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Abstract— We propose an exact framework for online learning
with a family of indefinite (not positive) kernels. As we study the
case of nonpositive kernels, we first show how to extend kernel
principal component analysis (KPCA) from a reproducing kernel
Hilbert space to Krein space. We then formulate an incremental
KPCA in Krein space that does not require the calculation of
preimages and therefore is both efficient and exact. Our approach
has been motivated by the application of visual tracking for
which we wish to employ a robust gradient-based kernel. We
use the proposed nonlinear appearance model learned online via
KPCA in Krein space for visual tracking in many popular and
difficult tracking scenarios. We also show applications of our
kernel framework for the problem of face recognition.

Index Terms— Gradient-based kernel, online kernel learning,
principal component analysis with indefinite kernels, recognition,
robust tracking.

I. INTRODUCTION

W ITH ever-increasing importance of realizing online and
real-time applications, incremental learning methods

have become a popular research topic. Many online learning
methods have been recently proposed. For example, in [1], an
online algorithm to learn from stream data was introduced.
A framework for learning with nonstationary environments,
for which the classes and data distribution change over time,
was presented in [2]. Motivated by the cerebral cortex, [3] pro-
posed an online methodology for classification and regression.
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Online blind source separation was introduced in [4], and
several variations of incremental principal component analysis
(PCA) have also been recently introduced [5]–[8].

In this paper, we particularly focus on online and incremen-
tal kernel learning. Online kernel learning for classification,
regression, novelty and change detection, subspace learning,
and feature extraction is a very active research field [9]–[27].
Typically, the online classification or regression function is
written as a weighted sum of kernel combination of samples
from a set of stored instances, usually referred to as a
“support” or “reduced” set. At each step, a new instance is
fed to the algorithm and, depending on the update criterion,
the algorithm adds the instance to the support set.

One of the major challenges in online learning is that
the support set may grow to become arbitrarily large over
time [9]–[27]. In [12], online kernel algorithms for classifi-
cation, regression, and novelty detection are proposed, based
on a stochastic gradient descent algorithm in Hilbert space.
In order to avoid the arbitrary growth of the support set,
the authors adopt simple truncation and shrinking strategies.
In [13], an online kernel regression algorithm is proposed
based on constructing and solving minimum mean-squared-
error optimization problems with Mercer kernels. In order to
regularize solutions and keep the complexity of the algorithm
bound, a sequential sparsification process is adopted. In [25],
the so-called Projectron algorithm is proposed, which neither
truncates nor discards instances. In order to keep the support
set bound, the algorithm projects the samples onto the space
spanned by the support set. If this is impossible without
greater loss, the samples are added to the support set. It is
proven that, by following the Projectron algorithm, the support
set and, therefore, the online hypothesis are guaranteed to
converge. The drawback is that the size of support cannot
be predicted in advance. To cope with this, a parameter
that provides a tradeoff between accuracy and sparsity is
introduced. In [26], online regression algorithms are proposed
that use an alternative model-reduction criterion. Instead of
using sparsification procedures, the increase in the number of
variables is controlled by a coherence parameter, a fundamen-
tal quantity that characterizes the behavior of dictionaries in
sparse approximation problems.

Although many methods have been proposed for online ker-
nel learning for classification and regression, limited research
has been conducted for online subspace learning with kernels.
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This research has mainly revolved around the development of
incremental kernel PCA (KPCA) [16], [21], [22] and kernel
singular value decomposition [28] algorithms. One of the
first incremental KPCA algorithms with reproducing kernel
Hilbert space (RKHS) is proposed in [16]. This algorithm
is essentially the kernelization of the generalized Hebbian
algorithm, which has operational characteristics similar to
those of a single-layer feedforward neural network. Gain
adaptation methods that improve convergence of the kernel
Hebbian algorithm are proposed in [22]. An incremental
KPCA algorithm with Hilbert spaces, which kernelizes an
exact algorithm for incremental PCA [5], [6], is proposed
in [21]. In this method, in order to maintain constant update
speed, the authors construct reduced set expansions, by means
of preimages, of the kernel principal components and the
mean. The main drawbacks of this method are: 1) the reduced
set representation provides only an approximation to the exact
solution and 2) the proposed optimization problem for finding
the expansions inevitably increases the complexity of the
algorithm.

