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Spatiotemporal Localization and Categorization of
Human Actions in Unsegmented Image Sequences
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Abstract—In this paper we address the problem of localiza-
tion and recognition of human activities in unsegmented image
sequences. The main contribution of the proposed method is the
use of an implicit representation of the spatiotemporal shape of
the activity which relies on the spatiotemporal localization of
characteristic ensembles of feature descriptors. Evidence for the
spatiotemporal localization of the activity is accumulated in a
probabilistic spatiotemporal voting scheme. The local nature of
the proposed voting framework allows us to deal with multiple
activities taking place in the same scene, as well as with activities
in the presence of clutter and occlusion. We use boosting in order
to select characteristic ensembles per class. This leads to a set
of class specific codebooks where each codeword is an ensemble
of features. During training, we store the spatial positions of the
codeword ensembles with respect to a set of reference points, as
well as their temporal positions with respect to the start and end
of the action instance. During testing, each activated codeword
ensemble casts votes concerning the spatiotemporal position and
extend of the action, using the information that was stored during
training. Mean Shift mode estimation in the voting space provides
the most probable hypotheses concerning the localization of the
subjects at each frame, as well as the extend of the activities
depicted in the image sequences. We present classification and
localization results for a number of publicly available datasets,
and for a number of sequences where there is a significant amount
of clutter and occlusion.

Index Terms—Action detection, space-time voting.

I. INTRODUCTION

T HE goal of this work is to develop a method able to spa-
tiotemporally localize instances of activities depicted in

an image sequence and assign them to an action category. The
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problem, termed as activity detection, has been a long lasting
subject of research in the field of computer vision, due to its
importance in applications such as video retrieval, surveillance,
and Human-Computer Interaction. Robust activity detection
using computer vision remains a very challenging task, due
to different conditions that might be prevalent during the
conduction of an activity, such as a moving camera, dynamic
background, occlusions and clutter. For an overview of the
different approaches we refer the reader to [1], [2].

The success of interest points in object detection, their spar-
sity, and robustness against illumination and clutter [3] have
inspired a number of methods in the area of motion analysis
and activity recognition. A typical example are the space-time
interest points of Laptev and Lindeberg [4], which are an ex-
tension of the Harris corner detector in time. Han et al. [5]
extract features based on Histograms of Gradients (HoG) and
Histograms of Flow (HoF) around space-time interest points
for recognition of actions in movies. Dollar et al. [6] use 1-D
Gabor filters in order to capture intensity variations in the tem-
poral domain. In [7], this approach is refined by using Gabor fil-
ters in both spatial and temporal dimensions. Oikonomopoulos
et al. [8] detect spatiotemporal salient points in image sequences
by extending in time the spatial salient points of Kadir and
Brady [9]. Lowe introduces the Scale Invariant Feature Trans-
form (SIFT) in [10], which has been used in a variety of applica-
tions, including object (e.g., [11]) and scene classification (e.g.,
[12], [13]). Partly inspired by SIFT, the Speeded Up Robust Fea-
tures (SURF) [14] utilize second order Gaussian filters and the
Hessian matrix in order to detect interest points. Jhuang et al.
[15] use a hierarchy of Gabor filters in order to construct their
C-features. Their method is extended by Schindler and Van Gool
[16], by combining both shape and optical flow responses. Fi-
nally, Ali and Shah [17] use kinematic features extracted around
optical flow vectors in order to represent human activities.

Visual codebooks have been extensively used for detecting
objects, humans and activities. SIFT descriptors are used in a
bag-of-words framework by Li and Fei-Fei [12] for the com-
bined problem of event, scene, and object classification. Laptev
et al. [18] extract HoG and HoF descriptors around detected
space-time interest points, and use k-means in order to construct
a codebook. Similar is the work presented in [19], where SIFT
features are also used. Using the space-time interest points of
[4], Niebles et al. [20] represent each class as a distribution
of visual words from the codebook and learn a pLSA model
[21] on each of the representations. Similar to [15], Ning et al.
[22] use the responses of 3-D Gabor filter banks in order to
build their descriptors. A bag of words model is subsequently
used in order to localize instances of human activities in videos
using sliding temporal windows of varying duration. Finally,
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Fig. 1. Overview of the proposed approach.

Oikonomopoulos et al. [23] create their codebook by extracting
sets of descriptors on B-Spline surfaces, fitted around detected
spatiotemporal salient points.

Despite their success in object [11], [24] and scene [12] clas-
sification, ‘bag of words’ models are not particularly suit for
localization, since, by using histograms, the information con-
cerning the spatiotemporal arrangement of the descriptors is
lost. Recently, a number of different methods have been pro-
posed in order to deal with this issue. Leibe et al. [25] propose an
implicit shape model for object detection, consisting of a code-
book of visual words in which the relative position of each word
with respect to the object center is maintained. A similar method
using edge fragments is proposed by Opelt et al. [26]. In [27],
a similar voting scheme is implemented for activity recognition
and localization. The latter, however, is restricted only to the
spatial localization of the subjects at each frame. Sivic et al. [28]
propose the use of doublet codewords, while Boiman and Irani
[29] propose a matching method based on feature ensembles in
order to detect irregular scenes. A similar method, using con-
stellations of static and dynamic feature collections is presented
in [30]. Areas in images(videos) that share similar geometric
properties and similar spatio(temporal) layouts are matched in
[31], using a self similarity descriptor and the algorithm of [29].
A similar method is presented in [32], where a Self Similarity
Matrix (SSM) is created for human activity recognition. Finally,
Gilbert et al. [33] use data mining techniques in order to recover
similar feature clusters from the training database, and detect ac-
tivities in the presence of camera motion, occlusion and back-
ground clutter.

