected to the labels’ ordinal plane via p(z|x); (b) an

observed input y
(v)
i is generated from the conditional distribution p(y(v)|x). This process is

described in Fig. 6.1(a),(b). Using this approach, we can now perform classification in the

lower-dimensional space of X. However, this requires access to the intractable true posterior

p(x|y(v)).

91



6. Gaussian Process Auto-encoders for Joint Action Unit Intensity Estimation

To constrain the distribution of the latent variables we follow [98, 147] and introduce the

recognition model pr(x|y(v)). Hence, we end up with a supervised auto-encoder setting

y
(v)
i |xi = f (v)(xi;θ

(v)) + ε(v), xi|y(v)i = fr(y
(v)
i ;θr) + εr, zi|xi = g(xi;W ), (6.1)

where the latent space is further encouraged to reflect the structure of the output labels.

Here, ε(v) ∼ N (0, σ2vI), εr ∼ N (0, σ2rI). We place GP priors on f (v), fr with corresponding

hyper-parameters θ(v),θr.
1 Here, g denotes the ordinal regression that transforms the latent

variables to the labels’ ordinal plane, via W = {wc}Cc=1,wc ∈ Rq.

In the following, we detail how to learn the GP auto-encoder in Eq. (6.1) by deriving a

variational approximation to the log-marginal likelihood

log p(Y ,Z) = log

∫
p(Z|X)

∏
v
p(Y (v)|X)p(X)dX. (6.2)

6.2.2 Deriving the Lower Bound

We exploit the conditional independence property of Y ⊥⊥ Z|X and focus our analysis on the

GP auto-encoder. The ordinal information from the labels is incorporated in the presented

variational framework in Sec. 6.2.3. We follow the analysis from Chapter 5 for the MC-LVM

and place GP priors on f (v), fr. After integrating out the mapping functions, we obtain the

conditionals

p(Y (v)|X) = N (0,K(v) + σ2vI), pr(X|Y ) = N (0,Kr + σ2rI), (6.3)

where K(v) = k(v)(X,X) and Kr =
∑

v k
(v)
r (Y (v),Y (v)) are the kernels associated with each

process. Note that in the recognition model the relevant kernel allows us to easily combine

multiple features via the sum of the individual kernel functions. Training of the recognition

model consists of maximizing the conditional pr(X|Y ) w.r.t. the kernel hyper-parameters θr.

For the generative model we maximize the marginal likelihood (labels Z are omitted here)

p(Y ) =

∫ ∏V

v=1
p(Y (v)|X)p(X)dX. (6.4)

Since the above integral is intractable, we resort to approximations. Our main interest is to

recover a Bayesian non-parametric solution for both the GP encoder and decoder. We first

need to break the circular dependence between Y (v) and X in order to train the two GPs

simultaneously.

1The subscript r indicates that the process facilitates the recognition model.
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GP-encoder. We decouple X and Y by introducing an intermediate variable M =

{mi}Ni=1, so that the recognition model becomes y(v) → m → x. The GP operates on

y(v),m, while x is the noisy observations of m. This process is described in Fig. 6.1(c).

We follow a mean field approximation and introduce the variational distribution q(X|M) =∏
i qi(xi|mi) =

∏
iN (mi,Si). Here, mi,Si ∈ Rq are variational parameters2 of qi. We define

M by employing the cavity distribution of the leave-one-out solution of GP [146]

p(M |Y ) =
∏

i
p(mi|Y ,M\i) =

∏
i
N (m̂i, σ̂

2
i I), (6.5)

where the subscript \i means ‘all datapoints except i’, and the mean and variance of the

Gaussian are given by [146]

m̂i = mi −
[
K−1r M

]
i
/
[
K−1r

]
ii
, σ̂2i = 1/

[
K−1r

]
ii
. (6.6)

We now integrate out the intermediate layer and propagate the uncertainty of the GP mapping

to the latent variable X, which yields the variational distribution

q(X|Y ) =
∏

i
N (m̂i,Si + σ̂2i I). (6.7)

GP-decoder. The proposed recognition model, i.e., the variational distribution of Eq. (6.7),

can be employed to approximate the intractable marginal likelihood of Eq. (6.4). By introdu-

cing the variational distribution as an approximation to the true posterior, and after applying

the Jensen’s inequality, we obtain the lower bound to the log-marginal likelihood (again, labels

Z are omitted)

log p(Y ) ≥ F1 =
∑

v
Eq(X|Y )

[
log p(Y (v)|X)

]
−KL(q(X|Y )||p(X)). (6.8)

Training our model consists of maximizing the lower bound of Eq. (6.8) w.r.t. the variational

parameters M ,S and the hyper-parameters of the kernels K(v),Kr. Further details are given

in Sec. 6.2.4.

6.2.3 Incorporating Ordinal Variables

In the previous section, we presented the recognition model that we employ to learn a nonlinear

manifold from the observed inputs. In the following, we further constrain this manifold by

imposing an ordinal structure. This is attained by introducing ordinal variables that account

for C ordinal levels of AUs. We use the notion of ordinal regression [2] and, in particular, the

ordinal threshold model that imposes the monotonically increasing structure of the discrete

2For simplicity we assume an isotropic (diagonal) covariance across the dimensions.
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output labels to the continuous manifold. Formally, the non-linear mapping between the

manifold X and the ordinal outputs Z is modeled as

p(Z|g(X)) =
∏
i,c

p(zic|gc(xi)), p(zic = s|gc(xi)) =

1 if gc(xi) ∈ (γc,s−1, γc,s]

0 otherwise,
(6.9)

where i = 1, . . . , N indexes the training data. γc,0 = −∞ ≤ · · · ≤ γc,S = +∞ are the

thresholds or cut-off points that partition the real line into s = 1, . . . , S contiguous intervals.

These intervals map the real function value gc(x) into the discrete variable s, corresponding

to each of S intensity levels of an AU, while enforcing the ordinal constraints. The threshold

model p(zic = s|gc(xi)) is used for ideally noise-free cases. Here, we assume that the latent

functions gc(·)3 are corrupted by Gaussian noise, leading to the following formulation

gc(xi) = wT
c xi + εg, εg ∼ N (0, σ2g). (6.10)

By integrating out the noisy projections from Eq. (6.9) (see [27] for details), we arrive at the

ordinal log-likelihood

log p(Z|X,W ) =
∑

i,c
I(zic = s) log

(
Φ

(
γc,s −wT

c xi
σg

)
− Φ

(
γc,s−1 −wT

c xi
σg

))
, (6.11)

where Φ(·) is the Gaussian cumulative density function, and I(·) is the indicator function.

Finally, by using the ordinal likelihood defined in Eq. (6.11), we obtain the final lower bound

of our log-marginal likelihood

logp(Y ,Z|W ) ≥ F2 =
∑

v
Eq(X|Y )

[
log p(Y (v)|X)

]
−KL(q(X|Y )||p(X))

+
∑
i,c

I(zic = s)Eq(X|Y )

[
log

(
Φ

(
γc,s −wT

c xi
σg

)
− Φ

(
γc,s−1 −wT

c xi
σg

))]
. (6.12)

6.2.4 Learning and Inference

Training our model consists of maximizing the lower bound of Eq. (6.12) w.r.t. the variational

parameters {S,M}, the hyper-parameters {θ(v), σv,θ(v)r , σr} of the GP mappings, and the

parameters {W , γ, σg} of the ordinal classifier. For the kernel of the GP-decoder we use

the radial basis function (RBF) with automatic relevance determination (ARD), which can

effectively estimate the dimensionality of the latent space [36]. For the kernel of the GP-

encoder we use the isotropic RBF for each observed input. To utilize a joint optimization

scheme, we use stochastic backpropagation [98, 147], where the re-parameterization trick is

3Note that we adopt here a linear model for gc(·) as it operates on a low-dimensional non-linear manifold
X, already obtained by the GP auto-encoder.
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applied in Eq. (6.12). Thus, we can obtain the Monte Carlo estimate of the expectation of the

GP auto-encoder from

Eq(X|Y )

[
log p(Y (v)|X)

]
=
∑

i
EN (ξ|0,I)

[
log p(y

(v)
i |m̂i + (S

1/2
i + σ̂iI)ξ)

]
. (6.13)

The expectation of the ordinal classifier is computed in a similar manner. The advantage of

Eq. (6.13) is twofold: (i) It allows for an efficient computation of the lower bound even when

using arbitrary kernel functions (in contrast to [36]); (ii) It provides an efficient, low-variance

estimator of the gradient [98]. The extra approximation (via the expectation) in the gradient

step requires stochastic gradient descent. We use AdaDelta [198] for this purpose.

Inference in the proposed method is straightforward: The test data y
(v)
∗ , are first projected

onto the manifold using the trained GP-encoder. In the second step, we apply the ordinal

classifier to the obtained latent position.

6.3 Relation to Prior Work on Gaussian Processes

Our auto-encoder approach is inspired by neural-network counterparts proposed in [98, 147],

where probabilistic distributions are defined for the input and output mapping functions.

In the GP literature, auto-encoders are closely related to the notion of ‘back-constraints’.

Back-constraints were introduced in [106] as a deterministic, parametric mapping (commonly

a multi-layer perceptron (MLP)) that pairs the latent variables of the GPLVM [105] with

the observations. This mapping facilitates a fast inference mechanism and enforces structure

preservation in the manifold. The same mechanism has been used to constrain the shared

GPLVM [167], from one view in [50] and multiple views in the DS-GPLVM from Chapter 4.

Back-constraints have been recently introduced to the B-GPLVM [178]. In [37] the authors

proposed to approximate the true posterior of the latent space by introducing a variational

distribution conditioned on some unobserved inputs. However, those inputs are not related to

the observation space considered in this chapter (i.e., the outputs Y of the GPLVM). In [34]

the variational posterior of the latent space is constrained by using the trick of the parametric

deterministic mapping from [106]. Finally, in the MC-LVM form the previous chapter, we re-

placed the variational approximation with a Monte Carlo expectation-maximization algorithm.

Samples were obtained from the GP mapping from the observed inputs to the manifold.

Our proposed VGP-AE advances the current literature in many aspects: (1) We introduce

a GP mapping for our recognition model. Hence, we can model different uncertainty levels per

input and propagate them to the latent representations. (2) The use of the non-parametric
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GPs also allows us to model complex structures at a lesser expense than the MLP (fewer

parameters). Thus, it is less prone to overfitting and scales better to high-dimensional data. (3)

Compared to [37] our probabilistic recognition model facilitates a low-dimensional projection of

our observed features, while the variational constraint in [37] does not constitute a probabilistic

mapping. (4) We learn the GP encoders/decoders in a joint optimization, while in the MC-

LVM we trained the two models in an alternating scheme.

6.4 Experiments

In this section we empirically assess the structure learning abilities of the proposed VGP-AE

as well as its efficacy when dealing with data of ordinal nature.

6.4.1 Experimental Protocol

Datasets. We first show the qualitative evaluation of the proposed VGP-AE on the

MNIST [107] benchmark dataset of images of handwritten digits. We use it to assess the

properties of the auto-endoced manifold. We then show the performance of VGP-AE on two

benchmark datasets of facial affect: DISFA [122], and BP4D [208] (using the publicly avail-

able data subset from the FERA2015 [186] challenge). Specifically, DISFA contains video

recordings of 27 subjects while watching YouTube videos. Each frame is coded in terms of

the intensity of 12 AUs, on a six-point ordinal scale. The FERA2015 database includes video

of 41 participants. There are 21 subjects in the training and 20 subjects in the development

partition. The dataset contains intensity annotations for 5 AUs.

Features. In the experiment on MNIST dataset, we use the normalized raw pixel intensities

as input, resulting in a 784D feature vector. For DISFA and FERA2015, we use both

geometric and appearance features. Specifically, DISFA and FERA2015 datasets come with

frame-by-frame annotations of 66 and 49 facial landmarks, respectively. After removing the

contour landmarks from DISFA annotations, we end up with the same set of 49 facial points.

We register the images to a reference face using an affine transform based on these points. We

then extract LBP histograms [131] with 59 bins from patches centered around each registered

point. Hence, we obtain 98D (geometric) and 2891D (appearance) feature vectors, commonly

used in modeling of facial affect.

