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Abstract— Clustering and segmentation of temporal data
is an important task across several fields, with prominent
applications in computer vision and machine learning such as
face and gesture segmentation. Several related methods have
been proposed in literature, focusing on learning temporal
boundaries and clusters, with recent works focusing on learning
deep representations for clustering. However, none of the
proposed methods is suitable for jointly learning segments,
clusters, as well as representations. In this paper, we propose the
first methodology that simultaneously discovers suitable deep
representations, as well as clusters and temporal boundaries,
with the clustering process providing supervisory cues for
updating temporal boundaries and training the proposed deep
learning architecture. We demonstrate the power of the pro-
posed approach on a human motion segmentation task using the
CMU-MMAC database. Our method provides the best results
with respect to normalized mutual information compared to
other clustering algorithms.

I. INTRODUCTION

Data clustering has been a popular, challenging topic
in machine learning and computer vision for more than
50 years [3], [12], [2], with a wide range of applications
that include face and gesture analysis [16], [9], as well as
segmentation and motion pattern detection [15], [10], [13],
[25]. A popular application of clustering lies in problems
arising in the context of human behaviour analysis, while
the setting becomes even more challenging when considering
time-series data [6], [11]. Clustering of human behaviour
aims at grouping the visual information in such a way that
the behavioural segments that belong to the same group are
similar while those that belong to different groups are dissim-
ilar. It also refers to grouping and (automatically) segmenting
various videos to different behaviours, or human actions.

The task of clustering human behaviour introduces many
challenges, including (a) dealing with high dimensional data,
(b) presence of outliers (which are in abundance in visual
data and cannot be easily modelled), as well as, (c) temporal
misalignment, i.e., data of different lengths and phases. In
more detail, challenge (c) renders standard distance metrics,
such as Euclidean distance, not applicable to measuring
the similarity between data. In order to alleviate this issue,
temporal alignment and warping techniques such as Dynamic
Time Alignment Kernel (DTAK) [17] are often utilized.

Many studies in literature focus on temporally segment
the time series and compute clusters [21] by either utilizing
DTAK [27] or similarity matrices [8]. Other studies focus
on learning deep representations (e.g. autoencoders) and
clusters [4]. However, none of the studies try to jointly learn
representations, segments and clusters.

In this work, we propose the first, to the best of our
knowledge, methodology that simultaneously: (a) clusters
images from raw dynamic data in an hierarchical manner, (b)
learns deep representations in an end-to-end manner utilizing
convolution neural networks (CNNs), and (c) identifies the
temporal boundaries of segments. For our purposes, we
utilise the graph degree linkage clustering algorithms. The
intuition behind our choice is that small temporal scales
can be extracted (e.g. moving arm for human motion)
before longer ones (e.g walking). The similarity between
different length segments is computed with DTAK [17]. The
CNN parameters are learned with supervisory cues from the
clustering results. The last step of our algorithm alters the
temporal boundaries based on the clustering results with
a coordinate-descent algorithm. The effectiveness of our
method is shown on human motion segmentation task using
the CMU-MMAC database [5].

II. RELATED WORK

Our work is most closely related to temporal segmentation,
and learning deep representations and clusters in a unified
framework. To this end, our related work is focused on these
studies.

Temporal Clustering. A popular temporal clustering ap-
proach is the change-point detection [7] which tries to
identify the location of timely-unknown changes in the time
series. Another method is the switching linear dynamical sys-
tem (SLDS) [14] which switches linear dynamical systems
over time to capture the contextual information in the time
series. Two recent algorithms are the Aligned Cluster Anal-
ysis (ACA) [27] and Hierarchical Aligned Cluster Analysis
(HACA) [28], which are an extension of kernel k-means and
spectral clustering for temporal data. More specifically, these
methods segment the time series and compute the clusters in
a unified framework utilising dynamic programming. In a
different study, Krüger et al. [8] solves the problem by util-
ising neighbourhood graphs and similarity information in the
graphs. All of the aforementioned studies find clusters and978-1-7281-0089-0/19/$31.00 c©2019 IEEE



segments but none tries to also learn deep representations.
Deep Representation Learning. Several studies have