In this paper, we propose an exact framework for online
learning with a family of indefinite (nonpositive) kernels.
As we study the case of nonpositive kernels, we first show
how to extend KPCA from an RKHS to Krein space. Note
that all the above-described online kernel subspace learning
algorithms support only arbitrarily chosen positive definite
kernels [e.g., polynomial or Gaussian radial basis function
(RBF)]. We then propose a kernel that allows the formulation
of an incremental KPCA in Krein space which does not require
the calculation of preimages and therefore is both efficient
and exact.

Our approach has been motivated by the application of
visual tracking. In fact, many subspace learning algorithms
have been either developed or evaluated for the application
of visual tracking [6], [21], [29]–[32]. Visual trackers aim to
locate a predefined target object in a video sequence. Typically,
a tracker consists of three main components.

1) The image representation defines the low-level features
that are extracted from the frames of the video sequence.
Widely used features include raw pixel intensities [6],
[21], [33], color [34], gradient [30], [35], Haar-like
features [36], and local binary patterns [37].

2) The appearance model stands usually for a statistical
model of the target. This is where incremental subspace
learning algorithms are usually applied.

3) The motion model describes the set of parameters
that define the motion of the target and its dynamics.
A typical choice for the motion model is an affine or a
similarity transform used in a particle filter framework
[6], [33], [38].

As our experiments have shown, visual tracking using
off-the-shelf kernels (such as the Gaussian RBF), which do
not incorporate any problem-specific prior knowledge, results
in loss of robustness and accuracy. To tackle this problem, we
employ an indefinite robust gradient-based kernel, inspired by
recently proposed schemes for the robust estimation of large
translational displacements [39]. We evaluate the performance
of the proposed methodology in many popular difficult track-

ing scenarios, and show its applicability for face recognition
and that it outperforms KPCA with a Gaussian RBF kernel
and standard �2-norm PCA.

In summary, our contributions are as follows.

1) We design a robust indefinite (nonpositive) kernel for
measuring visual similarity.

2) We formulate KPCA in Krein space.
3) We propose an accurate incremental KPCA in Krein

space, which exploits the properties of our kernel and
does not require a reduced set representation.

4) We apply our learning framework to the application of
visual tracking and achieve state-of-the-art performance.

5) We also apply our KPCA to face recognition, where we
show better class separation properties in comparison to
KPCA in Hilbert space with a Gaussian RBF kernel and
standard �2-norm PCA.

In [40], a proposal is made that is closely related to the one
proposed here. We would like to highlight that [40] proposes
two-class classifiers based on a quadratic discriminant function
in both Hilbert and Krein spaces. Our paper takes a different
direction. That is, we propose subspace learning algorithms in
Krein spaces for feature extraction and object representation.

The rest of this paper is organized as follows. We sum-
marize the theory of Krein spaces and introduce our ker-
nel in Section II. In Section III, we propose KPCA in
Krein space and present our direct incremental update of
the nonlinear subspace which exploits the special properties
of our kernel. The visual tracker introduced in Sections IV
and V presents our experimental results. Section VI con-
cludes this paper. The interested reader is advised to
visit http://www.doc.ic.ac.uk/~sl609/dikt/ for additional video
results and sample code.

II. KREIN SPACES AND THE PROPOSED

INDEFINITE KERNEL

Krein spaces provide feature-space representations of dis-
similarities and insights on the geometry of classifiers defined
with nonpositive kernels [40], [41]. An abstract space K is a
Krein space over reals R if there exists an (indefinite) inner
product 〈., .〉K:K×K → R with the following properties [42]:

〈x, y〉K = 〈y, x〉K
〈c1x + c2z, y〉K = c1〈x, y〉K + c2〈z, y〉K (1)

for all x, y, z ∈ K and c1, c2 ∈ R. K is composed of two vector
spaces, such that K = K+ ⊕ K−. K+ and K− describe two
Hilbert spaces over R. We denote their corresponding positive
definite inner products as 〈., .〉K+ and 〈., .〉K− , respectively.
The decomposition of K into two such subspaces defines two
orthogonal projections: P+ onto K+ and P− onto K−, known
as fundamental projections of K. Using these projections,
x ∈ K can be represented as x = P+x + P−x. The identity
matrix in K is given by IK = P+ + P−.