In this paper, we extend the work of Leibe et al. [25] by
proposing a voting scheme in the space-time domain that al-
lows both the temporal and spatial localization of activities. Our
method uses an implicit representation of the spatiotemporal
shape of an activity that relies on the spatiotemporal localiza-
tion of ensembles of spatiotemporal features. The latter are lo-
calized around spatiotemporal salient points that are detected
using the method described in [8]. We compare feature ensem-

bles using a modified star graph model that is similar to the one
proposed in [29], but compensates for scale changes using the
scales of the features within each ensemble. We use boosting in
order to create codebooks of characteristic ensembles for each
class. Subsequently, we match the selected codewords with the
training sequences of the respective class, and store the spa-
tiotemporal positions at which each codeword is activated. This
is performed with respect to a set of reference points, (e.g., the
center of the torso and the lower bound of the subject) and with
respect to the start/end of the action instance. In this way, we
create class-specific spatiotemporal models, that encode the spa-
tiotemporal positions at which each codeword is activated in the
training set. During testing, each activated codeword casts prob-
abilistic votes to the location in time where the activity starts
and ends, as well as towards the location of the utilized refer-
ence points in space. In this way a set of class-specific voting
spaces is created. We use Mean Shift [34] at each voting space
in order to extract the most probable hypotheses concerning the
spatiotemporal extend of the activities. Each hypothesis is sub-
sequently verified by performing action category classification
with a Relevance Vector Machine (RVM) [35]. A flowchart of
the proposed method is depicted in Fig. 1, while an overview of
the proposed spatiotemporal voting process is depicted in Fig. 2.

Compared to our previous work on human activity localiza-
tion and recognition [36], the proposed framework utilizes fea-
ture ensembles which can be seen as a generalization of the
codeword pairs that were used in [36]. Moreover, temporal votes
are cast jointly for the start and end frames of the action instance,
making hypotheses extraction a trivial task (i.e., using mean
shift mode estimation). By contrast, in [36], temporal votes were
cast for each phase of the action, and a Radon transform was uti-
lized in order to extract each hypothesis. Finally, by verifying
each hypothesis against all class-specific models, and by uti-
lizing an RVM classification scheme, we managed to improve
the classification accuracy of the proposed method compared to
[36] for the same datasets.
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Fig. 2. Overview of the spatiotemporal voting process. Activated codewords cast spatial and temporal votes with respect to the center and spatial lower bound
of the subject and the start/end frame of the action instance. Temporal votes for candidate start/end positions are cast jointly. Local maximums in the spatial and
temporal voting spaces are extracted using mean shift and provide estimates for the position of a reference point in each frame of the test sequence and the temporal
boundaries of an action instance respectively.

The main contributions of the proposed method are as
follows:

• We propose an extension in time of the implicit shape
model of Leibe et al. [25]. This leads to the creation of
a spatiotemporal shape model, which allows us to perform
localization both in space and in time.

• We propose to use feature ensembles in the proposed
model, instead of single features.

• Through the use of boosting we create discriminative
class-specific codebooks, where each codeword is a fea-
ture ensemble. This is in contrast to the work in [25],
where no feature selection takes place. Furthermore, we
propose a novel weighting scheme, in which votes from
ensembles that are informative (i.e., they are characteristic
of the phase of the action) are favored, while votes from
ensembles that are commonly activated (i.e., they are
activated in many phases of the action) are suppressed.

• Since spatiotemporal votes are accumulated from each ob-
served ensemble in the test set, the proposed method ef-
fectively deals with occlusion, as long as a portion of the
action is visible. Moreover, the use of class-specific code-
books and spatiotemporal models in a voting framework
enables us to deal with the presence of dynamic back-
ground and with activities that occur simultaneously.

We demonstrate the effectiveness of our method by presenting
experimental results in three different datasets, namely the KTH
[37], HoHa [18] and the robustness dataset of [38]. Furthermore,
we present results on synthetic and real sequences that have a
significant amount of clutter and occlusion.

The remainder of this paper is organized as follows. In
Section II we present our approach. That is, the creation of our
spatiotemporal models for each class and the way they are used
in order to perform localization and recognition. Section III
includes our experimental results, and finally, Section IV con-
cludes the paper.

II. SPATIOTEMPORAL VOTING

We propose to use a probabilistic voting framework in order
to spatiotemporally localize human activities. This framework,
described in Section II-D, is based on class-specific codebooks

of feature ensembles, where each feature is a vector of optical
flow and spatial gradient descriptors. We describe the utilized
feature extraction process in Section II-A, while Section II-B
describes how these features are combined into ensembles and
how ensembles are compared to each other. Each class-specific
codebook is created using a feature selection process based
on boosting, which selects a set of discriminative ensembles
for each class. Each codebook is associated with a class-spe-
cific spatiotemporal localization model, which encodes the
spatiotemporal locations and scales at which each codeword
is activated in the training set. This process is described in
Section II-C. During testing, each activated codeword casts
spatiotemporal probabilistic votes, according to the information
that was stored during training. Subsequently, mean shift is used
in order to extract the most probable hypotheses concerning the
spatiotemporal localization of an activity. Each hypothesis is
then classified using Relevance Vector Machines. This process
is described in Section II-F.

A. Features

The features that we use in this work consist of a combination
of optical flow and spatial gradient descriptors, extracted around
automatically detected spatiotemporal salient points [8]. How-
ever, the proposed framework can be utilized with any kind of
local descriptors. In order to achieve robustness against camera
motion, we detect the salient points on the filtered version of
the optical flow field. More specifically, we locally subtract the
median of the optical flow within a small spatial window. Alter-
natively, a global method, like an affine model, can be applied
in order to compensate for the motion of the camera.