been proposed that train deep representations and perform
clustering. For example in [18], [19] the authors propose
deep semi-NMF, a model that decomposes observations into
multiple factors. In another study, Wang et al. [20] use sparse
coding to extract image-based features and subsequently
learn deep representations utilizing a cluster-oriented loss.
Other studies utilise raw pixel intensities to jointly learn deep
representations and clusters. For example, Yang et al. [23]
use an agglomerative clustering method and the clustering
loss to train their model. In a more recent study [22] the
authors use K-means and further utilise an autoencoder
reconstruction penalty, with clustering performed in the
bottleneck space. Although the aforementioned studies learn
deep representations, none of them finds temporal segments
in time series.

III. BACKGROUND
To make the paper self-complete, we briefly review the

Dynamic Time Alignment Kernel (DTAK) [17] which is used
to compute distances between segments of different length.
The kernel extends the dynamic time warping (DTW) in that
it satisfies the triangle inequality [24].

More particularly, given two sequences X = [x1, ...,xN ]
(of length N ) and Z = [z1, ..., zK ] (of length K) where xi,
zj are the frames at time i, j, the DTAK first computes the
frame kernel matrix K as follows:

Kij = exp(−||xi − zj ||2

2σ2
) (1)

where σ is the bandwidth of the kernel. Then the similarity
between the segments is defined as follows

ψ(X,Z) =
SNK
N +K

(2)

where S is a cumulative kernel matrix computed in a
recursive manner as follows

Sij = max


Si−1,j +Kij

Si−1,j−1 + 2Kij

Si,j−1 +Kij

(3)

where S11 = 2K11.

IV. PROPOSED METHOD
Our method can be split in three different parts: (i)

agglomerative clustering, (ii) temporal segmentation, and (iii)
representation learning. The unified objective function can be
defined as

arg min
y,θ,s
L(y, θ, s|X), (4)

where y are the cluster labels, θ are the CNN parameters, s is
a vector containing the segments of the sequence X, and L is
the loss function. Each of the three parts is presented in the
following subsections along with the recurrent framework
that minimises the objective function by combining them
together.

A. Agglomerative Clustering Algorithm

Agglomerative clustering is a bottom up clustering ap-
proach, meaning that it starts with a large number of small
clusters and iteratively merges two clusters that have the
highest affinity. The process stops when some stopping
criterion is met (e.g. a specified number of clusters). Mathe-
matically, at each time step the method merges clusters Ca

and Cb if

{Ca,Cb} = arg max
Ci,Cj∈C,i6=j

A(Ci,Cj) (5)

where C is the set with all the clusters and A indicates
the affinity between two clusters.

In our method, we exploit the benefits of the graph-degree
linkage clustering algorithm [26]. The algorithm starts by
creating a K-Nearest Neighbour (K-NN) graph, where the
affinity between clusters is computed based on the indegree
and outdegree of the vertices (samples) in the graph. The
affinity is defined as follows:

A(Ca,Cb) =
1

|Ca|2
1T|Ca|WCa,Cb

WCb,Ca1|Ca|+

1

|Cb|2
1T|Cb|WCb,Ca

WCa,Cb
1|Cb|

(6)

where W is an adjacent matrix and WCb,Ca
corresponds

to the Cb row and Ca column. We should note that in
our method segments are considered as the samples of the
agglomerative clustering algorithm. To this end, each element
in W is computed by using the DTAK. Figure 1 (middle)
depicts a toy example of the 1-NN graph the algorithm
constructs, where each sample is a segment. For more details
of this type of clustering the interested reader is referred
to [26].