Evaluation. As evaluation measures, we use the negative log-predictive density (NLPD)

to assess the generative ability (reconstruction part) of our model. For the task of ordinal
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classification, we report the mean squared error (MSE) and the intra-class correlation

(ICC(3,1)) [168]. These are the standard measures for ordinal data. The MSE measures

the classifier’s consistency regarding the relative order of the classes. ICC is a measure of

agreement between annotators (in our case, the ground truth of the AU intensity and the

model’s predictions). Finally, we adopt the subject-independent setting: for FERA2015 we

report the results on the subjects of the development set, while for DISFA we perform a

9-fold (3 subjects per fold) cross-validation procedure.

Models. We compare the proposed VGP-AE to the state-of-the-art GP manifold learning

methods that perform multi-input multi-output inference. These include: (i) manifold

relevance determination (MRD) [36], a regression model based on variational inference, (ii)

variational auto-encoded deep GP (VAE-DGP) [34], which uses a recognition model based on

an MLP to constrain the learning of MRD, and (iii) multi-task latent GP (MT-LGP) [185],

which uses the same MLP-based recognition model and a maximum likelihood learning

approach. We also compare to the variational GP for ordinal regression (vGPOR) [166].

As a baseline, we use the standard GP [146] with a shared covariance function among the

multi-outputs. We also compare to the single-output ordinal threshold model (SOR) [2].

Finally, we compare to state-of-the-art methods for joint estimation of AU intensity based on

MRFs [156] and latent trees (LT) [94], respectively. For the single input (no fusion) methods

(GP, vGPOR, SOR, LT, MRF), we concatenate the two feature sets. The parameters of

each method were tuned as described in the corresponding papers. For the GP subspace

methods, we used the RBF kernel with ARD, and initialized with the 20D manifold. For the

GP regression methods, we used the standard RBF. For the sparse variational GP methods

(vGPOR, MRD, VAE-DGP) we used 200 inducing points, and 20 hidden units for the MLP

in the recognition models of VAE-DGP and MT-LGP.

6.4.2 Assessing the Recognition Model

In the following, we qualitatively assess the benefits of the proposed recognition model in the

task of manifold recovery from the MNIST dataset. We select an image depicting the digit

‘1’ and rotate it around 360◦. This results in a set of images of ‘1’s rotated at a step of 1◦.

Our goal is to infer the true structure of the data, for which we know a priori that it should

correspond to a diagonal-like kernel and a circular manifold. However, the challenge arises

from the symmetry of digit ‘1’, which is almost identical at opposite degrees (e.g., 0◦ and 180◦).

The results are depicted in Fig. 6.2. Note that since we do not deal with the classification task

we exclude the ordinal component in VGP-AE. We compare the learned manifold structure to
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Figure 6.2: Recovering the structure of a rotated ‘1’ from MNIST. The learned kernel matrices (up-
per row) and 2D manifolds (lower row) obtained from B-GPLVM (left), VAE-DGP (middle) and the
proposed VGP-AE (right), initialized from the same random instance.

the B-GPLVM [178], which does not model the back-projection to the latent space, and a single

layer VAE-DGP, where the back-projections are modeled using MLP. In Fig. 6.2 (upper row),

we see from the learned kernels that the B-GPLVM is unable to fully unravel the dissimilarity

between the ‘inverted’ images, resulting also in a non-smooth kernel with a discontinuity at

180◦ and 270◦. By contrast, the VAE-DGP benefits from the recognition model and manages

to resolve this to some extent. Yet, due to the deterministic nature of the recognition model,

the recovered kernel still suffers from a discontinuity around 180◦, while we also observe a

flickering effect as we move away from the main diagonal. On the other hand, the proposed

VGP-AE, by using the more general recognition model based on GPs (infinitely wide MLP),

succeeds to accurately discover the true underlying manifold, also resulting in a more smooth,

almost ideal kernel. These observations are further supported by the instances of the learned

2D manifolds in Fig. 6.2 (lower row). B-GPLVM learns a disconnected manifold with ‘jumps’

at 180◦ and 270◦. However, both the VAE-DGP and proposed VGP-AE recover a circular

manifold, with the manifold recovered by VGP-AE being more symmetric, although more

‘wobbly’ due to the sampling-based learning scheme.
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Figure 6.3: Convergence analysis of the proposed method on FERA2015. (a) The recovered latent space
with ordinal information from AU12, and (b) reconstructed face shapes sampled from different regions
of the manifold. (c) The estimated average variational lower bound, F2, per datapoint, for different
batch sizes. The model’s reconstruction capacity for the points (d) and LBP (e) features, measured by
the NLPD. (f) The average ICC for the joint AU intensity estimation. The horizontal axis corresponds
to the amount of training points evaluated after 1500 epochs of the stochastic optimization.

6.4.3 Convergence Analysis

We next demonstrate the convergence of VGP-AE in the task of AU intensity estimation on

FERA2015. Fig. 6.3(a) shows the effect of learning the ordinal classifier and the auto-encoded

manifold within the joint optimization framework. It can be clearly seen from the recovered

space that the information from the labels has been correctly encoded in the manifold, which

now has an ordinal structure (the depicted coloring accounts for the ‘ordinality’ of AU12). As

depicted in Fig. 6.3(b), we can accurately reconstruct face shapes with different AU intensities,

by sampling from different regions of the space. Fig. 6.3(c) shows the convergence of the

proposed method when optimizing the lower bound F2 of Eq. (6.12) for different batch sizes

of the stochastic optimization. With a small batch size (100 datapoints) the model cannot

estimate the structure of the inputs well. Hence, it approximates the log-marginal likelihood

less accurately. By increasing the batch size to 500, the model converges to a better solution

and optimization becomes more stable since the curve becomes smoother over the iterations.

Further increase of the batch size does not have a considerable effect.
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Table 6.1: Joint AU intensity estimation on DISFA and FERA2015.

Dataset DISFA FERA2015
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg. 6 10 12 14 17 Avg.

IC
C

VGP-AE .48 .47 .62 .19 .50 .42 .80 .19 .36 .15 .84 .53 .46 .75 .66 .88 .47 .49 .65
VAE-DGP [34] .39 .34 .46 .13 .40 .31 .75 .14 .23 .14 .75 .45 .38 .72 .61 .82 .40 .38 .59
MRD [36] .46 .39 .43 .09 .28 .34 .71 .09 .30 .09 .73 .36 .36 .68 .59 .80 .38 .38 .57
MT-LGP [185] .41 .33 .28 .10 .23 .22 .56 .13 .26 .18 .65 .23 .30 .67 .61 .80 .37 .41 .57
vGPOR [166] .53 .49 .54 .21 .35 .40 .75 .18 .30 .16 .79 .39 .42 .74 .62 .84 .48 .35 .61
GP [146] .28 .13 .42 .03 .13 .23 .62 .08 .26 .19 .67 .23 .27 .69 .58 .81 .35 .38 .56
SOR [2] .25 .18 .65 .08 .46 .15 .77 .14 .24 .04 .82 .57 .36 .61 .50 .77 .28 .45 .52
LT [94] .28 .26 .44 .24 .50 .13 .69 .06 .21 .06 .62 .37 .32 .70 .59 .76 .30 .31 .53
MRF [156] .46 .38 .50 .37 .41 .34 .67 .32 .29 .20 .69 .46 .42 .64 .53 .79 .34 .46 .55

M
S

E

VGP-AE .51 .32 1.13 .08 .56 .31 .47 .20 .28 .16 .49 .44 .41 .82 1.28 .70 1.43 .77 1.00
VAE-DGP [34] .40 .36 .95 .08 .48 .29 .43 .19 .32 .16 .76 .44 .41 .91 1.33 .81 1.46 .86 1.07
MRD [36] .42 .38 1.31 .08 .56 .27 .47 .20 .36 .18 .82 .53 .46 1.00 1.39 .83 1.64 .88 1.15
MT-LGP [185] .40 .35 1.25 .08 .60 .30 .73 .18 .36 .16 1.19 .67 .52 .97 1.31 .81 1.58 .84 1.10
vGPOR [166] .38 .34 .95 .06 .57 .27 .43 .18 .33 .18 .65 .53 .41 1.00 1.54 .76 1.78 1.11 1.24
GP [146] .52 .51 1.13 .13 .65 .36 .61 .23 .38 .20 .94 .66 .53 .94 1.40 .76 1.62 .88 1.12
SOR [2] .47 .40 1.13 .07 .63 .37 .55 .21 .35 .21 .71 .61 .48 1.44 1.82 1.08 2.58 1.01 1.59
LT [94] .44 .38 .93 .06 .36 .32 .46 .16 .29 .15 .97 .44 .41 .89 1.33 .91 1.48 .85 1.09
MRF [156] .37 .35 .94 .06 .45 .29 .46 .13 .32 .16 .77 .44 .40 1.20 1.66 .86 2.19 .92 1.37

In Fig. 6.3(d)–(e) we evaluate the generative part of the auto-encoder by measuring the

model’s ability to reconstruct both input features (points and LBPs) in terms of NLPD. First

of all, it is clear that our Bayesian training prevents the model from overfitting, since the NLPD

of the test data follows the trend of the training data. Furthermore, we can see that the model

can reconstruct the geometric features better than the appearance, which is evidenced by the

lower NLPD (around −50 for points and 1500 for LBPs). We partly attribute this to the fact

that the LBPs are of higher dimension and therefore more difficult to reconstruct. Another

reason for this difference is that the model learns to reconstruct the part of the features that

enclose the more relevant information regarding the task of classification. The latter is further

supported by Fig. 6.3(e), where we see the progress of the average ICC during the optimization.

In the beginning, the model has no information since the latent space is initialized randomly.

As we progress the model fuses the information of the input features in the latent space and

unravels the structure of the data. Thus, ICC starts rising and reaches its highest value, .65 on

the test data. After that point the model does no longer benefit from the appearance features:

it has reached the plateau.

6.4.4 Model Comparisons on Spontaneous Data of Facial Expressions

We compare the proposed approach to several methods on the spontaneous data from the

DISFA and FERA2015 datasets. Table 6.1 summarizes the results. First, we observe that

all methods perform significantly better (in terms of ICC) on the data from FERA2015 than
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on DISFA. This is mainly due to the fact that FERA2015 contains a much more balanced

set of AUs (in terms of activations), and hence, all models (single- and multi-output) can

learn the classifiers for the target task better. Furthermore, our proposed approach performs

significantly better than the compared GP manifold learning methods, which treat the output

labels as continuous variables. MRD lacks the modeling of back-projections. This results in

learning a less smooth manifold of facial expressions, which affects its representation abilities,

and hence, its predictions. On the other hand, the VAE-DGP learns explicitly the mapping

from the observed features to the latent space in a deterministic and parametric fashion.

Although this strategy is proven to be superior to unconstrained learning, it can be severely

affected in cases where we have access to noisy and high-dimensional features. MT-LGP also

models the back-mappings. However, it reports worse results, especially on DISFA. This drop

in the performance is accounted to the non-Bayesian learning of the manifold, which makes

the model more prone to overfitting.

Regarding the sparse ordinal regression instance of GPs, i.e., vGPOR, we see that it manages

to learn relatively accurate mappings between features and labels, and thus, performs close to

our proposed method. However, it reports worse results since it cannot achieve the desirable

fusion of the features without learning an intermediate latent space. The baseline methods,

i.e., GP and SOR, report lower results. The GP attains low scores due to handling the ordinal

outputs in a continuous manner while the ordinal modeling helps SOR to report consistently

better.

Finally, the proposed approach significantly outperforms the state-of-the-art methods in the

literature of AU intensity estimation, i.e., LT and MRF. LT learns the label information in a

generative manner, and treats them as extra feature dimensions. Although this approach can

be beneficial in the presence of noisy features [94], it suffers from learning complicated and

large tree structures when falsely detecting connections between features and AUs. Hence, it

performs worse. The MRF performs on par to the proposed method on DISFA and achieves

the best average MSE, but it is consistently worse on FERA2015. This inconsistency is due

to its two-step learning strategy, which results in unraveling a graph that cannot explain

simultaneously all different features and AUs.

In Fig. 6.4 we evaluate the attained fusion between the best performing methods on

FERA2015, i.e., the proposed VGP-AE, VAE-DGP [34] and vGPOR [166]. As we can see,

the proposed approach (solid line, first tuple) manages to accurately fuse the information

from the two input features in the learned manifold. Thus, it achieves higher ICC on all AUs

compared to when the two modalities are used individually as input features. On the other
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Figure 6.4: Demonstration of the gain/loss from feature fusion for joint AU intensity estimation on
FERA2015. Within each AU the first tuple (solid line) corresponds to the proposed VGP-AE, the
second tuple (dashed line) to the VAE-DGP [34], and the third tuple (dotted line) to the vGPOR [166].

hand, although vGPOR (third tuple, dotted line) reports also high ICC scores, it does not

benefit from the presence of the two features: In most cases it cannot achieve a significant

increase compared to the individual inputs. Finally, VAE-DGP (middle tuple, dashed line)

consistently attains better performance on all AUs with a single feature as input. This can be

attributed to modeling the recognition model via the parametric MLP. The latter affects the

learning of the manifold, especially when dealing with the high-dimensional noisy appearance

features.