Let us denote with the set of optical flow vectors
that lie within a cylindrical neighborhood of scale ,
centered at location of the motion compensated
optical flow field of the input image sequence, where denote
the spatial and temporal scale of the neighborhood. In order to
detect our salient points, we initially calculate the signal entropy

within the neighborhood :

(1)
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Fig. 3. (a) Estimated optical flow field for an instance of a handwaving action and (b) a subset of detected salient points.

where is the probability density of the signal his-
togram as a function of scale and position . By we denote
the signal value and by the set of all signal values. As has
been mentioned before, in this work we use motion compen-
sated optical flow vectors as signal values. We use the histogram
method to approximate the probability density . Al-
ternatively, can be estimated using Parzen density
estimation or any other density estimation technique. A salient
point is detected at the scales for which the signal entropy is lo-
cally maximized, defined by

(2)

A subset of the salient points detected on a frame of a hand-
waving sequence is shown in Fig. 3(b). We should note that
for the detection of the depicted points, contribute a number of
frames before and after the one shown in Fig. 3(a).

We use the algorithm in [39] for computing the optical flow,
due to its robustness to motion discontinuities and to outliers
to the optical flow equation. We use a implementation of
the algorithm, which is implemented in a multiscale fashion and
runs at 2 frames per second for 120 160 pixel images on
a 2 GHz Intel Centrino with 1 GB memory. There are recent
real-time dense optical flow algorithms which would be more
appropriate if we aimed for an optimized implementation. How-
ever, we felt that this was beyond the scope of our research. In
order to form our descriptors, we take into account the optical
flow and spatial gradient vectors that fall within the area of sup-
port of each salient point. This area is defined by the spatiotem-
poral scale at which each salient point is detected. Using
their horizontal and vertical components, we convert these vec-
tors into angles and bin them into histograms using a bin size of
10 degrees.

B. Feature Ensemble Similarity

We use ensembles of spatiotemporal features instead of single
features in order to increase the spatiotemporal specificity of
the proposed method. By doing so, sets of features that have
similar spatiotemporal configuration between the training and

test sets are matched. We form ensembles by sampling indi-
vidual features as seeds and subsequently taking into account
their nearest neighbors. We discard points that have a
significant degree of overlap with the seed. In our implemen-
tation, two points have a significant degree of overlap if their
normalized Euclidean distance with respect to their spatiotem-
poral scale is smaller than a specific threshold.

Let be an ensemble in the
database consisting of features, where is the spatiotem-
poral center of the ensemble, and are, respectively, the
descriptor vector and the spatiotemporal location of the fea-
ture. In this work we used 5 features for each ensemble, that is,

. We calculate the similarity between ensembles using a
modification of the star graph model of [29]. More specifically,
we model the joint probability between the database
ensemble and the query ensemble proportional to

(3)

The likelihood in (3) can be factored as

(4)

The first term in the maximum in (4), that is, , ex-
presses the similarity in the topology of the ensembles, and the
second term expresses the similarity in their descriptor values.
Consequently, each feature of the ensemble is matched to
the feature of the ensemble with the maximum similarity in
descriptor value and relative location within the ensemble. We
model the first term as follows:

(5)

where is a normalization term, and is a fixed covariance
matrix controlling the allowable deviations in the relative fea-
ture locations. Due to the low resolution of the utilized datasets,
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Fig. 4. Visualization of a feature selection matrix. In this example, selection is performed from 50 features, using 40 positive and 60 negative examples.

was fixed in such a way so that the maximum allowable de-
viation to be around 5 pixels. However, for image sequences of
higher resolution, larger deviations can be tolerated. Due to the
use of the relative location of each feature with respect to the
spatiotemporal center of the ensemble that the feature belongs
to, the expression in (4) is invariant to the translational motion
of the subject. Finally, are diagonal matrices containing
the inverse spatiotemporal scales of the points located at loca-
tions respectively. That is,

(6)

where are the spatial and temporal scales of the fea-
ture. By normalizing the distance between the individual fea-
tures and the ensemble center, we achieve invariance to scaling
variations. We model the second term in the maximum in (4),
that is, , as follows:

(7)

where are normalization terms, and is the dis-
tance. The latter is a popular measure for comparing histograms,
and is essentially a weighted Euclidean distance. More specif-
ically, in the distance, the square distance between the bin
entries of two histograms is weighted by the inverse sum of the
bin entries. Weighting compresses the variation in the compo-
nents’ values, by assigning less weight to components with large
values.

The last term in (4) expresses the relations within the en-
semble , i.e., the relation between the feature descriptor and
its location. Similar to [29], we model this term using examples
from the database:

(8)

where are, respectively, an arbitrary descriptor and loca-
tion. That is, is equal to one if and only if the feature
descriptor appears in location in the database.

C. Feature Selection and Codebook Creation

We use Gentleboost [40] in order to select characteristic en-
sembles that will form the codewords for each class-specific

codebook . Our goal is to select feature ensembles that appear
with high likelihood in the positive and with low likelihood in
the negative examples. Let us assume that the examples of the
positive class consist in total of ensembles. To perform fea-
ture selection for this class, we sample at random (e.g., 5000)
ensembles from the initial population of ensembles. Using
(3), we match the sampled ensembles to the remaining
ensembles of the positive set and the ones in the negative set.
The latter consists of the ensembles that belong to all available
classes other than the positive class. By performing this proce-
dure, we expect that ensembles characteristic of the positive set
will have a high likelihood of match to ensembles in the exam-
ples belonging to that set, and a low likelihood of match to en-
sembles in the examples belonging to all other classes (i.e., the
negative set). Since each sequence in the training set comprises
of a few thousand of features, we keep the best matches
from each one, in order to make the selection tractable. This pro-
cedure results in positive training vectors of dimension

and negative training vectors of the same dimen-
sion, where and are the total number of the positive and
negative image sequences in the training set respectively. Using
these training vectors, Gentleboost selects a set of characteristic
ensembles for the positive class. This set is a subset of the initial
set of ensembles. By performing this process for each class
we end up with a set of characteristic ensembles for each class.
An example of the training vectors that are created is depicted
in Fig. 4. As can be seen, several features, namely the first 15,
are not characteristic of the class, since their likelihood of match
in both positive and negative examples is low (dark areas in the
figure).