Let us denote by x+ ∈ K+ and x− ∈ K−, the projec-
tions onto the subspaces P+x and P−x, respectively. Then,
〈x+, y−〉K = 0 for all x, y ∈ K. Moreover, 〈x+, y+〉K > 0
and 〈x−, y−〉K < 0 for any nonzero vectors x and y in K.
Therefore, K+ is a positive subspace, while K− is a negative
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subspace. The inner product of K is defined as the difference
of 〈., .〉K+ and 〈., .〉K− , i.e., for all x, y ∈ K

〈x, y〉K = 〈x+, y+〉K+ − 〈x−, y−〉K− . (2)

A Krein space K has an associated Hilbert space |K| which
can be found via the linear operator J = P+ − P−, called the
“fundamental symmetry.” This symmetry satisfies J = J−1 =
JT and describes the basic properties of a Krein space. Its
connection to the original Krein space can be written in terms
of a “conjugate” by using (2) and J, as

x∗y � 〈x, y〉K = xT Jy = 〈Jx, y〉|K|. (3)

That is, K can be turned into its associated Hilbert space |K|
by using the positive definite inner product of the associated
Hilbert space 〈., .〉|K| as 〈x, y〉|K| = 〈x, Jy〉K.

In the following, we are particularly interested in finite-
dimensional Krein spaces where K+ is isomorphic to R

p and
K− is isomorphic to R

q . Such a Krein space describes a
pseudo-Euclidean space and is characterized by its so-called
signature (p, q) ∈ N

2, which indicates the dimensionality
p and q of the positive and negative subspaces, respec-
tively [40]. In particular, the fundamental symmetry is given by

J =
[

Ip 0
0 −Iq

]
(4)

where Iz is the identity matrix in R
z×z and 0 implies zero

padding. In the following, we will define an indefinite kernel
with special properties that allows efficient incremental
subspace learning techniques.

A. Robust Indefinite Gradient-Based Kernel for Tracking

Off-the-shelf kernels (such as the Gaussian RBF), which do
not incorporate any problem-specific prior knowledge to the
domain of visual tracking, often result in loss of robustness and
accuracy. To tackle this deficiency, we employ an indefinite
robust gradient-based kernel inspired by recently proposed
schemes for the robust estimation of large translational dis-
placements [39]. More specifically, assume that we are given
two images Ii ∈ R

n×m , i = 1, 2, with normalized pixel values
in range [0, 1]. The gradient-based representation of Ii is
defined as Gi = Fx � Ii + jFy � Ii , where Fx and Fy are linear
filters which approximate the ideal differentiator in the image’s
horizontal and vertical axis. Let xi ∈ C

d (d = mn) be the
d-dimensional vector obtained by writing Gi in lexicographi-
cal order. The gradient correlation coefficient is given by

s(xi , x j ) = R

{
xH

i x j

}

=
d∑

c=1

Ri (c)R j (c) cos (�θ(c)) (5)

where R{.} extracts the real value of a complex number, Ri is a
vector containing the magnitudes of xi , �θ(c) = θ i (c)−θ j (c)
is the difference in the orientations, Ri (c)e jθ i (c) is the polar
form of xi(c), and H is the complex conjugate transposition
[39]. We propose to use a modification of this correlation as a
new kernel. In particular, as the gradient magnitudes are more
sensitive to outliers [39], it is very likely that the products

Ri (c)R j (c) will be affected most. One way to circumvent this
problem may be to remove the gradient magnitude from (5) as
in the learning framework of [43] or the alignment framework
of [44], but this could result in loss of useful information. In
this paper, we split the correlation in (5) into two terms to
reduce the effect of outliers to some extent. That is, we set
Ri (c) = 1 for one term and R j (c) = 1 for the other

s(xi , x j ) =
d∑

c=1

Ri (c) cos(�θ(c))+
d∑

c=1

R j (c) cos(�θ(c)).