The above mentioned difference between our approach and the VAE-DGP is further evid-

enced in Fig. 6.5. The proposed fusion along with the novel non-parametric, probabilistic

recognition model in our auto-encoder leads to less confusion between the ordinal states across

all AUs. We further attribute this to the ordinal modeling of outputs in our VGP-AE, contrary

to VAE-DGP that treats the output as continuous variables. This is especially pronounced in

the case of the subtle AUs 14&17, where examples of high intensity levels are scarce.

6.5 Conclusion

In this chapter we have presented a fully probabilistic GP auto-encoder, where GP mappings

govern both the generative (GP-decoder) and the recognition (GP-encoder) models. The pro-

posed variational GP auto-encoder is learned in a supervised manner, where the ordinal nature

of the labels is imposed to the manifold. This allows the proposed approach to accurately learn

the structure of the input data, while also remain competitive in the task of AU intensity es-

timation – an inherent ordinal problem. We have experimentally proved that our proposed

probabilistic recognition model, apart from facilitating the back-mapping during inference, is

also beneficial on unraveling more representative manifolds compared to when deterministic

mappings are used. Furthermore, we have empirically evaluated our model on the task of facial

feature fusion for joint intensity estimation of facial AUs. The proposed model outperforms
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Figure 6.5: Confusion matrices for predicting the 0 − 5 intensity of all AUs on FERA2015, when
performing fusion with VGP-AE (upper row) and VAE-DGP [34] (lower row).

related GP methods and the state-of-the-art approaches for the target task.
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7.1 Introduction

The models that we have presented in all previous chapters, although have been designed

based on powerful generative models, may suffer a drop in their performance in the case where

the input test data vary significantly from the training set. This can be addressed, up to

some extent, by training the models on large amount of data that account for the unwanted

variations. Our aim in this chapter is to find a data efficient approach to adapt the already

trained generic models for facial behavior analysis. To achieve this we explore the notion

of domain adaptation to address the tasks of (i) view and (ii) subject adaptation, for facial

expression analysis of basic emotions and AUs. In particular, we address the problem of

domain adaptation where the distribution of the (facial) features varies across domains (i.e.,

contexts such as the view or subject), while the output labels (in our case, the emotion or

AU activations) remain the same. The two domains are called source and target domain,

respectively.

105



7. Gaussian Processes for Context Adaptation in Expression Analysis

Target

t

k = 1:M

Source

i = 1:ns

yi
(sk)

f
(sk)
i

xi
(sk)

j = 1:nt

yj
(t)

μj
(t)

f
(t)
j

xj
(t)

f
(t|s)
j

yj
(t|s)

μj
(t|s)Vj

(t|s) Vj
(t)

yj

....

Figure 7.1: The proposed GPDE model. The learning consists of training the multiple source (sk, k =
1, · · · ,M) and the target (t) GP experts (in this case, each subject is treated as an expert), using
the available labeled training data pairs (x,y) – the input features (e.g., facial landmarks) and output
labels (e.g., AU activations), respectively. Adaptation (dashed lines) for the target data is performed
via conditioning the latent functions, f , of the target GP on the source experts (t|s). During inference,
we fuse the predictions from the experts (µ{t,(t|s)}) by means of their predictive variance (V {t,(t|s)}),
with the role of a confidence measure.

Our domain adaptation model generalizes the product of GP expert models [43, 25] to the

domain adaptation scenario. More specifically, instead of adjusting the classifier parameters

between the domains, as in [28, 199, 26, 124, 157], we propose domain specific GP experts that

model the domain specific data. The modeling power of GPs allows us to model the desired

attributes in the target domain, in a data efficient manner. This is crucial for the training

of the target expert since the available annotated data are usually scarce. Moreover, instead

of minimizing the error between the distributions of the original source and target domain

data, as in [28, 124], we use Bayesian domain adaptation [112] and explain the target data

by conditioning on the learned source experts. The final prediction for the adapted classifier

is obtained as a weighted combination of the predictions from the individual experts. The

weighting is facilitated by measuring the confidence of each classifier. Contrary to [200] that

represents the confidence heuristically as the agreement between a positive and a negative

classifiers, in our probabilistic formulation during the adaptation we exploit the variance in

the GP predictions when combining the source and target domains [161]. This results in a

confident classifier that minimizes the risk of potential negative transfer (i.e., the adapted

model performing worse than the model trained using the adaptation data only). Finally,
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in contrast to transductive adaptation approaches (e.g., [28]) that need to be retrained com-

pletely, adaptation of our model is efficient and requires no retraining of the source model. An

outline of the proposed model is depicted in Fig. 7.1. Note that the contents of this chapter

are published in [57].

7.2 Gaussian Process Domain Experts (GPDE)

In the following, we introduce the notion of domain adaptation to the framework of GPs

and present a novel methodology for obtaining a universal classifier with good generalization

abilities and capable of modeling domain specific attributes.

7.2.1 Problem Formulation

We consider a supervised setting for domain adaptation, where we have access to a large

collection of labeled source domain data, S, and a smaller set of labeled target domain data,

T . Let X and Y be the input (features) and output (labels) spaces, respectively. Hence,

X(s) = {x(s)
ns }Ns

ns=1 and X(t) = {x(t)
nt }Nt

nt=1, with x
(s)
ns ,x

(t)
nt ∈ RD, and Nt � Ns. In our case, the

different domains can be different views or subjects. On the other hand, Y (s) = {y(s)ns }Ns
ns=1 and

Y (t) = {y(t)nt }Nt
nt=1 correspond to same labels for both source and target domains. Each vector

y
{s,t}
n contains the binary class labels of C classes. In order to avoid the burden of learning

approximate solutions with GP classification, we formulate the predictions as a regression

problem where:

y(v)nv
= f (v)(x(v)

nv
) + ε(v), (7.1)

where ε(v) ∼ N (0, σ2vI) is i.i.d. additive Gaussian noise, and the index v ∈ {s, t} denotes

the dependence on each domain. The objective is to infer the latent functions f (v), given

the training dataset D(v) = {X(v),Y (v)}. To achieve this, we place a GP prior on the

functions f (v), so that the function values f
(v)
nv = f (v)(x

(v)
nv ) follow a Gaussian distribution

p(F (v)|X(v)) = N (F (v)|0,K(v)). Here, F (v) = {f (v)
nv }Nv

nv=1, and K(v) = k(v)(X(v),X(v)) is the

kernel covariance function, which is assumed to be shared among the label dimensions. In this

chapter, we employ the RBF kernel

k(x,x′) = σ2f exp
(
− 1

2`2
‖x− x′‖2

)
, (7.2)

where {`, σf} are the kernel hyper-parameters. The regression mapping can be fully defined

by the set of hyper-parameters θ = {`, σf , σv}. Training of the GP consists of finding the

hyper-parameters that maximize the log-marginal likelihood

log p(Y (v)|X(v),θ(v)) = −C
2

log |K(v)+σ2vI|−
1

2
tr
[
(K(v) + σ2vI)−1Y (v)Y (v)T

]
+const. (7.3)
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Given a test input x
(v)
∗ we obtain the GP predictive distribution by conditioning on the training

data D(v) as p(f
(v)
∗ |x(v)

∗ ,D(v)) = N (µ(v)(x
(v)
∗ ), V (v)(x

(v)
∗ )) with

µ(v)(x
(v)
∗ ) = k

(v)
∗

T
(K(v) + σ2vI)−1Y (v) (7.4)

V (v)(x
(v)
∗ ) = k

(v)
∗∗ − k(v)∗

T
(K(v) + σ2vI)−1k

(v)
∗ , (7.5)

where k
(v)
∗ = k(v)(X(v),x

(v)
∗ ) and k

(v)
∗∗ = k(v)(x

(v)
∗ ,x

(v)
∗ ). For convenience we denote µ

(v)
∗ =

µ(v)(x
(v)
∗ ) and V

(v)
∗∗ = V (v)(x

(v)
∗ ). Under this general formulation, we have the choice to learn

either (i) independent functions f (v) or (ii) a universal function f that couples the data from

the two domains. However, neither option allows us to explore the idea of domain adaptation:

In the former we learn domain-specific models, while in the latter we simplify the problem

by concatenating the data from the two domains. An alternative would be to merge the

two approaches in order to achieve a better generalization, while also being able to model

domain specific attributes. Such a combined approach would allow us to obtain more robust

predictions.

7.2.2 GP Adaptation

A straightforward approach to obtain a model capable of performing inference on data from

both domains is to assume the existence of a universal latent function with a single set of

hyper-parameters θ. Thus, the authors in [112] proposed a simple, yet effective, three-step

approach for GP adaptation (GPA):

1. Train a GP on the source data with marginal likelihood p(Y (s)|X(s),θ) to learn the

hyper-parameters θ. The posterior distribution is the given by Eqs. (7.4)–(7.5).

2. Use the obtained posterior distribution of the source data, as a prior for the GP of the

target data p(Y (t)|X(t),D(s),θ).

3. Correct the posterior distribution to account for the target data D(t) as well.

Now the conditional prior of the target data (given the source data) in the second step is

given by applying Eqs. (7.4)–(7.5) on X(t)

µ(t|s) = K
(s)
st

T
(K(s) + σ2sI)−1Y (s) (7.6)

V (t|s) = K
(s)
tt −K

(s)
st

T
(K(s) + σ2sI)−1K

(s)
st , (7.7)
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where K
(s)
tt = k(s)(X(t),X(t)),K

(s)
st = k(s)(X(s),X(t)), and the superscript t|s denotes the

conditioning order. Given the above prior and a test input x
(t)
∗ , the correct form of the

adapted posterior after observing the target domain data is given by:

µ
(s)
ad (x

(t)
∗ ) = µ

(s)
∗ + V

(t|s)
∗

T
(V (t|s) + σ2sI)−1(Y (t) − µ(t|s)) (7.8)

V
(s)
ad (x

(t)
∗ ) = V

(s)
∗∗ − V (t|s)

∗
T

(V (t|s) + σ2sI)−1V
(t|s)
∗ , (7.9)

with V
(t|s)
∗ = k(s)(X(t),x

(t)
∗ )− k(s)(X(s),X(t))

T
(K(s) + σ2sI)−1k(s)(X(s),x

(t)
∗ ).

Eqs. (7.8)–(7.9) show that final prediction in the GPA is the combination of the original

prediction based on the source data only, plus a correction term. The latter shifts the mean

toward the distribution of the target data and improves the model’s confidence by reducing

the predictive variance. Note that we originally constrained the model to learn a single lat-

ent function f for both conditional distributions p(Y (v)|X(v)) to derive the posterior for the

GPA. However, this constraint implies that the marginal distributions of the data p(X(v))

are similar. This assumption violates the general idea of domain adaptation, where by defin-

ition, the marginals may have significantly different attributes (e.g., input features from dif-

ferent observation views). In such cases, GPA could perform worse than an independent GP

trained solely on the target data D(t). One possible way to address this issue is to retrain the

log p(Y (t)|X(t),D(s),θ) of the GPA w.r.t. θ [112]. This option will compensate for the differ-

ences in the distributions by readjusting the hyper-parameters. However, it comes with the

price of retraining of the model. Furthermore, it does not allow for modeling domain-specific

attributes since the predictions are still determined mainly from the source distribution.

7.2.3 Domain Experts

In the proposed GP domain experts (GPDE), we assume that each expert is a GP that operates

only on a subset of data, i.e., D(s),D(t). Hence, we can follow the methodology presented in

Sec. 7.2.1 in order to train domain-specific GPs and learn different latent functions, i.e., hyper-

parameters θ(v). Within the current formulation we treat the source domain as a combination

of multiple source datasets (e.g., subject-specific datasets) D(s) = {D(s1), . . . ,D(sM )}, where

M is the total number of source domains (datasets).