We subsequently use each class-specific codebook in order to
create a spatiotemporal model for each class. Each model is cre-
ated by accumulating information over the spatiotemporal po-
sitions at which each codeword is activated in the training set.
For each class-specific codebook, we iterate through the training
sequences that belong to the same class as the codebook and ac-
tivate each ensemble whose likelihood of match is above a
threshold. In this work we used a threshold of 0.1, which trans-
lates to a likelihood value of at least 0.8 for each of the 5 features
in each ensemble in terms of their topology and descriptor sim-
ilarity with the corresponding features in the codeword ensem-
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Fig. 5. Voting example. (a) During training, the position ��� and average spatiotemporal scale ��� of the activated ensemble is stored with respect to one or more
reference points (e.g., the center of the subject, marked with the blue cross). (b) During testing, votes are cast using the stored ��� values, normalized by ��� ��� in
order to account for scale changes. (Best viewed in color.).

bles. Subsequently, we store all the positions at which each
was activated relative to a set of reference points in space and
time, and a diagonal matrix containing the spatiotemporal
scale at which codeword ensemble was activated. The scale
is taken as the average of the scales of the features that consti-
tute . An illustration of this process is depicted in Fig. 5(a).
During testing, the values are used in order to cast
votes concerning the spatiotemporal extend of an activity in the
test set, given that the codeword is activated. This process is
explained in Section II-D.

If is the number of patches in each ensemble of the code-
book, is the number of codewords and is the total number
of patches in a test sequence, then the ensemble matching
process is of complexity . For ensembles consisting
of 5 patches, typical codebook size of 500 words and for a
typical size of 20 K patches in a test sequence consisting of
approximately 500 frames, this process took about 15 min
on a 2 GHz Intel Centrino with 1 GB memory. However, the
implementation of a progressive elimination algorithm similar
to the one in [29] can significantly speed up the process to
linear time with respect to .

D. Probabilistic Framework

Given a codebook and a spatiotemporal localization model
for each class, our goal is to estimate a set of parameters

that define, respectively, the location in space-time
of a human activity depicted in an unknown image sequence.
We denote with , the location of a set of reference points
positioned on the subject, that define its location at each frame
of the image sequence. Furthermore, we denote with , the
temporal extend of the activity, that is, the frame at which it
starts and the frame at which it ends.

In order to acquire a probability distribution over and
, we propose the use of a spatiotemporal voting scheme,

which is an extension in time of the implicit shape model
proposed by Leibe et al. [25]. In the proposed model, an
activated codeword in the test set casts probabilistic votes
for possible values of , according to information stored
during training. We use ensembles of spatiotemporal features

as codewords, modeled using the star-graph model of [29].
In the following, and without loss of generality, we drop the
subscripts on the parameters, and describe the utilized
probabilistic framework for the generalized parameter . The
probability of can be formulated as

(9)

where is the set of observed ensembles and is the
prior probability of observing . In the absence of prior knowl-
edge, we model this probability as a uniform distribution, i.e.,

, where is the number of observed ensembles.
Each observed ensemble is matched against each codeword

from the codebook , which was created according to the
procedure of Section II-C. By marginalizing on
we get:

(10)

The term expresses the likelihood of match between
codeword and the observed ensemble , and is calculated
according to the process of Section II-B. After matching to

, we consider as being independent of .
expresses the probabilistic vote on location given that the ac-
tivated codebook entry is . Let us denote with the set
of the votes associated with the activated codebook entry .
These votes express the spatiotemporal positions at which
was observed in the training set, relatively to the subject/action
reference system, and are learned, during training, according to
the process of Section II-C. can be modeled as

(11)

where is a weight learned during training, which expresses
how important the ensemble is, in accurately localizing the
action in space and time. The way is calculated is described
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Fig. 6. Ensemble weighting example for the temporal case. Ensembles that are activated at a specific phase of the action receive a large weight (top row). Con-
versely, ensembles that are activated at more than one instances receive a smaller weight (bottom row).

in Section II-E. The first term of the summation in (11) is inde-
pendent of , since votes are cast using the values. Votes are
cast according to the following equation:

(12)

where are diagonal matrices containing the scale of the
ensembles respectively and denotes the location of the

observed ensemble . The concept of (12) for the spatial case
is depicted in Fig. 5(b), where the position of the center is given
by the vector addition of , the position of the observed en-
semble , and . The latter is the scale-normalized po-
sition at which the codeword ensemble (with which is
matched) was observed in the training set with respect to the
center of the subject. By normalizing with we achieve
invariance to scale differences between the observed and the ac-
tivated ensemble codeword. are calculated as the average
spatiotemporal scales of the features that consist the ensembles.
Since we only use the stored and values for casting our
votes, we can model as

(13)

where is the Dirac delta function. Finally, we model
using a uniform distribution, that is, ,

where is the number of values associated with . Al-
ternatively, this probability can be modeled using a density
estimation method. That is, a larger probability can be assigned
to the values that were more commonly observed.

The probabilistic framework that is described in this section
applies for both spatial and temporal votes. For the spatial case,

contain the spatial scales of the test and database ensem-
bles respectively, while denotes the spatial location of the ob-
served ensemble in absolute coordinates. Therefore, encodes
the displacement from the center and lower bound of the subject.
Similarly for the temporal case, contain temporal scales,
while denotes the temporal location of the observed ensemble

with respect to either the start or the end of the image sequence.
Therefore, can encode two scalar temporal offsets, one to the
start and one to the end of the action. We should note, finally,
that in the proposed framework spatial voting is performed first,
followed by voting in time. While in spatial voting we take into
account the votes from all of the activated codewords, in tem-
poral voting we take into account the votes of activated code-
words that additionally contributed to the most probable spatial
center. This process is described in more detail in Section II-F.