(6)
Finally, we define our kernel as the normalized version of the
above correlation (see Appendix for details)

k(xi , x j ) =

d∑
c=1

Ri (c) cos(�θ(c))

2
√∑d

c=1 R2
i (c)d

+

d∑
c=1

R j (c) cos(�θ(c))

2
√∑d

c=1 R2
j (c)d

.

(7)
The robust properties of the proposed kernel derives from:
1) the use of gradient orientation features; 2) the way we
split the magnitude; and 3) from the use of the cosine on
the difference of gradient orientations (the interested reader
may refer to [39], [44], and [43]).

After simple manipulations, we can write our kernel as

⎡
⎢⎢⎢⎢⎢⎢⎣

Ri cos(θ i )

2
√∑d

c=1 R2
i (c)d

Ri sin(θ i )

2
√∑d

c=1 R2
i (c)d

cos(θ i )
sin(θ i )

⎤
⎥⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎢⎣

cos(θ j )
sin(θ j )

R j cos(θ j )

2
√∑d

c=1 R2
j (c)d

R j sin(θ j )

2
√∑d

c=1 R2
j (c)d

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

where cos(θ i ) = [cos(θ i (1)) · · · cos(θ i (d))]T and sin(θ i ) =
[sin(θ i (1)) · · · sin(θ i (d))]T . We define two explicit mappings
a : C

d → R
4d and b : C

d → R
4d

a(xi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ri cos(θ i )

2

√
d∑

c=1
R2

i (c)d

Ri sin(θ i )

2

√
d∑

c=1
R2

i (c)d

cos(θ i )
sin(θ i )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b(xi) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ i )
sin(θ i )

Ri cos(θ i )

2

√
d∑

c=1
R2

i (c)d

Ri sin(θ i )

2

√
d∑

c=1
R2

i (c)d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Given a(.) and b(.), our kernel k(., .) can be expressed as
an example of the following family of kernels:

k(xi , x j ) = a(xi)
T b(x j ) = a(x j )

T b(xi). (10)

When a(.) �= b(.), kernels of the form (10), which also satisfy
k(xi , xi ) ≥ 0, are in general nonpositive definite, as the trian-
gular inequality may not hold. There could exist two vectors
xi and x j such that k(xi , x j ) >

√
k(xi , xi )

√
k(x j , x j ). As for

the proposed kernel k(., .) in (7), k(xi , xi ) = a(xi)
T b(xi) ≥ 0

it is indefinite, and defines an implicit mapping ψ : C
d → K

into a finite-dimensional Krein space. Analogous to the Hilbert
space, our kernel is equivalent to the dot product in feature
space, i.e., k(xi , x j ) = 〈ψ(xi ), ψ(x j )〉K. The squared distance
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in feature space is given by

l2(xi , x j ) = (ψ(xi )− ψ(x j ))
∗(ψ(xi )− ψ(x j ))

= k(xi , xi )− 2k(xi , x j )+ k(x j , x j ). (11)

Finally, it can be shown that l2(xi , x j ) ≥ 0 (see Appendix).
Note that the complexity of computing the kernel remains

of the computation of the kernel in O(d), as we extent the
d-dimensional samples by a constant factor of 4 for each
mapping. Finally, we emphasize that the proposed kernel
is nonpositive definite. Consequently, we cannot define an
implicit Hilbert feature space. In this case, the appropriate
vector space where the kernel represents a dot product is a
Krein space [40].

III. DIRECT INCREMENTAL KPCA IN KREIN SPACE

In this section we present our direct incremental KPCA in
Krein space which is specifically designed to make use of the
special properties of our kernel. First, we develop KPCA with
nonpositive definite kernels in Krein space. We then exploit
the special form of our kernel and present a direct version of
KPCA. Finally, we propose our direct incremental KPCA.

A. KPCA in Krein Space

Let X = [x1 · · · xN ] ∈ C
d×N be a set of given samples

and Xψ = [ψ(x1) · · · ψ(xN )] be their implicit mapping.
Motivated by KPCA and pseudo-Euclidean embedding [40],
[41], we formulate KPCA with Krein spaces.