Training. Given the above mentioned data split and assuming conditional independence of

the labels from each domain given the corresponding input features, the marginal likelihood

109



7. Gaussian Processes for Context Adaptation in Expression Analysis

can be approximated by

p(Y {s,t}, |X{s,t},θ{s,t}) = p(Y (t)|X(t),θ(t))
M∏
k=1

pk(Y
(sk)|X(sk),θ(s)). (7.10)

Note that we share the set of hyper-parameters θ(s) across all the source domains. The

intuition behind this is that in each source domain we may observe different label distribution

p(Y (sk)), yet after exploiting all the available datasets we can model the overall distribution

p(Y (s)) with a single set of hyper-parameters θ(s). However, this does not guarantee that we

are also able to explain the target label distribution p(Y (t)) with the same hyper-parameters.

Thus, we also search for θ(t) for modeling the domain-specific attributes. Similar to Sec. 7.2.1

learning of the hyper-parameters is performed by maximizing

log p(Y {s,t}, |X{s,t},θ{s,t}) = log p(Y (t)|X(t),θ(t)) +

M∑
k=1

log pk(Y
(sk)|X(sk),θ(s)), (7.11)

where each log-marginal is computed according to Eq. (7.3). The above factorization, apart

from facilitating learning of the domain experts, allows for efficient GP training even with

larger datasets, as shown in [43]. Note that the source experts can be learned independently

from the target, which allows our model to generalize to unseen target domains without

retraining.

Predictions. Once we have trained the GPDE, we need to combine the predictions from

each expert to form an overall prediction. To achieve that, we follow the approach presented

in [25], where we further readjust the predictions from the source experts using the conditional

adaptation from GPA. Hence, the predictive distribution is given by

p(f
(t)
∗ |x(t)

∗ ,D) =

M∏
k=1

p
βsk
k (f

(t)
∗ |x(t)

∗ ,D(sk),D(t),θ(s)) · pβt(f (t)
∗ |x(t)

∗ ,D(t),θ(t)), (7.12)

where βsk , βt control the contribution of each expert. In this work we equally weight the

experts and normalize them such that βt +
∑
βsk = 1, as suggested in [43]. The predictive

mean and variance are given by

µgpde
∗ = V gpde

∗

[
βtV

(t)
∗
−1
µ
(t)
∗ +

∑
k
βskV

(sk)
ad

−1
µ
(sk)
ad

]
(7.13)

V gpde
∗ =

[
βtV

(t)
∗
−1

+
∑

k
βskV

(sk)
ad

−1
]−1

. (7.14)

At this point the contribution of the GPDE becomes clear: Eq. (7.13) shows that the overall

mean is the sum of the predictions from each expert, weighted by their precision (inverse
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variance). Hence, the solution of the GPDE will favor the predictions of more confident

experts. On the other hand, if the quality of a domain expert is poor (noisy predictions with

large variance), GPDE will weaken its contribution to the overall prediction.

7.2.4 Weighted GP Domain Experts for imbalanced outputs

In the analysis we conducted so far, we treated the multiple outputs as i.i.d. samples from

a joint Gaussian distribution. Hence, we assumed a shared covariance matrix among the

multiple output dimensions, which results in the same weighting/variance in Eqs. (7.13)–

(7.14). This could be problematic in cases where we have to deal with imbalanced data in the

output, (e.g., different AUs with different occurrence patterns). Thus, it is important in each

expert to account for a different variance per output. To address this, we follow the approach

presented in [75, 184], and introduce a weighting matrix to the log-marginal likelihood of each

expert in Eq. (7.11), so that

log p(Y (v)|X(v),θ(v)) = −1

2
tr
[
(K(v) + σ2vI)−1Y (v)Λ(v)Y (v)T

]
− C

2
log |K(v) + σ2vI|+

Nv

2
log |Λ(v)|+ const, (7.15)

where Λ(v) = diag(λ
(v)
1 , · · · , λ(v)C ). This is equivalent to learning a GP with kernel covariance

function k(v)(·, ·) = k(v)(·, ·)/λ(v)c for each output dimension c. The term 1/λ
(v)
c accounts for

the different variances in the output dimensions and gives more flexibility to the model, since

more representative input-output mappings can be learned.

Note, however, that the predicted variance of a probabilistic model depends highly on the

training data. A GP domain expert can have access to data with zero activations for a certain

output, while other outputs may frequently co-occur together. This suggests that there exists

an intrinsic structure between the outputs, which we do not account for within the GPDE. To

ameliorate this, we re-parameterize λ
(v)
c as

1

λ
(v)
c

=
w

(v)
c∑
cw

(v)
c

, (7.16)

where w
(v)
c is the new parameter to learn. As we can see from Eq. (7.16), the variance of each

output is now proportional to the amount of the total variance. Such a re-parameterization

correctly enforces the total variance of the GP to be distributed to the various outputs. It can

be also regarded as a straightforward way to rectify the assumption of having i.i.d. outputs,

since now frequently co-occurring outputs will be assigned similar weights, and, hence, a

similar covariance function. We name the approach presented here as weighted Gaussian

process domain experts (wGPDE) to differentiate it from the single variance GPDE.
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Algorithm 3 Domain adaptation with (w)GPDE

Inputs: D(s) = {X(s),Y (s)},D(t) = {X(t),Y (t)}
Training:

Learn the hyper-parameters θ{s,t} by maximizing Eq. (7.11).
Adaptation:

Adapt the posterior from the source experts via Eq. (7.8)–(7.9).
Predictions of Experts:

Combine the prediction from each GP domain expert via
Eq. (7.13)–(7.14) for GPDE or Eq. (7.17)–(7.18) for wGPDE.

Output: y∗ = sign(µgpde
∗ ).

Re-weighted Predictions. By propagating the weighting matrix Λ(v) to the predictive

distribution of the proposed wGPDE, we can derive the re-weighted predictions for the c-th

output

µgpde
∗c = V gpde

∗c

[
βtλ

(t)
c V

(t)
∗
−1
µ
(t)
∗c +

∑
k
βskλ

(sk)
c V

(sk)
ad

−1
µ
(sk)
adc

]
(7.17)

V gpde
∗c =

[
βtλ

(t)
c V

(t)
∗
−1

+
∑

k
βskλ

(sk)
c V

(sk)
ad

−1
]−1

. (7.18)

By comparing Eqs. (7.13)–(7.14) to Eqs. (7.17)–(7.18) we see that the combined predictions

from all the experts depend on the predicted variance of each output. This allows the re-

weighted experts to be confident (higher contribution to the overall prediction) for certain

outputs, while remaining ‘silent’ for outputs that have not seen. On the contrary, Eqs. (7.13)–

(7.14) assign the same weight to all outputs, a fact that increases the bias in the predictions.

Algorithm 3 summarizes the adaptation procedure of the proposed (w)GPDE.

7.3 Relation to Prior Work on Domain Adaptation

Domain adaptation is a well studied problem in machine learning (for an extensive survey,

see [144]). The adaptation can be performed either in an unsupervised or a (semi-)supervised

setting, based on the availability of labeled target domain data. The approaches that oper-

ate on the first setting, usually focus on deriving a common subspace where the distribution

mismatch between source and target data is diminished. For instance, a manifold learning

approach has been proposed in [71], where labeled data from the source domain and un-

labeled data from target domain are first mapped on the Grassmann manifold, before learning

a classifier. Similarly, [70] treats the source and target domains as connected points in the

Grassmann manifold. The intermediate points (domains) in the path are integrated out in

order to propagate the information from the source to the target domain data. More re-

cently, [65, 5] proposed to align the eigenspaces from the two domains and train a classifier
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on the aligned source domain data. In a similar attempt, [173] proposed to whiten the data

in order to align the correlations between the source and target domain, before applying the

classification. The above approaches can be very effective in cases where we do not have ac-

cess to labeled target data. However, even when few labels from the target domain become

available, unsupervised methods should not be preferred, since they fail to integrate the class

knowledge from the target domain to the adaptation step.

The (semi-)supervised setting is more appropriate to our target task, since the available

labels can be used to enhance the classification. One of the first attempts toward this

directions has been presented in [41]. The authors proposed to replicate the input features to

produce shared and domain-specific features, which are then fed into a classifier. Although

straightforward, this approach has been proven effective for the adaptation task. [101] learns

a transformation that maximizes similarity between data in the source and target domains

by enforcing data pairs with the same labels to have high similarity, and pairs with different

labels to be dissimilar. Then, a k-NN classifier is used to perform classification of target

data. [82] is an extension of this approach to multiple source domains. The input data are

assumed to be generated from category-specific local domain mixtures, the mixing weights

of which determine the underlying domain of the data, classified using an SVM classifier.

Similarly, [83] learns a linear asymmetric transformation to maximally align target features

to the source domain. This is attained by introducing max-margin constraints that allow the

learning of the transformation matrix and SVM classifier jointly. [46] extends the work in [83]

by introducing additional constraints to the max-margin formulation. More specifically,

unlabeled data from the target domain are used to enforce the classifier to produce similar

predictions for similar target-source data. While these methods attempt to directly align

the target to source features, several works attempted this through a shared manifold. For

instance, [48] learns a non-linear transformation from both source and target data to a shared

latent space, along with the target classifier. Likewise, [196] finds a low-dimensional subspace,

which preserves the structure across the domains. The subspace is facilitated by projections

that are learned jointly with the linear classifier. The structure preservation constraints are

used to ensure that similar data across domains are close in the subspace.

All of the above methods tackle the adaptation problem in a deterministic fashion. Thus,

they do not provide a measure of confidence in the target predictions. By contrast, our

approach is fully probabilistic and non-parametric due to the use of GPs. Thus, the proposed

method is more related to recent advances in the literature [69, 112, 96] that perform the

domain adaptation in a Bayesian fashion. Specifically, in [69] a discriminative framework is
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proposed to couple data from different domains in a shared subspace. Task-specific projections

are learned simultaneously with the classifiers in order to couple all the task from the multiple

domains in the obtained subspace. In [112], the predictive distribution of a GP trained on the

source data is used as a prior for the joint distribution of the source and target domains. The

information from the source domain can be analytically propagated to the inference of the

target data by simply following the conditional properties of the GPs. Similarly, in [96] the

authors proposed a two-layer GP that jointly learns separate discriminative functions from

the source and target features to the labels. The intermediate layer facilitates the adaptation

step, and a variational approximation is employed to integrate out this layer.

Compared to the aforementioned work, our approach has some key differences: In [69]

the authors learn the classifier on a subspace shared among the data from source and target

domains. This can be problematic in cases where access to target domain data is confined,

since it can impose a bias on the manifold toward the source domain. In contrast to [112],

our proposed approach defines a target specific expert, which is then combined with the

source domain experts. The benefit of this is that the resulting classifier is not limited by

the distribution of the source data. Also, in contrast to [96], the training of the experts is

performed independently, and thus, we need not retrain the source classifier.

7.4 Experiments

7.4.1 Experimental Protocol

Datasets. We evaluate the proposed model on acted and spontaneous facial expressions

from three publicly available datasets: MultiPIE [76], Denver Intensity of Spontaneous Facial

Actions (DISFA) [122] and BP4D [208] (using the publicly available data subset from the

FERA2015 [186] challenge). Specifically, MultiPIE contains images of 373 subjects depicting

acted facial expressions of Neutral (NE), Disgust (DI), Surprise (SU), Smile (SM), Scream

(SC) and Squint (SQ), captured at various pan angles. In our experiments, we used images

from 0◦, −15◦ and −30◦. DISFA is widely used in the AU-related literature, due to the large

amount of (subjects and AUs) annotated images. It contains video recordings of 27 subjects

while watching YouTube videos. Each frame is coded in terms of the intensity of 12 AUs,

coded on a six-point ordinal scale. For our experiments we treated each AU with intensity

larger than zero as active. FERA2015 database includes video of 41 participants. There are 21

subjects in the training and 20 subjects in the development partition. Each video is annotated

in terms of occurrence of 11 AUs. Example images of the three datasets are given in Fig. 7.2.
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Figure 7.2: Example images from MultiPIE (top), DISFA (middle) and FERA2015 (bottom) datasets.

Features. We use both a set of geometric features derived from the facial landmark locations,

as well as appearance features. Specifically, DISFA and FERA2015 datasets come with frame-

by-frame annotations of 66 and 49 facial landmarks, respectively, while a set of 66 annotated

points for MultiPIE were obtained from [154]. After removing the contour landmarks from

DISFA and MultiPIE annotations, we end up with the same set of 49 facial points for all

three datasets. These were then registered to a reference face (average face per view for

MultiPIE, and average face for DISFA and FERA2015) using an affine transformation. We

then extract LBP histograms [131] with 59 bins from patches centered around each registered

point. Hence, we obtain 98D (geometric) and 2891D (appearance) feature vectors, commonly

used in modeling of facial affect. For the high dimensional appearance features, in order

to remove potential noise and artifacts, and also reduce the dimensionality, we applied PCA,

retaining 95% of the energy, which resulted in approximately 200D appearance feature vectors.