The use of class-specific codebooks/spatiotemporal localiza-
tion models enables us to deal with the presence of dynamic
background and multiple activities in the test set. The purpose
of such models is to search for activities of a specific class in
an unknown image sequence. Ideally, observed ensembles lo-
calized around activities of different class, or around any other
kind of motion in the background will not match well with the
codewords in the codebook, and therefore their votes according
to the corresponding model will be assigned a very small prob-
ability. This is evident from (10). Finally, the use of a voting
framework for localization increases the robustness of proposed
method to partial occlusion. Since votes are cast from each ob-
served ensemble in the test set, a good estimate can be acquired,
as long as a good portion of the activity is still visible.

E. Localization Accuracy

In this section we will describe a methodology to learn ,
that is, the weight that is used in (11) and expresses the impor-
tance of ensemble in accurately localizing an activity in space
and time. More specifically, we would like to favor votes from
ensembles that are characteristic of the location at which they
appear within the action instance and suppress votes from en-
sembles that are activated at many locations in the action in-
stance. Let us denote by the probability that the ensemble

was activated at location . This distribution is learned during
training. Then, the votes of each ensemble are weighted as
follows:

(14)
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Fig. 7. Illustration of the spatiotemporal voting scheme. First row: evolution of the temporal voting space. Second, third row: Start/end frame projections along
lines passing from a local maximum. Evidence is accumulated as time progresses, resulting in more votes at the most probable positions. Fifth, sixth row: Spatial
voting spaces, showing the most probable positions of the center and lower bound of the subject. Fourth row: Fitted bounding boxes resulting from the maximum
responses in the spatial voting spaces.

The exponent in (14) is the Shannon entropy of the distribu-
tion of the votes that the ensemble casts. Ensembles that are
only activated at specific parts of the action will have a distribu-
tion with low entropy, since their votes will be concentrated in
a few values, resulting in a large weight. An example is given in
Fig. 6 for a handwaving action. More specifically, the ensemble
in Fig. 6(a) is activated almost exclusively around the middle of
the action, and describes the upward motion of the right hand
of the subject. By contrast, the ensemble depicted in Fig. 6(b) is
activated both at the start and at the end of the action, as shown
in the histogram of votes at the top of the figure, and describes
the motion were the hands of the subject are joined around the
head. In the latter case, the votes of the corresponding code-
word will receive a lower weight that the codeword in the former
case. Let us note that since both codewords were selected by the
process of Section II-C they are both considered informative for
the class. However, since the first codeword provides more clear
evidence concerning the phase of the action, it will receive a
larger weight during the voting process.

F. Activity Detection

The goal of activity detection is to spatiotemporally localize
and classify an activity depicted in an unsegmented image se-
quence. Using the probabilistic framework of Section II-D, the
proposed algorithm initially casts spatial votes according to the
information stored in the training stage. Since the class of the
human activity is unknown, this procedure is performed for each
class-specific codebook/spatiotemporal localization model. We
use Mean Shift Mode [34] in order to localize the most prob-
able centers and lower bounds of the subjects at each frame of
the image sequence. Given the sparsity of each voting space,

the computational cost of the application of the mean shift al-
gorithm is negligible. In addition, we apply a Kalman filter [41]
using as observations the raw estimates of these points as they
are given by mean shift mode. Kalman filtering has the effect of
smoothing the estimates of the points from frame to frame, and
increases robustness against outliers in the mean shift mode es-
timation. Using the estimates of these two points, we are able to
fit a bounding box around the subject, as depicted in Fig. 7. To
reduce the influence of clutter, we cast temporal votes by only
taking into account the ensembles that contributed to the most
probable center in the spatial voting space. Finally, using Mean
Shift Mode estimation on the resulting temporal voting spaces,
the most probable hypotheses concerning the temporal extend
of the activity are extracted. An example is depicted in the top
row of Fig. 7, where the y axis indicates the frame at which the
instance starts and the x axis the frame at which it ends. Since
the votes for the start/end frames are cast jointly, most votes are
concentrated above the main diagonal, reflecting the fact that
the start frame position must temporally precede the end frame
position. To illustrate the evolution of the temporal votes as time
progresses, we also depict, in the same figure, 1-D projections
of the temporal voting space along horizontal and vertical lines
that pass through one of the local maximums. As shown in the
figure, as time progresses, more evidence is accumulated con-
cerning the most probable position in time where the action in-
stance starts and ends.

Depending on the voting space from which each hypothesis is
extracted, a class label can be assigned directly to it. We perform
instead a hypothesis verification stage. Let us denote with
the maximum response of the spatial voting space at frame ,
as this is given by mean shift mode, where denotes the class.
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That is, each expresses the belief of the voting algorithm
that the center of the subject is at a specific location at frame
for model . Other points (i.e., the lower bound of the subject),
or a combination of them can also be used for this purpose. Fur-
thermore, let us denote an extracted hypothesis with , where

are the indexes of the frames at which, according to the hy-
pothesis, the activity starts and ends respectively. Our hypoth-
esis verification step relies on the calculation of the following
measure:

(15)

That is, each is the average sum of the mean shift output
of the spatial voting space, between frames . Using ,
we define a thin plate spline kernel for an RVM classification
scheme:

(16)

We train different classifiers, in an one against all fashion.
Each classifier outputs a conditional probability of class mem-
bership given the hypothesis, . Subse-
quently, each hypothesis is assigned to the class for which
this conditional probability is maximized. That is,

(17)

Note that we assign a label to each hypothesis that is extracted
and not to the whole video. This is more sensible, since a video
might contain activities of more than one class. Finally, let us
note that since each hypothesis is extracted from a class-spe-
cific voting space it could be written as , where indicates
the class of the voting space from which the hypothesis is ex-
tracted. However, since at this stage the class is not fixed and
assigned by the RVM, we avoid such a notation.