Let us define the mean ψμ and the centralized matrix
X̃ψ as

ψμ = 1
N Xψ1N X̃ψ = XψM (12)

where M � IN − (1/N)1N 1T
N and 1N is an N-dimensional

vector containing only ones [40]. We then define the total
scatter matrix in K as

SK � 1

N

N∑
i=1

(ψ(xi )− ψμ)(ψ(xi )− ψμ)
∗

= 1

N
X̃ψ X̃∗

ψ = 1

N
X̃ψ X̃T

ψJ = S|K|J (13)

where S|K| is the total scatter matrix in the associated Hilbert
space |K|.

Analogous to KPCA in Hilbert space, we generalize KPCA
in Krein space as follows. We wish to compute a set of
projections Uo = [u1, . . . ,uN ] with ui ∈ K such that

Uo = arg max
U

tr
(
U∗SKU

)
s.t. U∗U = J. (14)

We write the set of projections as a linear combination of
samples as U = X̃ψQ, and (14) becomes

Qo = arg max
Q

tr
(

QT X̃T
ψJX̃ψ X̃T

ψJX̃ψQ
)

= arg max
Q

tr
(

QT K̃K̃Q
)

s.t. QT X̃T
ψJX̃ψQ = QT K̃Q = J (15)

where K̃ = X̃∗
ψ X̃ψ is the centralized kernel matrix. The eigen-

decomposition of K̃ then yields the solution of the above as

K̃ = V�VT = V|�| 1
2 J|�| 1

2 VT (16)

where � is a diagonal matrix whose main diagonal consists
of p positive and q negative eigenvalues ( p + q ≤ N) in the
following order: first, positive eigenvalues with decreasing val-
ues, then negative ones with decreasing absolute values, and,
finally, zero values. Matrix |�| is the diagonal matrix contain-
ing the absolute values of the eigenvalues. The fundamental
symmetry, matrix J, is defined as in (4), and (p, q) is the
pseudo-Euclidian space’s signature. Consequently, we obtain
the optimal solution of (15) from Qo = Vp+q |�p+q |−(1/2)
and the optimal projection matrix from Uo = X̃ψVp+q

|�p+q |−(1/2), where �p+q contains the nonzero eigenvalues
and Vp+q denotes the corresponding eigenvectors.

Let y ∈ C
d be a new sample, and ý = ψ(y) ∈ K denotes

its mapping. Then, the part of ý which belongs to the positive
subspace R

p is given by

ý+ = |�p|− 1
2 VT

p MT X∗
ψψ(y)

= |�p|− 1
2 VT

p MT

⎡
⎣ 〈ψ(x1), ψ(y)〉K

· · ·
〈ψ(xN ), ψ(y)〉K

⎤
⎦

= |�p|− 1
2 VT

p MT

⎡
⎣ k(x1, y)

· · ·
k(xN , y)

⎤
⎦ (17)

where �p contains only the positive eigenvalues, and Vp

denotes the corresponding eigenvectors. Similarly, we can
compute the features ý− ∈R

q using

ý− = |�q |− 1
2 VT

q MT X∗
ψψ(y) (18)

where �q and Vq correspond to the negative eigenvalues.
Furthermore, we can verify that the inner product of x́, ý ∈ K
is equal to the kernel value as follows:

〈x́, ý〉K = x́∗ý = x́T Jý

= ψ(x)∗X̃ψV|�|− 1
2 J|�|− 1

2 VT X̃∗
ψψ(y)

= ψ(x)T JU∗UJψ(y) = ψ(x)T Jψ(y)

= 〈ψ(x), ψ(y)〉K = k(x, y). (19)

In order to establish a dimensionality reduction strategy,
we can start by expanding the objective function of the
optimization problem (14) as

tr
(
U∗SKU

) = tr
(

QT K̃K̃Q
)

= tr
(
|�|− 1

2 VT V�VT V�VT V|�|− 1
2

)

= tr (|�|) =
N∑

i=1

|λi |. (20)

As can be observed, the actual functional to be minimized
is based on the absolute eigenvalues |λi |. Hence, the dimen-
sionality reduction may be performed by removing the eigen-
vectors that correspond to the smallest in terms of magnitude
eigenvalues. The signature of the reduced Krein space is then
given by (p1, q1), with p1 ≤ p and q1 ≤ q .
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B. Direct KPCA in Krein Spaces

In this section, we capitalize on the properties of our kernel
in order to define a special version of KPCA in Krein spaces.
As we will see in the next section, the proposed KPCA does
not require the computation of preimages, and as such we call
it direct KPCA. We will then use our direct KPCA as a basis
for an exact incremental KPCA in Krein space.