Evaluation procedure. We evaluate GPDE and wGPDE on both multi-class (facial ex-

pression classification of basic emotions on MultiPIE) and multi-label (multiple AU detection

on DISFA and FERA2015) scenarios. We also assess the adaptation capacity of the model

with a single (view adaptation) and multiple (subject adaptation) source domains. For the

task of emotion classification, images from 0◦, −15◦ and −30◦ served interchangeably as the

source domain, while inference was performed via adaptation to the remaining views. For the

AU detection task, the various subjects from the training data were used as multiple source

domains, and adaptation was performed each time on the tested subject.

To evaluate the model’s adaptation ability we strictly follow a training protocol, where for

each experiment we vary the cardinality of the training target data (we always use all the
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available source domain data). For MultiPIE, we first split the data in 5-folds (4 training,

1 testing and iterate over all folds) and then, we keep increasing the cardinality as: Nt =

10, 30, 50, 100, 200, 300, 600, 1200. For DISFA we follow a leave-one-subject-out approach (26

training source subjects and 1 target test subject at a time). For FERA2015 we followed

the original partitioning suggested in [186] (20 training source subjects from the training

partition, while each of the 20 subjects in the development partition served as an individual

target domain). From the test subject’s sequence in DISFA and FERA2015 the first 500 frames

were used as target training data (with increasing cardinality Nt = 10, 30, 50, 100, 200, 500),

while inference was performed on the rest frames of the sequence. This is in order to avoid

the target model overfitting the temporally neighboring examples of the test subject. For the

emotion classification experiments, we employ the classification ratio (CR) as the evaluation

measure, while for the AU detection we report the F1 score and the area under the ROC

curve (AUC). Both F1 and AUC are widely used in the literature as they quantify different

characteristics of the classifiers’ performance. Specifically, F1, defined as F1 = 2·Precision·Recall
Precision+Recall ,

is the harmonic mean between the precision and recall. It puts emphasis on the classification

task, while being largely robust to imbalanced data (such as examples of different AUs). AUC

quantifies the relation between true and false positives, showing the robustness of a classifier

to the choice of its decision threshold.

Models compared. We compare the proposed approach with the two generic models

GPsource and GPtarget. The former is trained solely on the source data, while the latter

on the target data used for the adaptation. Furthermore, we compare to the state-of-the-art

models based on GPs for supervised domain adaptation, i.e., the GPA [112] and the asymmet-

ric transfer learning with deep GP (ATL-DGP) [96]. The GPA is an instance of the proposed

GPDE, with only a source domain expert (no target) and predictions given by Eqs. (7.8)–

(7.9). ATL-DGP employs an intermediate GP to combine the predictions of GPsource and

GPtarget. Apart from the GP-based domain adaptation techniques, we further compare to

the deterministic max-margin domain transfer (MMDT) [83], that adjusts the SVM classifier

to the domain adaptation scenario, and kernelized Bayesian transfer learning (KBTL) [69]

that finds a shared subspace appropriate for the classification of various tasks (domains) in

a probabilistic manner. Finally, we compare to state-of-the-art domain adaptation methods

from the field of action unit analysis, i.e., the dynamic SVM (dynSVM) [11] that performs

the adaptation by neutral calibration (e.g., removing the average, per subject, neutral image

from the input data), and the confidence preserving machine (CPM) [200] that reweights the

source classifier based on a confidence measure, before applying it to the data from the target

116



7.4. Experiments

0o -15o -30o

Neutral Disgust Scream

Figure 7.3: View adaptation for emotion classification on the MultiPIE dataset.

subject. Note that implementation of (dynSVM) and CPM were not available, and thus, in

our comparisons we report the available results from the authors’ papers and websites. For

the other compared methods, all relevant parameters were tuned based on a cross-validation

strategy. On the other hand, the proposed (w)GPDE is a non-parametric model with no free

parameters to tune.

7.4.2 View adaptation from a single source

In this experiment, we demonstrate the effectiveness of the proposed approach when the dis-

tributions between source and target domain (0◦, −15◦ and −30◦) differ in an increasing

non-linear manner. For this purpose we evaluate all considered algorithms in terms of their

ability to perform accurate emotion classifiaction as we move away from the source pose. Ex-

ample images for the specified task can be seen in Fig. 7.3. Notice that the weighted version

of our method, i.e., wGPDE is not evaluated on the current experiment since the emotion

analysis is an intrinsic single output problem, and hence, there are no additional variances to

be modeled. Furthermore, in this scenario we only considered the geometric features as inputs

to the compared models since in Chapter 4 they have been proved efficient to model the global

phenomena of the facial expressions.

Table 7.1 summarizes the results. The generic classifier GPsource exhibits the lowest perform-

ance, due to the fact that it has only been trained on source domain images. It is important to

note the fluctuations in the classification rate when the source and target domain vary. We can

clearly see that when the frontal pose, i.e., 0◦ acts as the source domain, the symmetric nature

of the face helps towards achieving a satisfactory performance on the target domains. Yet, the

performance degrades when the symmetry is severely violated, e.g., 0◦ → −30◦. On the other

hand when −15◦ and −30◦ serve as the source domain, these symmetric attributes cannot be

117



7. Gaussian Processes for Context Adaptation in Expression Analysis

uncovered from the generic GPsource. Hence, we observe a significantly low performance for

the target frontal view (around 55%). The above results clearly indicate the inefficiency of a

generic classifier to deal with data of different characteristics.

On the other hand, the GPtarget when trained with as few as 30–50 data points, in most

of the cases, achieves similar performance to the GPsource since it benefits from modeling

domain-specific attributes. A further increase of the cardinality of the target training data

results in a significant improvement in the classification rate. This is even more pronounced in

the scenario we have illustrated above, i.e., the target frontal view. As we can see the generic

classifier when trained on the 0◦ can reach the CR of 84.06%, compared to the achieved 53.82%

and 56.56% when trained on −15◦ and −30◦, respectively.

A similar trend can be observed in the performance of the adaptation methods, where the

inclusion of 10–30 labeled data points from the target domain is adequate to shift the learned

source classifier towards the distribution of the target data. The GPA uses the extra data to

condition on the generic classifier GPsource and increase its prediction performance. Thus, it

can reach its highest performance in situations where the generic classifier GPsource is already

sufficient for the task of emotion classification (i.e., −15◦ and −30◦). ATL-DGP on the other

hand facilitates a joint learning scheme where GPsource and GPtarget are fused together in

an intermediate latent space, via conditioning, in a deep architecture. The advantage of the

latter is evidenced by the highest achieved accuracy in the situations where the source classifier

performs averagely, i.e., 0◦ → −30◦, −15◦ → 0◦ and −30◦ → 0◦ for Nt = 10–50. However, the

joint training scheme of ATL-DGP limits its adaptation ability, due to the high effect of the

source prior. Consequently, its performance saturates and cannot reach that of the generic

classifier GPtarget for Nt > 100. A further disadvantage of ATL-DGP’s joint learning is that

it requires retraining of both source and target classifiers every time the target distribution

changes.

An opposite pattern compared to ATL-DGP can be observed in the performance of both

MMDT and KBTL. Both of these methods achieve, to some extent, to reach the accuracy

of the generic GPtarget classifier, when more and more target data become available. On the

contrary their performance is problematic when dealing with quite few labeled target data, i.e.,

Nt < 50. In such cases, the parametric1 nature of MMDT does not allow for effective learning

of the projections from the target to the source domain, and hence, the learned classifier fails

to poor results. Similarly, KBTL cannot recover accurate projections from the target domain

data to a low-dimensional space. The latter has a negative impact on the accuracy of KBTL.

1Parametric models require lots of data for their accurate training.
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Table 7.1: Average classification rate across 5-folds on MultiPIE. The view adaptation is performed with increasing cardinality of labeled target
domain data (10− 1200).

Target −15◦ −30◦

Nt 10 30 50 100 200 300 600 1200 10 30 50 100 200 300 600 1200

S
o
u

rc
e

0
◦ GPsource 81.65 76.94

GPtarget 55.85 81.19 84.59 89.61 90.66 91.31 91.57 97.26 51.99 76.09 81.97 86.48 88.57 89.75 92.16 98.43
GPA [112] 82.36 84.00 85.37 88.63 90.20 91.51 93.79 96.15 77.73 79.82 81.65 85.43 87.79 87.72 89.29 93.01
ATL-DGP [96] 83.32 86.34 85.22 85.62 85.16 86.42 86.53 87.80 79.82 82.93 83.36 85.53 82.08 84.32 80.03 83.04
MMDT [83] 21.75 66.88 82.63 88.11 89.81 91.25 90.73 90.46 27.37 71.39 80.47 86.48 87.59 88.70 89.16 90.53
KBTL [69] 41.67 69.11 72.57 85.63 87.98 89.61 91.18 97.19 34.36 62.44 66.62 81.71 84.91 86.35 89.55 95.62
GPDE 82.95 86.35 87.52 92.10 93.73 94.64 95.36 97.84 78.71 82.17 84.65 87.85 88.83 90.01 91.38 96.86

Target 0◦ −30◦

Nt 10 30 50 100 200 300 600 1200 10 30 50 100 200 300 600 1200

S
o
u

rc
e
−

1
5
◦ GPsource 53.82 85.70

GPtarget 52.91 61.27 64.60 71.96 77.53 79.10 81.84 84.06 51.99 76.09 81.97 86.48 88.57 89.75 92.16 98.43
GPA [112] 55.00 57.67 59.70 63.10 65.51 68.26 72.83 78.31 88.37 92.16 93.21 93.86 94.45 94.97 95.30 97.52
ATL-DGP [96] 70.11 73.20 71.15 72.21 73.48 74.68 74.33 73.41 78.33 79.95 82.68 85.12 83.79 86.16 85.28 86.08
MMDT [83] 17.37 42.91 63.03 71.72 72.44 74.98 78.18 79.23 11.93 63.10 86.54 90.27 89.55 90.40 89.03 86.81
KBTL [69] 22.08 35.99 59.24 67.28 70.35 71.39 75.11 79.03 32.20 64.21 70.35 82.89 87.00 87.85 90.73 96.41
GPDE 56.11 63.23 66.82 72.37 75.64 76.94 80.40 83.80 88.44 93.40 94.32 93.99 94.84 94.64 94.97 98.04

Target 0◦ −15◦

Nt 10 30 50 100 200 300 600 1200 10 30 50 100 200 300 600 1200

S
o
u

rc
e
−

3
0
◦ GPsource 56.56 91.38
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Figure 7.4: Confusion matrices averaged across the folds when using 50 target training data for 0◦ →
−30◦ adaptation.

Finally, the proposed GPDE, exhibits the most stable performance for varying cardinality

of labeled target data. This can be attributed to the fact that it uses the notion of experts

to unify GPsource and GPtarget into a single classifier. To achieve so, GPDE measures the

confidence of the predictions from each expert (by means of predictive variance), in contrast

to GPA (uses source expert only) and ATL-DGP (uses an uninformative prior). This property

of GPDE is more pronounced in the highly non-linear adaptation scenarios of 0◦ → −30◦,

−30◦ → 0◦ and −15◦ → 0◦ for Nt > 200, where GPtarget achieves the highest classification

ratio. GPDE performs similarly to the target expert while, GPA and ATL-DGP underestimate

the prediction capacity of the target-specific classifier, and thus, attain lower results. The only

situations where GPDE achieves inferior performance are the cases where GPsource performs

poorly. Thus, as expected, GPDE cannot attain a reliable adaptation without having access

to latent factors, opposed to ATL-DGP.

A better insight into the performance of the considered methods can be obtained from

the confusion matrices in Fig. 7.4. The reported results are for 0◦ → −30◦ adaptation with

Nt = 50 (at which point the GPtarget starts outperforming GPsource). The proposed GPDE

takes advantage of the target-specific expert and significantly reduces the confusion between

the subtle expressions of Disgust and Squint with the Neutral face.

7.4.3 Subject adaptation from multiple sources

In this section, we evaluate the models in a multi-label classification scenario, where the ad-

aptation is performed from multiple source domains. This is also a natural setting to exhibit

the importance of modeling different variances per output dimensions with the proposed wG-

PDE. In contrast to the view adaptation scenario for emotion classification, herein we report

results for both geometric and appearance features, since different AUs are better explained

from different type of features.
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Figure 7.5: Average F1 score for joint AU detection with subject adaptation on DISFA (top) and
FERA2015 (bottom) with increasing number of target domain data. The results are reported when
using geometric (left) and appearance (right) features.