B. Temporal Segmentation

Our method performs temporal segmentation by utilising a
coordinate-descent optimization method, inspired by [27]. In
particular, by keeping the parameters of the CNN fixed, the
method alternates between optimizing segments and clusters,
i. e.,

argmin
y,s
L(y, s|X.θ) (7)

As in [27] we introduce an auxiliary function L : [1, N ]→
R:

L(v) = min
y,s
L(y, s|θ)|X[1,v]

(8)

where v is a position in the sequence X, and X[1,v] denotes
the segment [1, v] in X. We can further justify that if there
is a position i in X such that i < v then the optimal
decomposition of the sequence X[1,v] is achieved when both
segments X[1,i−1] and X[i,v] are optimal. To minimise the
function we utilise Bellman’s equation [28], i. e.,



L(v|θ) = min
v−nmax<i≤v

(L(v − 1|θ) + min
y,s
L(y, s|θ)|X[i,v]

)

(9)
where nmax is a constraint parameter that constraints the

maximum length to search for an optimal segment starting at
position i. Optimizing Eq. 9 can be performed in two steps:
(a) the forward pass, where the clusters are kept fixed and
temporal boundaries are determined, and (b) the backward
pass, where the segments are kept fixed and the clusters are
updated.

More particularly, in the forward pass the sequence is
scanned from the beginning (v = 1) to its end (v = N ),
and for each position v new segments are constructed with
starting position the r = i − nmax-th frame and ending the
v frame, i.,e. X[r, v]. The similarity between each of these
segments and all segments in the clusters is computed. The
label (y∗) and starting position (r∗) found to have the lowest
error are stored for each position v. Figure 1 (right) shows an
example of this step where at timestep v = 20 the segment
X[i,v] is compared with all the segments in the clusters.

The backward pass starts from the end of the sequence,
i.,e. v = N , and a new segment is created with starting
position the r∗N that was found in the forward pass. The
method continues progressively from the starting position
of each newly created segment and creates new segments
until the beginning of the sequence, i. e. v = 1 (e. g. for the
previous case it will start at position r∗N to create the segment
X[r∗N−1, r

∗
N ]). For more details, the interested reader is

referred to [27].

C. Representation Learning

To learn suitable representations from high-dimensional
data we utilise a Convolution Neural Network (CNN) which
comprises of convolution and max-pooling layers. Figure 1
(left) shows our architecture. To minimise our loss, we keep
the segments and clusters fix and minimise only with respect
to the parameters θ of the network, i. e.

min
θ
L(θ|X,y, s) (10)

The CNN learns representations on a sequence of images
X supervised by the cluster labels y that have been merged.

D. Recurrent Framework

We combine all of the parts of our method (clustering,
temporal segmentation and representation learning) in a
recurrent framework by partially unrolling the timesteps
into multiple periods [23], where in each period we update
the CNN parameters and the segments. The duration of
each period p is np = ceil(η × ntsc ) steps, where η is a
hyperparameter and ntsc is the number of clusters at the
beginning of the period.

The framework starts by initialising the segments and
clusters. This can be accomplished either randomly or with
temporal clustering algorithm like ACA. In our case we
use random segmentation. After the initial segmentation is
obtained, clusters are merged until the end of period p is

reached. Then, based on the label clusters the parameters
of our model are updated and the DTAK kernel matrix are
recomputed. Finally, the segments are refined utilizing the
forward-backward algorithm. This process is repeated until
the desired number of clusters is reached.

V. OBJECTIVE FUNCTION

The loss is accumulated over all timesteps and it can be
computed as follows

L(y, θ, s|X) =

T∑
t=1

Lt(yt, θt, st|yt−1, st−1,X) (11)

where y0, s0 indicates the initial clusters and segments,
respectively, at timestep t = 0, and T is the total number of
timesteps required for the algorithm to finish. We define the
loss at each timestep t as

Lt(yt, θt, st|yt−1,X) = −A(Ct
i,N

Kc

Ct
i
[1])

− λ

Kc − 1

Kc∑
k=2

(A(Ct
i,N

Kc

Ct
i
[1])−A(Ct

i,N
Kc

Ct
i
[k]))

(12)

where λ is a weight, NCt
i

is a sorted vector of the closest
clusters of cluster Ci, and Kc are the nearest clusters of
cluster Ci. The first term of the loss measures the affinity
of cluster Ci and its nearest neighbour, and the second
term, which takes the local structure into account, measures
difference in the affinity of Ci to its nearest neighbour and
affinities of Ci to its other neighbour clusters.

The minimisation of this loss is accomplished in three
steps. First agglomerative clustering is performed by fixing
the parameters of the CNN and the segments. Second the
clusters and the segments are fixed, and the CNN parameters
are updated. Finally, both the segments and the clusters are
refined by keeping the CNN parameters fixed. Particularly,
the loss for each step is be defined as follows.