III. EXPERIMENTAL RESULTS

We use three different datasets in order to provide exper-
imental evaluation of the proposed algorithm. Namely, the
KTH [37], the Hollywood Human actions (HoHA) [18] and
the robustness dataset of [38]. Furthermore, we present results
on synthetic and real sequences in which there is a significant
amount of clutter and occlusion. The KTH dataset contains 6
different actions; boxing, hand-clapping, hand-waving, jog-
ging, running, and walking, performed by 25 subjects several
times under different conditions. These include scale changes,
indoors/outdoors recordings, and varying clothes. The main
challenges in this dataset include small camera motion, noise
in the otherwise uniform background, shadows, and large
variability in the conduction of the activities by the subjects.

Containing video samples from 32 movies, the HoHA dataset
is one of the most challenging ones in the area of activity recog-
nition. Each sample is labeled according to one or more of 8
action classes: AnswerPhone, GetOutOfCar, HandShake, Hug-
Person, Kiss, SitDown, SitUp, StandUp. The main challenge of
this dataset is the huge variability of the actions depicted, due
to different view-points, cluttered and dynamic background and
significant camera motion.

The sequences in the robustness dataset of [38] have non-uni-
form, static backgrounds, and include walking activities under

varying conditions. These include different viewpoints and 11
‘deformation’ sequences, like walking with a dog. We use this
dataset only for testing, while training is performed using the
walking actions of the KTH dataset.

To test the performance of the proposed algorithm in the pres-
ence of occlusion, we selected 10 sequences per class from the
KTH dataset, i.e., 10% of the data, and placed an artificial oc-
cluding bar of varying width in areas that are important for the
recognition of that action, like, e.g., on the moving legs of sub-
jects, in classes like walking. Finally, we use synthetic and real
sequences in order to test the robustness of the proposed method
against dynamic background, as well as to its ability to localize
multiple activities in the same scene.

A. Training Set

We consider a single repetition of an activity as an action in-
stance, like e.g., a single hand-clap or a single walking cycle.
To create a training set, we manually select a subset of action
instances for each class and we register them in space and time,
by spatially resizing the selected instances so that the subjects in
them have the same size. Moreover, we linearly stretch the se-
lected instances so that the depicted actions in each class have
the same duration. Finally, we manually localize and store the
subject centers and lower bounds in the registered training set,
where each center is defined as the middle of the torso. We
used 20 instances per class in order to create each class spe-
cific model for the KTH dataset. These consist of 5 subjects,
each performing an activity 4 times. All instances that were per-
formed by a specific subject were extracted by a single image
sequence, which was not included in the test set. That leaves
about 95 sequences per class for testing, i.e., 95% of the data.
For the HoHa dataset, we used 10 sequences per class in order
to create each model, due to the smaller number of videos com-
pared to the KTH dataset.

B. Classification

We use activity instances pre-segmented in time in order to
evaluate the classification accuracy of the proposed algorithm
and compare it to the state of the art. We use the process of
Section II-F in order to perform classification, where each hy-
pothesis corresponds to a pre-segmented example. That is, we
calculate, for each example, its similarity to each of the trained
models according to (15) and use this similarity in order to de-
fine a kernel for the RVM, according to (16). Classification is
performed in a leave-one-subject-out manner, using (17). That
is, in order to classify an activity instance performed by a spe-
cific subject, we trained the RVM classifiers using all available
instances apart from the ones performed by the subject in ques-
tion. In Fig. 8(a), the confusion matrix for the KTH dataset is de-
picted. As can be seen from the figure, the largest degree of con-
fusion is between the classes jogging and running. As noticed by
Schuldt et al. [37], these confusions are in fact reasonable, since
what appears to some people as running may appear to others as
jogging and vice versa. The average recall rate achieved by the
RVM classifier for the KTH dataset is 88%. By contrast, using
just the measure of (15) and a 1-NN classifier, the average re-
call rate was about 75.2%. The largest improvement was noted
on the running class, with an increase from 53% to 85% in the
recall rate.
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Fig. 8. Confusion matrices for the (a) KTH and (b) HoHA datasets.

In Fig. 8(b), we present the confusion matrix for the HoHa
dataset. Due to the small number of representative examples,
we discard classes GetOutOfCar, HandShake, SitUp. Further-
more, due to the presence of several examples in which the lower
bound of the subjects is not visible, we only used the subject cen-
ters as reference points for this dataset. It can be observed that
there are several confusions between classes that are not very
similar. The largest confusion, however, is between the classes
HugPerson and Kiss, since both involve two persons coming
progressively closer to each other.

We use a cross-dataset approach in order to acquire classifi-
cation results on the robustness dataset of [38]. That is, we con-
sider the latter only for testing, using the models that we created
on the KTH dataset. Our algorithm was able to correctly classify
9 out of the 11 sequences of the deformed set and 6 out of the 10
sequences of the multi-view set, with all confusions being be-
tween the walking and jogging classes. While Blank et al. [38]
report 100% recognition rate on this dataset, their training is
based on the Weizmann dataset of human actions [38], which
does not include the jogging class. By removing the jogging
class from our classification process, our classification rate on
this dataset also reaches 100%.