Overall, this is a more challenging setting, since the datasets are comprised of naturalistic

facial expressions, and the recorded subjects are experiencing the affect in different ways and

levels. The difficulty of the task can be seen in Fig. 7.5, where the subject-specific classifier

GPtarget, trained with 10–30 labeled data points, achieves a higher average F1 score than the

generic classifier GPsource, which is trained on all available source subjects. The importance of

this outcome gets more clear if we consider that it holds for both DISFA and FERA2015, when

using either geometric or appearance features. This suggests that, no matter the nature of the

inputs, personalized AU detectors are superior to generic classifiers, even when limited data

are available. Another factor that is worth mentioning is that the average results are obtained

over a large set of AUs (i.e., 12 AUs for DISFA and 11 AUs for FERA2015). This fact, not

only constitutes the results more reliable, but it also implies that even a small increase in the

average performance (e.g., 1-2%) can be attributed to an improved performance over several

AUs.
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By continuing our analysis of Fig. 7.5 we observe that the adaptation models, i.e., GPA,

GPDE and wGPDE achieve superior F1 score compared to the generic GPtarget, under all

scenarios. The latter implies that images from source and target subjects contain comple-

mentary information regarding the depicted facial expressions. Hence, the target classifier

does not consist anymore an upper bound limit for the adaptation. This can be explained

from the multi-modal nature of the problem , since we can have different AU combinations

per sequence, contrary to the universal expressions appearing in the view adaptation scenario.

Thus, expressions that are present only on the source sequences, can be used to improve the AU

detection task for the target subject. The proposed GPDE and wGPDE benefit from modeling

the target-specific information and can attain a better adaptation compared to GPA. Another

reason for the difference in the performance between the proposed model and GPA is that the

latter treats all training subjects as data from a single, broader, source domain. Hence, GPA

smooths out the individual differences and lessens the contribution of the target domain, as

the variations of the target data can be explained, on average, by the source domain.

Finally, the importance of modeling individual variances becomes clear by comparing the

attained scores from wGPDE and GPDE. In 3 out of 4 scenarios, wGPDE achieves superior

performance with more pronounced results appearing in DISFA dataset when geometric fea-

tures are used (see Fig. 7.5(a)). On the other hand, when appearance features are used, as we

can see in Fig. 7.5(b) both wGPDE and GPDE perform similarly. This can be explained from

the fact that images from DISFA are not of high resolution. Hence, the local patches cannot

explain adequately all the important variations that differ among the various outputs (i.e.,

AUs). However, as we can see in Fig. 7.5(d) this is not the case with the high-resolution images

from FERA2015. The input appearance features are of better quality, and thus, wGPDE can

more accurately model the individual variances per output and attain higher scores.

For a deeper understanding of the efficacy of the adaptation task, in Tables 7.2–7.3 we

report the detailed results (F1 score and AUC) per AU for the case of Nt = 50. Note that

the setting of Nt = 50 is not always the most beneficial for our proposed approach. In most

scenarios the gap in the performance between (w)GPDE and the other methods increases

as we include more target data. However, we selected to demonstrate the performance on

Nt = 50 because AU annotations are expensive and laborious. Thus, such a setting is a

more reasonable choice for adaptation for the current task. The proposed (w)GPDE under

the current setting, and using the geometric features as input (upper half of Tables 7.2–7.3),

attains an average F1 improvement on both DISFA and FERA2015 of 3% and 2%, respectively.

This small increase in the average performance translates to an improved F1 score on 9/12 and
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Table 7.2: F1 score and AUC for joint AU detection on DISFA. Subject adaptation with Nt = 50.

Dataset DISFA
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg.

P
o
in

ts
F

1

GPsource 33.1 31.6 54.8 10.5 44.8 31.6 57.3 24.4 35.8 13.7 79.5 51.5 39.0
GPtarget 37.2 41.4 62.2 21.7 57.3 30.2 59.3 25.9 38.3 20.5 76.0 60.1 44.2
GPA [112] 36.0 37.2 62.4 21.3 52.7 36.4 67.3 27.1 38.7 16.2 77.1 54.8 43.9
GPDE 36.8 38.3 63.2 22.7 54.3 36.8 66.4 26.8 38.9 16.5 77.4 55.9 44.5
wGPDE 41.2 52.9 61.7 25.3 60.9 32.8 58.8 27.1 40.7 16.7 77.6 65.2 46.8

A
U

C

GPsource 71.3 73.2 64.1 56.3 70.7 71.8 77.3 61.6 65.7 57.4 80.2 67.7 68.2
GPtarget 72.6 77.2 75.2 63.3 81.6 66.8 75.7 61.3 69.0 69.3 77.8 74.3 72.0
GPA [112] 74.9 76.8 75.3 68.1 79.9 73.7 81.2 66.3 71.1 63.1 79.7 73.6 73.6
GPDE 75.5 77.6 76.2 68.3 81.2 73.9 81.3 66.4 71.5 63.8 80.3 74.6 74.2
wGPDE 73.7 83.2 75.0 71.4 82.9 72.3 77.0 64.2 70.6 60.8 80.4 79.4 74.3

L
B

P
F

1

GPsource 31.0 27.0 52.2 11.7 35.5 29.3 52.4 31.1 38.6 23.8 73.4 52.4 38.2
GPtarget 35.4 40.9 58.7 10.5 55.4 30.6 56.2 28.9 40.7 23.0 79.7 64.1 43.7
GPA [112] 38.5 37.3 63.4 13.6 62.0 32.4 63.8 30.9 44.9 24.4 83.1 67.7 46.8
GPDE 39.8 41.1 65.1 17.2 62.2 34.5 64.3 32.5 44.9 25.5 83.4 68.2 48.2
wGPDE 41.0 41.8 65.6 20.8 60.7 34.1 60.9 34.5 46.3 24.4 82.1 66.7 48.2

A
U

C

GPsource 67.2 66.4 57.3 66.3 60.2 68.7 69.7 68.6 69.4 73.6 75.2 68.7 67.6
GPtarget 75.8 77.9 71.1 60.8 81.3 71.8 75.0 68.3 72.1 71.5 84.0 80.4 74.2
GPA [112] 78.3 80.0 77.5 70.2 84.4 73.2 81.4 72.1 75.4 74.9 88.2 83.0 78.2
GPDE 79.7 82.2 79.6 76.1 84.5 75.2 82.3 74.6 75.4 75.3 88.5 83.4 79.7
wGPDE 80.4 82.1 81.0 79.4 83.7 75.3 80.2 76.1 76.0 73.9 87.4 82.0 79.8

8/11 AUs, respectively. The robustness on the results of (w)GPDE is further supported by

both per AU and average AUC. We can see that (w)GPDE achieves higher AUC even in the

AUs that reports inferior F1 score, resulting in 11/12 and 10/11 improved AUs on DISFA and

FERA2015, respectively. Thus, it is evidenced that the proposed (w)GPDE constitutes a more

reliable classifier, under the current settings. Regarding the appearance features (lower half of

Tables 7.2–7.3) the average improvement of (w)GPDE is marginal, especially on FERA2015

dataset. Yet, if we look again individually each AU, we observe that the proposed model

attains increased F1 score on 12/12 (12/12 in terms of AUC) and 7/11 (12/12 in terms of

AUC), on DISFA and FERA2015, respectively.

By comparing wGPDE to GPDE we can further observe that modeling of individual vari-

ances results in improved average performance, which translates to an improvement on certain

AUs. An indicative example is the increase in F1 score of AUs 1, 2, 5, 6 on DISFA dataset,

especially when using the geometric features. On all these 4 AUs, the standard GPDE fails

to reach the performance of the generic GPtarget classifier. However, the proposed weighting

allows the GPDE to model output-specific attributes, or ‘pair’ the variances that are associ-

ated with co-occurring outputs, e.g., AUs 1, 2. Similar pattern can be observed in the results

for AU2, for geometric, and AUs 2, 4, 6, for appearance features on FERA2015. Especially for

AUs 4, 6 the increase in F1 score is further supported by an increase in AUC of 2% and 4%,
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Table 7.3: F1 score and AUC for joint AU detection on FERA2015. Subject adaptation with Nt = 50.

Dataset FERA2015
AU 1 2 4 6 7 10 12 14 15 17 23 Avg.

P
o
in

ts
F

1

GPsource 49.5 34.5 57.9 73.9 77.2 79.5 82.2 62.6 32.1 60.2 37.2 58.8
GPtarget 43.4 38.5 53.3 72.2 78.3 83.7 80.7 64.6 48.5 60.8 41.0 60.5
GPA [112] 54.6 37.8 60.4 74.9 77.9 81.5 83.1 64.6 34.7 61.4 39.7 61.0
GPDE 52.6 38.8 57.8 75.7 79.2 84.9 84.5 65.9 39.1 65.2 40.7 62.3
wGPDE 53.4 41.2 58.5 75.1 79.0 84.2 83.4 65.6 40.9 65.7 43.1 62.7

A
U

C

GPsource 75.5 65.9 81.5 81.5 68.9 76.1 85.9 66.7 57.5 68.5 65.6 72.1
GPtarget 67.6 68.9 77.0 76.5 73.1 82.6 79.1 70.8 73.2 68.6 68.1 73.2
GPA [112] 79.1 68.7 83.4 83.0 72.2 81.4 87.1 70.1 63.3 69.8 68.5 75.1
GPDE 72.7 69.3 83.2 83.3 76.7 85.5 88.4 73.7 68.6 75.2 70.5 77.0
wGPDE 74.1 70.6 83.6 82.7 76.6 85.6 87.6 73.7 71.0 74.9 72.2 77.5

L
B

P
F

1

GPsource 35.8 29.9 36.0 63.3 75.8 78.1 73.1 60.5 30.6 58.0 32.1 52.1
GPtarget 41.6 36.4 48.1 64.9 78.0 80.9 74.7 63.0 50.0 58.8 43.2 58.1
GPA [112] 41.2 36.5 46.8 66.9 77.4 80.3 76.8 62.6 47.6 60.1 44.7 58.3
GPDE 41.4 36.6 47.0 66.8 77.4 80.5 76.7 62.6 47.7 60.1 44.7 58.3
wGPDE 41.4 37.3 48.7 68.6 77.6 81.6 77.6 63.2 47.4 60.6 44.4 58.9

A
U

C

GPsource 56.3 58.5 54.0 41.5 47.2 40.4 42.3 47.8 51.5 47.5 55.3 49.3
GPtarget 65.4 65.3 72.3 62.6 71.5 75.0 63.5 68.6 76.0 62.8 71.0 68.5
GPA [112] 66.8 65.9 72.6 71.1 73.1 77.6 74.2 69.5 74.0 65.5 72.0 71.1
GPDE 65.9 66.6 74.7 74.7 73.6 79.6 77.4 70.3 73.9 66.9 71.9 72.3

Table 7.4: F1 score for joint AU detection on DISFA. Comparison to state-of-the-art. Subject adapta-
tion for wGPDE has been performed with Nt = 50.

Dataset DISFA
AU 1 2 4 5 6 9 12 15 17 20 25 26 Avg.

wGPDE (pts.) 41.2 52.9 61.7 25.3 60.9 32.8 58.8 27.1 40.7 16.7 77.6 65.2 46.8
wGPDE (app.) 41.0 41.8 65.6 20.8 60.7 34.1 60.9 34.5 46.3 24.4 82.1 66.7 48.2
dynSVM [11] 30.0 26.0 34.0 16.0 45.0 45.0 77.0 47.0 41.0 25.0 84.0 75.0 48.0
CPM [200] 29.5 24.8 56.8 – 41.7 31.5 71.9 – – – 81.6 51.3 –

Table 7.5: F1 score for joint AU detection on FERA2015. Comparison to state-of-the-art. Subject
adaptation for wGPDE has been performed with Nt = 50.

Dataset FERA2015
AU 1 2 4 6 7 10 12 14 15 17 23 Avg.

wGPDE (pts.) 53.4 41.2 58.5 75.1 79.0 84.2 83.4 65.6 40.9 65.7 43.1 62.7
wGPDE (app.) 41.4 37.3 48.7 68.6 77.6 81.6 77.6 63.2 47.4 60.6 44.4 58.9
dynSVM [11] 43.0 39.0 46.0 77.0 77.0 85.0 87.0 67.0 44.0 62.0 45.0 61.0
CPM [200] 46.6 38.7 46.5 68.4 73.8 74.1 84.6 62.2 44.3 57.5 41.7 58.0

respectively.