Let Xψ = [ψ(x1) · · · ψ(xN )] be the matrix of N known
samples in K (for simplicity we assume zero mean). We
define matrix Xa = [a(x1) · · · a(xN )] and matrix Xb =
[b(x1) · · · b(xN ).].1 From the eigendecomposition of K =
X∗
ψXψ we get

X∗
ψXψ = XT

a Xb = Vψ�ψVT
ψ. (21)

The eigenspace of our KPCA is given by Uψ = XψVψ
|�ψ |−(1/2) and �ψ = |�ψ |(1/2) by (16). Let us define
Ua � XaVψ |�ψ |−(1/2) and Ub � XbVψ |�ψ |−(1/2). We
have Xa = Ua�ψVT

ψ and Xb = Ub�ψVT
ψ . Additionally, the

following properties hold:

U∗
ψψ(x) = |�ψ |− 1

2 VT
ψ

⎡
⎣ k(x1, x)

· · ·
k(xN , x)

⎤
⎦

= |�ψ |− 1
2 VT

ψ

⎡
⎣ a(x1)

T b(x)
· · ·

a(xN )
T b(x)

⎤
⎦

= |�ψ |− 1
2 VT

ψXT
a b(x) = UT

a b(x) (22)

UT
a b(x) = |�ψ |− 1

2 VT
ψ

⎡
⎣ a(x1)

T b(x)
· · ·

a(xN )
T b(x)

⎤
⎦

= |�ψ |− 1
2 VT

ψ

⎡
⎣ b(x1)

T a(x)
· · ·

b(xN )
T a(x)

⎤
⎦

= UT
b a(x) (23)

UT
a Ub = |�ψ |− 1

2 VT
ψXT

a XbVψ |�ψ |− 1
2

= |�ψ |− 1
2 VT

ψX∗
ψXψVψ |�ψ |− 1

2

= U∗
ψUψ = J. (24)

The procedures for computing the eigenspace Ua , Ub, and �ψ
are summarized in Algorithm 1.

C. Direct Incremental KPCA

We now show that the proposed direct KPCA in Krein
space does not require the computation of preimages (as
opposed to the KPCA proposed in [21]). We then capitalize on
this property and propose an exact incremental KPCA. More
specifically, we show that the computation of preimages is not
required for general kernels that satisfy (10).

Let Y = [xN+1 · · · xN+M ] ∈ C
d×M be a set of M

new observations for the incremental update of our KPCA.
Yψ = [ψ(xN+1) · · · ψ(xN+M )] is the data matrix in K.
Let us also define Ya = [a(xN+1) · · · a(xN+M )] and Yb =

1We should note here that, even though mappings a(.) and b(.) are known,
mapping ψ(.) is not known and neither can be explicitly defined, and
a(.) �= b(.).

Algorithm 1 Direct KPCA in Krein Space

Input: The set X = [ x1 · · · xN
] ∈ C

d×N of N samples, and
two explicit mappings, a : C

d → R
4d and b : C

d → R
4d ,

that satisfy (10).
Output: The eigenspace Ua , Ub and �ψ .
1: Compute Xa = [

a(x1) · · · a(xN )
]

and Xb =[
b(x1) · · · b(xN )

]
.

2: Find Vψ and �ψ via XT
a Xb = X∗

ψXψ = Vψ�ψVT
ψ .

3: Set Ua = XaVψ |�ψ |−(1/2), Ub = XbVψ |�ψ |−(1/2), �ψ =
|�ψ |(1/2).

4: Obtain p1+q1-reduced set of Ua and Ub by keeping p1+q1
largest eigenvalue magnitudes in �ψ .