We present, in Table I, comparative classification results be-
tween the proposed method and several methods proposed in
the literature. As can be seen from Table I, the classification re-
sults that we obtained outperform the ones in, e.g., [42], [37].
Furthermore, we achieve similar results as the ones reported in
[43], [44], [17]. Compared to these works, we also provide the
means for localization of the actions in space and time. Further-
more, we do not assume a stationary camera as these works do.
Instead, by using filtered optical flow we minimize the effect
of camera motion in the extracted features. Furthermore, we do
not perform any preprocessing prior to feature detection, con-
trary to Fathi and Mori [45], who use stabilized sequences of
cropped frames centered on the human figure. Similarly, Wong
and Cipolla [46] temporally normalize their sequences to have
similar length. Instead, we handle temporal variations by auto-
matically detecting temporal scale in the spatiotemporal salient
point detection step and by using this scale throughout our pro-
posed algorithm. Finally, we do not perform any background

TABLE I
COMPARISONS OF THE PROPOSED METHOD TO VARIOUS METHODS

PROPOSED ELSEWHERE FOR THE KTH DATASET

subtraction before detecting our features, as opposed to [15],
[44], who use a Gaussian Mixture Model (GMM) in order to
identify foreground pixels. In the proposed method, we achieve
a similar effect by detecting the spatiotemporal salient points
at areas in which there is significant amount of motion, as de-
scribed in [8].

C. Localization

1) Spatial Localization: In this section we evaluate the ac-
curacy of the proposed algorithm in localizing a subject at each
frame of an image sequence. Here, we assume, that the ac-
tivity class that the subject is performing is given. Following
the process of Section II-F, the proposed algorithm is able to
provide an estimate of the subject center and lower bound for
each frame of a sequence. To account for the smooth motion of
the subjects, we apply a Kalman filter to the estimates of the
subject location. The results achieved for each class of the KTH
dataset are depicted in Fig. 9. Using just the raw estimates, our
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Fig. 9. Spatial localization results achieved for the subject center and lower bound, for each class of the KTH dataset. The increase in performance when applying
a Kalman filter is more prominent for the boxing, handclapping and handwaving classes. x-axis: distance from ground truth annotation in pixels. y-axis: percentage
of frames in the database at which the localization estimate’s distance from the ground truth was less or equal to the values in the x-axis.

Fig. 10. Comparative temporal localization results for the 6 classes of the KTH dataset, between the proposed algorithm (ST-Voting) and the Self-Similarity with
Progressive Elimination (SS-PE) algorithm of [31]. x-axis: distance from ground truth annotation in frames. y-axis: percentage of recovered instances.

algorithm is able to localize the center of the subject in 70%
of all frames in the dataset on average, with the estimate’s dis-
tance from the ground truth annotation being smaller or equal
to 15 pixels. Given that the width of the subjects is on average
20 pixels, our estimate, in most cases, falls within its range. The
worst performing class is running, which, for the same distance
from the ground truth yields around 55% accuracy in the local-
ization of the subject center. By applying a Kalman filter on the
raw estimates, we achieve an increase in performance of about
10% for boxing, handclapping and handwaving, while there was
a smaller increase in the performance for jogging, running and
walking.

2) Temporal Localization: In this section we evaluate the ac-
curacy of the proposed algorithm in localizing in time several
instances of a known activity that occur in an image sequence.
For this experiment, we apply the process of Section II-F, and
compare each extracted hypothesis with the ground truth anno-

tation. The latter was performed in such a way so that each anno-
tated instance includes a single repetition of the activity, e.g., a
single punch in boxing. Each extracted hypothesis specifies the
frames in the image sequence at which the action instance starts
and ends. The error of each hypothesis was calculated as the
difference in frames between the ground truth annotation and
the start/end frames specified by the hypothesis. In this way, we
were able to construct Fig. 10, which plots the percentage of the
recovered hypotheses as a function of this frame difference.

We compare these results with the ones acquired by [31].
More specifically, we compute self-similarity descriptors for all
sequences in KTH and apply their progressive elimination al-
gorithm to match a query to each sequence. Matching was per-
formed using 5 query sequences per class from our training set
and averaging the results. This gives us an estimate of the spa-
tiotemporal extend of each recovered instance. This is similar
to the hypothesis extraction process of our method, and is the
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reason why we chose to perform comparison with the method of
[31]. The localization accuracy achieved is depicted in Fig. 10.
As can be seen from the figure, the results achieved are sim-
ilar to the ones achieved by the algorithm of [31] for boxing
and slightly better for jogging and running. For handwaving
and handclapping, 70% of the extracted hypotheses are local-
ized within 3 frames from the ground truth on average, in com-
parison to 15% achieved by [31].

D. Joint Localization and Recognition

In this section, we present experimental evaluation for local-
izing and classifying human activities that occur in an unseg-
mented image sequence, where both the localization and the
class of the activities that occur in the sequence are unknown.
Given an image sequence, each class-specific model created
during training, results in a different voting space for this se-
quence. Using mean shift mode, a set of hypotheses is extracted
from each voting space, and classified to a specific action cat-
egory. Each hypothesis corresponds to an interval in time in
which the activity takes place, and is assigned a weight, equal to
the response in the voting space at the point at which the hypoth-
esis was extracted. A low weight on a hypothesis means that the
proposed algorithm does not have a strong belief on its validity.
Therefore, by setting up a threshold on the weights, we can con-
trol which of the hypotheses are considered as being valid by
the algorithm. By varying this threshold, we construct the ROC
curves depicted in Fig. 11. Note that all curves are well above the
main diagonal, meaning that regardless of the threshold value,
the number of true positives is always larger than the number of
false positives. Furthermore, the incompleteness of the depicted
ROC curves reveals that a number of ground truth annotations
are not detected by the algorithm. The reason is that, while the
mean shift mode process is able to successfully extract the cor-
responding hypotheses, these are subsequently misclassified by
the RVM. Therefore, the recall rate never reaches 100%. Such
misclassifications occur either due to the inherent similarity be-
tween certain actions (e.g., between running and jogging) or due
to the low values of the corresponding region of the voting space
from which these hypotheses were extracted. Such low values
can result from insufficient evidence (i.e., number of detected
salient points) at certain parts of the image sequence (e.g., when
the person is far, due to camera zoom).