We next compare the proposed (w)GPDE to state-of-the-art models from the literature of

AU analysis that attempt to perform the adaptation. For the purposes of this experiment,

and in order to have fair comparisons, we do not include unsupervised models that do not

use the available labels of the target data. Thus, we compare to the supervised dynSVM [11]
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and the semi-supervised CPM [200].2 dynSVM attempts to perform the adaptation at the

feature level (combination of geometric and appearance features), where the input data from

each subject (domain) are normalized by removing the dynamics of the expression. CPM on

the other hand tries to adjust the classifier to the target domain. It achieves so by taking into

account the confidence/agreement in the predictions of source soft classifiers, when assessing

the target data.

Tables 7.4–7.5 summarize the results. At first we can see that the proposed wGPDE out-

performs both dynSVM and CPM on both DISFA and FERA2015. The improvement over

dynSVM on DISFA is marginal. However, the authors in [11], before applying the dynSVM,

attempted to re-balance the data in order to account for the mismatch in the distribution of

activated AUs. This explains the superior performance of dynSVM on less frequently occurring

AUs, i.e., AUs 9, 15, 20 on DISFA and AUs, 14, 23 on FERA2015. On the other hand, CPM

reports lower results, both on average and per AU, on both datasets. This is partly attributed

to the fact that CPM is a semi-supervised method and uses soft labels (i.e., the predictions

of the source classifier) as ground truth labels for the target data during training. Another

reason for its low performance is the ‘virtual’ way that CPM utilizes in order to measure the

confidence. In contrast, the proposed wGPDE has a well determined probabilistic way to

correctly estimate the confidence in the predictions of the various experts. This allows the

wGPDE to weight the contribution of each expert in the final classification, which results in

more accurate predictions.

7.4.4 Assessing the confidence in the predictions

Herein, we assess the ability of (w)GPDE to measure the confidence in the output labels, by

means of predicted variance. As an evaluation measure we use the negative log-predictive

density (NLPD). It is a measure commonly used in probabilistic models, since apart from

the predictive mean it also takes into account the predictive variance. In Fig. 7.6 we see the

NLPD for the baseline generic classifiers, i.e., GPsource and GPtarget, as well as the proposed

(w)GPDE, on both DISFA and FERA2015 datasets. First of all we observe that all the

models (apart from the GPtarget on DISFA) increase their variance in the predictions (NLPD

is increasing), as we include more training target data. This is expected since by increasing the

training set, we observe more variations in the input data (different AU combinations). Hence,

the predicted variance in the outputs also increases. In the case of DISFA, (Fig. 7.6(left)) the

target expert becomes more confident for Nt > 10. We attribute this to the nature of the

2Note again that implementations to the current algorithms are not available, and hence, the results are
directly taken from the corresponding papers and the authors’ websites.

125



7. Gaussian Processes for Context Adaptation in Expression Analysis

10 30 50 100 200 500

15

20

25

30

35

40

# of target training data

N
L

P
D

 

 

GP
source

GP
target

GPDE
wGPDE

10 30 50 100 200 500

15

15.5

16

16.5

17

17.5

18

18.5

19

# of target training data

N
L

P
D

 

 

GP
source

GP
target

GPDE
wGPDE

DISFA FERA2015

Figure 7.6: Quantification of the confidence in the probabilistic predictions in terms of NLPD for
DISFA (left) and FERA2015 (right) with increasing number of target domain data.

videos in DISFA, which contain less frequently varying expressions over time. Thus, the

generic personalized classifier has seen most of the available variations – on average – which

results in reduced uncertainty. On the other hand, the events on FERA2015 are shorter,

hence, more frequent variations. Thus, the relevant NLPD at first decreases, but as more

data become available (more AU combinations) the uncertainty increases. Eventually, in both

situations the generic GPtarget becomes less confident than GPsource.

When we compare GPDE to wGPDE we observe a similar behavior between the two. How-

ever, GPDE without the weighting can only produce a single variance for all outputs. This

has a negative impact on the NLPD, since the model is equally confident for all the outputs.

Thus, GPDE results in being confident even for false predictions. On the other hand, the extra

weighting term allows the wGPDE to produce different variance for each predicted output.

The above claims for the difference between GPDE and wGPDE are better explained from

Fig. 7.7. In Fig. 7.7 (upper) we see an example where both GPDE and wGPDE predict the

exact same labels (almost the same predicted means). However, GPDE (Fig. 7.7 (left)) suffers

from heavier tails. This results in less accurate estimation of the mass probability for AUs

1, 2, 10, 12, which can be interpreted by also a higher NLPD. The same behavior of heavier tails

can be observed in another example in Fig. 7.7 (lower). However, now GPDE and wGPDE

disagree on their predictions for AUs 6, 17. wGPDE can better estimate the probability mass

for the quite uncertain AUs 6, 17, which results in their correct prediction compared to the

unweighted GPDE.
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Figure 7.8: Cross-dataset evaluations. Average F1 score of the 7 common AUs present in both DISFA
and FERA2015 datasets. The models are trained on data from FERA2015 and tested on data from
DISFA (left), and the other way around (right). The reported results are obtained with geometric
features and increasing cardinality of labeled target domain data.

7.4.5 Cross dataset adaptation

In this section, we evaluate the robustness of the models in a cross dataset experiment.

Specifically, we perform two different cross-dataset experiments, FERA2015 → DISFA

and DISFA→FERA2015.3 We evaluate the models’ performance on the 7 AUs (i.e.,

1, 2, 4, 6, 12, 15, 17) that are present in both datasets. For the purposes of this experiment

3‘A→B’ denotes the training on dataset A and testing on dataset B.
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Table 7.6: Cross-dataset evaluations on 7 AUs present in both DISFA and FERA2015 datasets. The models

are trained on data from FERA2015 dataset and tested on data from DISFA dataset (F → D), and the other

way around (D → F). Subject adaptation with Nt = 50.

F1 AUC
AU 1 2 4 6 12 15 17 Avg. 1 2 4 6 12 15 17 Avg.

F
→

D

GPsource 44.0 43.9 56.4 49.1 54.8 28.9 45.6 46.1 77.3 81.0 65.2 73.7 72.5 66.4 75.4 73.1
GPtarget 39.2 46.4 58.2 61.0 57.3 29.6 39.7 47.3 74.4 81.8 70.8 81.1 73.0 65.8 68.0 73.6
GPA [112] 41.3 44.7 61.9 57.2 62.9 28.7 44.4 48.7 78.3 80.7 74.6 82.0 79.4 67.6 73.5 76.6
dynSVM [11] – – – – – – – – – – – – – – – –
GPDE 41.8 44.8 63.9 61.7 66.5 28.1 45.8 50.4 79.1 81.9 76.5 85.0 82.4 67.6 75.1 78.2
wGPDE 43.4 46.9 62.4 61.5 63.9 29.6 43.2 50.1 80.4 81.7 75.1 84.5 80.3 68.6 73.2 77.7

D
→

F

GPsource 37.3 28.0 46.5 63.8 74.1 31.6 60.1 48.8 61.1 55.5 71.7 64.8 74.9 50.9 61.9 63.0
GPtarget 41.1 37.5 47.0 67.5 77.0 45.8 59.4 53.6 67.0 66.4 71.7 68.1 69.3 71.1 63.7 68.2
GPA [112] 40.7 36.3 50.6 68.0 76.9 39.7 60.8 53.3 67.3 65.2 74.6 72.8 76.0 69.0 66.2 70.2
dynSVM [11] 44.0 34.0 50.0 68.0 67.0 26.0 48.0 48.0 – – – – – – – –
GPDE 40.7 36.4 50.5 68.0 77.0 40.0 60.7 53.3 67.3 65.3 74.6 72.7 75.8 69.2 66.2 70.2
wGPDE 42.1 35.9 54.7 69.2 79.5 36.9 62.0 54.3 66.3 64.3 79.5 76.5 83.6 66.5 69.6 72.3

we employ the geometric features, since the images from the two datasets differ significantly

in resolution. However, even the geometric features are being affected by factors, such as,

facial pose and size. This imposes a further difficulty on the alignment of the input facial

features.

By analyzing the results in Fig. 7.8 we can draw two quick conclusions. First, FERA2015 is

a more representative dataset for the task of AU detection. The generic classifier GPsource in

Fig. 7.8 (left) achieves similar performance to the adaptation models in Fig. 7.5(a). This does

not hold for the generic GPsource in the DISFA→ FERA2015 experiment. The latter is further

supported by the performance of GPtarget which significantly outperforms the generic GPsource

on the DISFA→ FERA2015 adaptation. The second finding is related to the advantage of the

joint modeling of the AUs. This is illustrated in the performance of the generic GPtarget in

both cross-dataset evaluations. We can see that the average results are lower than the average

of the corresponding AUs from Tables 7.2–7.3.

Regarding the performance of the adaptation methods we observe that in the

FERA2015 → DISFA scenario, all the compared models benefit from the presence of the

additional target domain data. More interestingly, (w)GPDE consistently outperforms GPA

and reaches the average performance of the corresponding AUs in the within dataset evalu-

ations from Table 7.2. The importance of wGPDE is not evidenced in this scenario. However,

in the DISFA → FERA2015 adaptation, wGPDE manages to correctly model the individual

variances in the target data, and hence, achieves better performance than the generic GPtarget

(contrary to the simple GPDE).

Finally, the detailed results per AU for the cross dataset adaptation are presented in
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Table 7.6. It is clear that the proposed approach, not only outperforms its counterparts

on the current experiment, but also manages to achieve improved performance on most of

the AUs (on FERA2015 → DISFA), compared to the within dataset evaluations. This is an

indicator of the quality of the achieved adaptation, since the model becomes less sensitive to

the input source data. On the other hand, the subject normalization of dynSVM does not

attain a sufficient adaptation, and hence, it fails to lower results than the generic GPsource.

7.5 Conclusions

To conclude, in this chapter we have presented a method that exploits successfully the non-

parametric probabilistic framework of GPs to perform domain adaptation for both multi-class

and multi-label classification of human facial expressions. In contrast to existing adaptation

approaches, which leverage solely the source distribution during adaptation, the proposed

approach defines a target expert to model domain-specific attributes, and reduce that way

the effect of negative transfer. As a purely probabilistic model, (w)GPDE explores also the

variance in the predictions. The latter consists an accurate measure of confidence, and as

such, it can be used to reevaluate the predictions from the various experts, in order to achieve

an improved classification performance.
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Chapter 8

Discussion and Conclusions

In this thesis we have presented a variety of methodologies, all stemming from the well studied

framework of Gaussian processes (GPs) [146], in order to address some of the important chal-

lenges that are commonly encountered in automated analysis of facial expressions. Our main

goal, when originally discussing the direction of this thesis, was to propose novel algorithms

and learning strategies that would have an impact on both the domains of affective comput-

ing, via advancing the current modeling practices in a more learning-oriented scheme, as well

as the field of machine learning, via designing novel methodologies, general enough for being

applicable to a variety of tasks.

We started in Chapter 4 by tackling the problem of multi-view and view invariant facial

expression classification of basic emotions, and we showed how this challenge can be addressed

in a multi-view learning strategy. We introduced the discriminative shared Gaussian process

latent variable model (DS-GPLVM), which is proven to be effective on a variety of tasks, in-

cluding multi-view and view-invariant facial expression classification of basic emotions, smile

detection on spontaneous displayed expressions, as well as fusion of complementary modalities

in a shared manifold for more accurate facial expression analysis. From a modeling perspective

the main novelty achieved in DS-GPLVM is the back-constraining of the latent space from

multiple views. This not only resulted in learning a manifold which reflects the structure from

the multiple observation spaces, but it further allowed us to perform inference under different

settings (i.e., view-invariant and multi-view). We showed that DS-GPLVM considerably out-

performs the existing approach to mutli-view facial exrpession analysis, while it is also capable

of generalizing to new images captured in uncontrolled environments.