Cluster labels:

Lp(Yp|θp,X) =

tep∑
t=tsp

Lt(yt|θp,yt−1,X) (13)

Time Boundaries:

L(Y, s|θ,X) =

p∑
k=1

Lk(Yk, sk|θ,X) (14)

CNN parameters:

L(θ|Y, s,X) =

p∑
k=1

Lk(θ|Yk, sk,X) (15)

where tsp, t
e
p denote the start and end of the period respec-

tively, and Yp is the image label sequence at period p.
To compute the loss, the entire dataset is required and as

such it is difficult to use batch-based optimisation. However,
we can approximate this by computing affinities between
data points for each period separately [23], i. e.,



Fig. 1. Depicting the recurrent framework: (a) CNN network (left) , (b) agglomerative clustering (middle) and (c) temporal segmentation (right). - Best
viewed in color

L(θ|yt
e
p , st

e
p , X) = − λ

Kc − 1

∑
ijk

(γA(xi,xj)−A(xi,xk))

(16)
where γ is a weight and xi,xj are images from the same

cluster and xi,xk from different ones.

VI. EXPERIMENTS

A. Dataset

Temporal clustering of human actions is tested on the
CMU Multi-Modal Activity Database (CMU-MMAC) [5]
database which contains human activity of subjects perform-
ing tasks involved in cooking and food preparation. Our
method was tested on the first four videos where the subjects
cook a brownie as these labels are available. Table I shows
the number of frames and the number of clusters for each
video.

TABLE I
SHOWING THE SUBJECTS USED FROM THE CMU-MMAC DATABASE

ALONG WITH THE NUMBER OF FRAMES AND CLUSTERS OF EACH VIDEO.

Subject ID # Frames # Clusters

S07 9800 32
S08 8699 30
S09 13107 34
S12 14832 33

B. Experimental Setup

We initialise the agglomerative clusteirng parameters as
follows η = 0.5, the number of nearest clusters Kc = 5,
λ = 5, and α = 1.

For our experiments we used Tensorflow [1]. The CNN
architecture is comprised three layers of convolution with
ReLU activation and max-pooling between the convolution
layers. The kernel of the convolution is 3× 3, with stride 1
and padding 0, and the number of filters is set to 50. The
max-pooling layer is comprised of a kernel of size 2×2 and
stride 2. Finally, the last features from the last max-pooling
layer are flatten and a L2-normalization layer is applied.
Finally, the input to the CNN are images of size 80×60×3.

We train the network using sequences of the data of
length 100 so that neighbour frames are processed from

the network. We use stochastic gradient descent with batch
size of 3 with momentum = 0.9 and inverse learning
rate decay with initial learning rate value of 0.01, with
gamma = 0.0001 and power = 0.75.

C. Results

We compare our method with both temporal clustering
alorithms, namely, ACA and HACA, the conventional clus-
tering algorithm Gaussian Mixture Models (GMM), and a
deep approach proposed by [22]. The inputs to the algorithms
are the raw pixel intensities. Table II depicts the results
for the CMU-MMAC database with respect to the NMI.
Our method provides the best results in all four videos. As
expected GMM algorithm provides the worst results.

TABLE II
RESULTS ON THE CMU-MMAC DATABASE (WRT NMI).

Subject ID GMM ACA HACA [22] Ours

S07 0.6530 0.6629 0.6684 0.501 0.6839
S08 0.6265 0.6653 0.6708 0.452 0.6714
S09 0.5111 0.5840 0.5481 0.428 0.6171
S12 0.5518 0.5725 0.5929 0.397 0.6279

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a clustering algorithm that
can jointly learn deep representations, clusters and temporal
boundaries of dynamic data using raw intensity pixels. More
particularly, we learn the parameters of a CNN network
by utilising supervisory cues from the clustering-based loss
function, and the temporal boundaries of the segments are
learned with a coordinate-descent optimization algorithm.
Our method provides the best results, with respect to nor-
malised mutual information, compared to other clustering
algorithms.
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