E. Occlusions

We use synthetic image sequences to demonstrate the robust-
ness of our method against occlusion, where we used vertical or
horizontal bars to occlude parts of human activities, as depicted
in Fig. 12. We performed our experiments using 10 sequences
from each class, i.e., 10% of the data, with a variable bar width.
To determine the effect of the occlusion in classification accu-
racy, we selected sequences that were correctly classified in the
classification stage of Section III-B. Despite the occlusion, our
algorithm was able to correctly classify all of the selected se-
quences. We present, in Fig. 13, average spatial localization re-
sults for all of the selected examples as a function of the degree
of occlusion. The latter is defined as the ratio between the ac-
tivity extend in space and the width of the occluding bar. Note
that for actions like handclapping, the spatial activity extend
only covers the moving hands of the subject. As can be seen
from Fig. 13, our method is robust to relatively small amounts

Fig. 11. Joint Localization and recognition: ROC curves corresponding to each
class of the KTH dataset.

of occlusion. For 60% of occlusion, that is, the largest degree
tested, there was a 20% drop in the localization accuracy of the
subject center compared to no occlusion at all, with the estimate
of the center being within a radius of 10 pixels from the ground
truth annotation. However, our method behaves very well for
smaller amounts of occlusion, with an average drop of about
10% in performance for a 35% degree of occlusion.

Finally, we performed experiments where the synthetic bar
occludes the limbs of the subjects during the apex (e.g., in hand-
waving) or throughout the conduction of the activity (e.g., in
walking). The localization accuracy achieved, compared with
no occlusion at all is depicted in Fig. 13(c). As can be seen
from the figure, there is only a small drop in localization per-
formance. We conclude, therefore, that the proposed method is
able to sufficiently localize a subject, as long as a good portion
of the activity is not affected by the occlusion.

F. Dynamic Background/Multiple Activity Detection

We use synthetic and real sequences in order to demonstrate
the robustness of the proposed algorithm against dynamic
background. Our goal is to demonstrate that the proposed
algorithm is not distracted by movement that is due to a varying
background or irrelevant activities in the scene. To simulate
such conditions, we create synthetic sequences in which more
that one activities are depicted in the same frame, as shown
in Fig. 14(a). Our goal is to localize each activity regardless
of the presence of the other. A depiction of the spatial voting
spaces derived by the application of the boxing and handwaving
models for one instance of the activity is given in Fig. 14. As
can be seen from the figure, each model manages to suppress
the information coming from activities other than its class.
For instance, the votes attained by the boxing model are con-
centrated around the subject that performs this activity. The
reason for this is that ensembles that are localized around the
handwaving subject do not match well or at all the codewords
in the boxing codebook. In Fig. 15 we present the effect of this
experiment to the achieved spatial localization, after applying
a Kalman filter on the outcomes of the mean shift mode esti-
mator. For comparison, we also plot the same estimates for the
clean sequences. As can be seen from the figure, due to false
codeword matches, the localization accuracy of the center of the
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Fig. 12. Occlusion settings for the boxing, handclapping, handwaving and walking classes. The setting for the jogging and running classes is similar to that of
the walking class.

Fig. 13. Average spatial localization results for the selected occluded sequences. (a) Center of the subject (b) Lower bound of the subject. (c) Average localization
accuracy achieved for the center and lower bound of the subject when the tips of the limbs are occluded.

Fig. 14. Voting spaces for center and lower bound derived using the (a) boxing and (b) handwaving models, and rectangles fitted around the subjects using these
voting spaces. Notice that each model favors votes belonging to the activity it was trained for.

Fig. 15. Average spatial localization accuracy results achieved for the se-
quences depicting multiple activities. For comparison, the accuracy achieved
on the clean sequences is also depicted.

subject drops about 10%, while for the subject’s lower bound
the effect is more severe. We depict, in Fig. 16, the temporal
voting spaces created using the boxing and handwaving models.
As can be seen, there are 6 peaks in the boxing and 2 peaks in
the handwaving temporal voting space, corresponding to the
number of instances of these activities depicted in the image

sequence under consideration. Using Mean Shift mode, we ex-
tract the corresponding hypotheses, and following the process
of Section II-F, the spatiotemporal volumes that correspond to
those hypothesis are classified in an RVM based classification
scheme. Finally, we depict, in Fig. 17, the spatial voting spaces
acquired using the handclapping and boxing models for an
instance of the multi-KTH dataset. As can be seen from the
figure, and similar to the synthetic sequences presented earlier,
each model manages to suppress information coming from
activities other than its class.

IV. CONCLUSION

In this work, we presented a framework for the localization
and classification of actions. The voting nature of the proposed
method allows us to perform spatiotemporal localization and
classification in sequences that have not been pre-segmented.
The proposed method uses class-specific codebooks of char-
acteristic ensembles and class-specific models that encode the
spatiotemporal positions at which the codewords in the code-
book are activated during training. The codebook-model pairs
are utilized during testing, in order to accumulate evidence for
the spatiotemporal localization of the activity in a probabilistic
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Fig. 16. Temporal voting spaces corresponding to the image sequence of Fig. 14, for (a) boxing and (b) handwaving. Using Mean Shift, 6 instances of boxing are
extracted from (a) and 2 instances of handwaving in (b).

Fig. 17. Spatial localization example on the multi-KTH sequence. Voting spaces and localization result achieved for handclapping (top row) and boxing (bottom
row).

spatiotemporal voting scheme. We presented results on publicly
available datasets and demonstrated the robustness of the pro-
posed method in the presence of occlusion and dynamic back-
ground. Furthermore, we showed the ability of the proposed
method in localizing and classifying multiple activities that take
place in the same scene. Finally, we demonstrated the effective-
ness of the proposed method by presenting comparative classi-
fication and localization results with the state of the art.
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