Since the framework of shared GPs has been proven to be effective, in Chapter 5 we focused

on the fusion of multiple modalities, and we experimentally demonstrated its importance on
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facial expression analysis, and in particular on the task of multiple AU detection. Specifically,

we showed that combining the information of both geometric and appearance features resulted

in a better descriptor which enhanced the detection task. Modeling-wise, contrary to the DS-

GPLVM, we proposed a multi-conditional approach, where the fusion of the input features

was concurrently learned with the output classifiers in a joint generative and discriminative

framework. This approach gave us the opportunity to balance the contribution and the effect

of the discriminative/generative attributes of the manifold during the learning of the multi-

conditional latent variable model (MC-LVM). Nevertheless, the key property that resulted

in the superior performance of MC-LVM was the induction of the label’s structure to the

manifold, in the form of the proposed constraints. Consequently, the detection of more subtle

AUs, as demonstrated in our results, has been considerably improved by accounting for the

co-occurrence patterns.

Motivated by the good results of the MC-LVM on the aforementioned problem, we further

explored the effect of the feature fusion on analyzing the intensities of multiple AUs. Hence, in

Chapter 6 we introduced the variational Gaussian process auto-encoder (VGP-AE), where we

focused on how to model the ordinal structure of the output labels and impose it in the latent

space. It is important to note that the structure of the data was automatically imposed on the

learned manifold via a novel GP auto-encoder, without the need for additional constraints, as in

the MC-LVM. Probabilistic sampling from VGP-AE generated meaningful facial expressions,

demonstrating good generalization capabilities of VGP-AE and effectiveness of our structure

learning algorithm in capturing higher-order dependencies among the high-dimensional input

features and target AU intensities. The proposed approach is among the first that explored,

and actually achieved, simultaneous feature fusion and joint AU intensity estimation in the

context of facial behavior analysis. Furthermore, it is the first fully probabilistic auto-encoder

in the GP-literature.

Finally, in Chapter 7 we exploited the primitives of domain adaptation to perform adaptation

of two contextual factors: ‘who’ (subject) and ‘where’ (view). The work on domain adaptation

in facial behavior analysis is still in its early stage. The conducted experiments on various

adaptation scenarios indicate several interesting facts: the source classifier trained on a large

number of data can easily be outperformed by the classifier trained on as few as 50 examples

from the target domain. Furthermore, the existing adaptation approaches try to adapt the

target domain to the source domain by assuming that the two distributions can be matched.

Yet, when more target data become available, a generic target classifier can largely outperform

the existing adaptation approaches. In our proposed Gaussian process domain experts (GPDE)
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we tried to address these challenges by introducing the target expert, allowing it to reach (and

outperform) the full performance of either source or target classifiers with as few as 50 target

samples.

Taken together, the methods proposed in this thesis solve some of the most important

challenges in the field of facial expression analysis. This research can serve as a basis and

trigger further work in the field. Thus, it is our responsibility to note some of the limitations

of our proposed algorithms and draw directions for future work. The main limitation of all

the proposed approaches is the inefficiency to deal with large data during training. As purely

based on the framework of GPs, training of the proposed alogrithms scales in O(N3), which

typically imposes a restriction on using datasets of size O(104). However, this can be addressed

by sparse [170] or distributed [43] computations, which scale GPs to O(107). This would be

of extreme importance, now that we have officially entered the era of deep learning with big

data. Toward this extension, we can employ the notion of deep Gaussian processes [39] to

model hierarchical layers of GPs, which allow for learning more complex structures in the

intermediate manifolds.

Another promising improvement would be to include temporal information in the inference

process. All models within this thesis operate only on static images. However, intuitively,

facial expressions show a characteristic development over time (e.g., we do not expect rapid

jumps between pain and happiness) and thus information from the past and future would be

valuable to infer the present. Thus, a temporal extension of our models based on temporal

priors, as in [192, 38], would be likely to improve the recognition performance. An even

more interesting direction to pursue, would be to consider the temporal dependencies within

our proposed adaptation strategy. Ideally, we should be focusing on designing a general

framework for adaptation, where we would exploit the remaining contextual factors (i.e.,

‘when’, ‘why’,‘what’ and ‘how’), simultaneously. It would be very interesting to explore how

we could design a unified model, where interactions between the various contextual factors

could be modeled in context-specific generative subspaces. The design of such a model would

be an important step toward achieving a holistic analysis of facial expressions. It is our hope

that the research presented in this thesis provides a small contribution towards accomplishing

that goal.
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Appendix A

Appendices

A.1 Derivatives for the DS-GPLVM

During the optimization of DS-GPLVM, we need to update X and θs by solving the problem

in Eq. (4.16). The latter is a sum of two terms, the negative log-likelihood given by Eq. (4.9),

and the norm term which, for convenience, we denote as

C =
µt
2

V∑
v=1

‖IBP (X,A
(v)
t ) +

Λ
(v)
t

µt
‖2F (A.1)

Because of the likelihood term, the defined problem does not have an exact solution, and thus,

we need to apply the conjugate gradient algorithm. Hence, we have to compute the gradients

of Eq. (4.9),(A.1) w.r.t. the latent positions X and the kernel parameters θs

• ∂Ls
∂X =

∑
v
∂L(v)

∂X + βL̃X

• ∂Ls
∂θs

=
[
∂L(1)

∂θ(1)
· · · ∂L(V )

∂θ(V )

]T
• ∂C

∂X =
∑

v µt(X −A
(v)
t ) + Λ

(v)
t

• ∂C
∂θs

= 0.

The likelihood term L(v) is a function of the kernel K(v), thus, we need to apply the chain

rule in order to find the derivatives w.r.t X and θ(v)
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• ∂L(v)

∂xij
= tr

[
( ∂L

(v)

∂K(v) )T ∂K
(v)

∂xij

]
• ∂L(v)

∂θ
(v)
i

= tr

[
( ∂L

(v)

∂K(v) )T ∂K
(v)

∂θ
(v)
i

]
• ∂L(v)

∂Kv
= D

2 (K(v))−1 − 1
2(K(v))−1Y vY

T
v (K(v))−1.

Finally, the derivatives of the selected kernel are

• ∂k(v)(xi,xj)

∂θ
(v)
1

= exp(− θ2
2 ‖xi − xj‖

2)

• ∂k(v)(xi,xj)

∂θ
(v)
2

= − θ
(v)
1
2 ‖xi − xj‖

2 exp(− θ2
2 ‖xi − xj‖

2)

• ∂k(v)(xi,xj)

∂θ
(v)
3

= 1

• ∂k(v)(xi,xj)

∂θ
(v)
4

= − 1

(θ
(v)
4 )2

δi,j

and

∂k(v)(xi)

∂xij
=


−θ2(xij − x1j) k(v)(xi,x1)

...

−θ2(xij − xNj) k(v)(xi,xN )


A.2 LOO solution of the regression step in ADMM

Herein, we derive the solution for the more general form of the IBP case. The same steps can

be followed to arrive at the solution of the SBP case. The optimal values of parameters A(v)

are given by the solution of the linear equation:

(K
(v)
bc +

λ(v)

µt
I)A(v) = (X +

Λ
(v)
t

µt
). (A.2)

The system of linear equations defined by Eq. (4.20) is insensitive to permutations of the

ordering of the equations and the variables. Thus, at each iteration of the LOO, the i-th left

out sample and the corresponding equation can be placed on top, without affecting the result.

This enables us to define the matrix M as in Eq. (4.21). By placing M back in Eq. (4.20),

we end up with the following linear system of equations:[
mii mT

i

mi M i

]
A(v) =

[
xi + Λ

(v)
i /µt

X(−i) + Λ
(v)
−i /µt

]
(A.3)
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A.2. LOO solution of the regression step in ADMM

Now, the solution of the parameters of the regression with the i-th sample excluded is

A
(v)
−i = M−1

i (X(−i) +
Λ

(v)
−i
µt

),

and the LOO prediction of the i-th sample is given by

x̂
(−i)
i = mT

i A
(v)
−i = mT

i M
−1
i (X(−i) +

Λ
(v)
−i
µt

)

= mT
i M

−1
i

[
mi M i

]
A(v)

= mT
i M

−1
i

[
mi M i

] [A(v)
i

A
(v)
−i

]
= mT

i M
−1
i miA

(v)
i +mT

i A
(v)
−i .

From Eq. (A.3) we have

xi +
Λ

(v)
i

µt
=
[
mii mT

i

] [A(v)
i

A
(v)
−i

]
= miiA

(v)
i +mT

i A
(v)
−i (A.4)

and thus, the error between the prediction x̂
(−i)
i and the actual output xi is

xi − x̂(−i)
i = (mii −mT

i M
−1
i mi)A

(v)
i −Λ

(v)
i /µt

=
A

(v)
i

[M−1]ii
−

Λ
(v)
i

µt
,

where on the last equation we used the Shur complement from the block matrix inversion

lemma, and M ii denotes the i-th diagonal element of the matrix M . Finally, we end up

with the cost of the LOO for all samples, ELOO, as defined in Eq. (4.24). For the SBP case

we follow exact the same steps, with the difference that we drop from all the equations the

dependencies on the view v and we replace the K
(v)
bc with

K̃ =

V∑
v=1

wvK
(v)
bc .

Our final goal is to find the optimal parameters γ(v) and λ(v) that minimize the error of the

LOO cross validation, defined by Eq. (4.24). For this, we need to calculate the derivatives of

ELOO w.r.t. γ(v) and λ(v). We first define the diagonal matrix

D =


1

[M−1]11
. . .

1
[M−1]NN


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that allows us to reformulate Eq. (4.24) into

ELOO =
1

2
‖DA(v) − Λ(v)

µt
‖2. (A.5)

Using the chain rule, the derivatives of Eq. (A.5) are given by

∂ELOO

∂λ(v)
= tr

[(
∂ELOO

∂A(v)

)T ∂A(v)

∂λ(v)
+

(
∂ELOO
∂D

)T ∂D

∂λ(v)

]

and
∂ELOO
∂γ(v)

= tr

[(
∂ELOO

∂A(v)

)T ∂A(v)

∂γ(v)
+

(
∂ELOO
∂D

)T ∂D

∂γ(v)

]
,

while the detailed derivatives inside the trace terms are

• ∂ELOO

∂A(v) = DT (DA(v) − Λ(v)

µt
)

• ∂ELOO
∂D =

[
DA(v)(A(v))T − 1

µt
Λ(v)(A(v))T

]
� I

• ∂A(v)

∂λ(v)
= −M−1 ∂M

∂λ(v)
M−1(X +

Λ
(v)
t
µt

) = − 1
µt
M−1A(v)

• ∂A(v)

∂γ(v)
= −M−1 ∂M

∂γ(v)
M−1(X +

Λ
(v)
t
µt

) = −M−1 ∂K
(v)
bc

∂γ(v)
A(v)

• ∂D
∂λ(v)

= −(D �D)� ∂M−1

∂λ(v)
= (D �D)� (M−1M−1)

• ∂D
∂γ(v)

= −(D �D)� ∂M−1

∂γ(v)
= (D �D)� (M−1 ∂K

(v)
bc

∂γ(v)
M−1)

where the value of
∂K

(v)
bc

∂γ(v)
for each element of the kernel is given in Appendix A.1 and � denotes

the Hadamard product of two matrices. Once we have obtained the optimal parameters γ(v)

and λ(v), we can compute A(v) from Eq. (4.20).
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[7] Andreas Argyriou, Stéphan Clémençon, and Ruocong Zhang. Learning the graph of

relations among multiple tasks. Technical Report hal-00940321, GALEN - INRIA Saclay,

2013. 74

[8] Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Convex multi-task

feature learning. Machine Learning (ML), 73(3):243–272, 2008. 23

[9] Akshay Asthana, Roland Goecke, Novi Quadrianto, and Tom Gedeon. Learning based

automatic face annotation for arbitrary poses and expressions from frontal images only.

In Proceedings of the IEEE International Conference on Computer Vision & Pattern

Recognition (CVPR), pages 1635–1642, 2009. 22

[10] Akshay Asthana, Stefanos Zafeiriou, Shiyang Cheng, and Maja Pantic. Robust discrim-

inative response map fitting with constrained local models. In Proceedings of the IEEE

139



Bibliography

International Conference on Computer Vision & Pattern Recognition (CVPR), pages

3444–3451, 2013. 4
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[102] Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task

learning. In Proceedings of the International Conference on Machine Learning (ICML),

pages 1383–1390, 2012. 73

[103] Abhishek Kumar and Hal D Iii. A co-training approach for multi-view spectral clustering.

In Proceedings of the International Conference on Machine Learning (ICML), pages 393–

400, 2011. 49

[104] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random

fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings

of the International Conference on Machine Learning (ICML), pages 282–289, 2001. 19

[105] N.D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian

process latent variable models. Journal of Machine Learning Research (JMLR), 6:1783–

1816, 2005. 34, 35, 75, 95
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