[b(xN+1) · · · b(xN+M )]. Finally, we denote the combined
sample matrix by [Xψ Yψ ], where Xψ is the currently
available data in K. The combined matrix is equivalent to[

Uψ�ψVT
ψ UψU∗

ψYψ + QψRψ
]

(25)

where Hψ = Yψ − UψU∗
ψYψ is the complement to the Uψ

subspace, Qψ is an orthogonal matrix, and QψRψ = Hψ

is satisfied. We obtain Qψ = Hψ	|�|−(1/2) and Rψ =
|�|(1/2)	T by the eigendecomposition of H∗

ψHψ = 	�	T .
We define Ha � Ya − UaUT

b Ya and Hb � Yb − UbUT
a Yb,

and compute the eigendecomposition of HT
a Hb to avoid the

computation of the unknown projection of Yψ onto Uψ

HT
a Hb = (YT

a − YT
a UbUT

a )(Yb − UbUT
a Yb)

= (Yψ − UψU∗
ψYψ)∗(Yψ − UψU∗

ψYψ)

= H∗
ψHψ = 	�	T. (26)

The matrix in (25) can be rewritten as

[
Uψ Qψ

]
Lψ

[
VT
ψ 0

0 I

]
(27)

where Lψ =
[
�ψ U∗

ψYψ
0 Rψ

]
. The SVD of [Xψ Yψ ] is then

given by
[[

Uψ Qψ

]
Ũψ
] [
�̃ψ

] [
ṼT
ψ

[
VT
ψ 0

0 I

]]
(28)

where Lψ
svd= Ũψ�̃ψ ṼT

ψ (which matrix for indefinite kernels
may contain positive and negative eigenvalues). Thus, we only
need to compute the SVD of Lψ for the incremental update
of our eigenspace, U′

ψ = [Uψ Lψ ]Ũψ and �′
ψ = |�̃ψ |.

As Uψ and Hψ are not directly given by our KPCA, we
define Qa � Ha	|�|−(1/2) and Qb � Hb	|�|−(1/2), and
set U′

a = [Ua Qa] Ũψ , and U′
b = [Ub Qb] Ũψ . Note that

this choice satisfies (22)–(24). Algorithm 2 summarizes the
proposed incremental update. Because of our direct approach
to KPCA, the storage requirements for the incremental update
is of fixed complexity [e.g., O(2 ∗ 4d(p + q + M)) for our
kernel], and the complexity of the update is also fixed (e.g.,
in O(4d M2) for our kernel), similar to [6].

Summarizing, we have presented a general approach for
incremental KPCA with nonpositive definite kernels in Krein
space that can be described by two explicitly given mappings
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Algorithm 2 Incremental Update of DIKPCA
Input: The previous eigenspace Ua , Ub and �ψ , and number

of previous samples N , the set of M new samples Y =[
xN+1 · · · xN+M

] ∈ C
d×M and the two mappings a:

C
d → R

4d and b : C
d → R

4d , that satisfy (10).
Output: The updated eigenspace U′

a , U′
b, and �′

ψ .
1: Calculate the mappings, Ya and Yb, of Y.
2: Find Ha = Ya − UaUT

b Ya and Hb = Yb − UbUT
a Yb.

3: Compute HT
a Hb = H∗

ψHψ = 	�	T and set Rψ =
|�| 1

2	T , Qa = Ha	|�|− 1
2 and Qb = Hb	|�|− 1

2 .
4: Form Lψ =

[ |�ψ | UT
b Ya

0 Rψ

]
and compute Lψ

svd= Ũψ�̃ψ ṼT
ψ .

5: Set U′
a = [ Ua Qa ] Ũψ , U′

b = [Ub Qb
]

Ũψ and �′
ψ = �̃ψ .

6: Obtain p1+q1-reduced set of Ua and Ub via p1+q1 largest
eigenvalue magnitudes in |�′

ψ |.

a(.) and b(.) such that (10) holds. We coin our approach
direct incremental KPCA (DIKPCA). DIKPCA allows the fast
update of the eigenspace. In contrast to the incremental version
of KPCA proposed in [21], which deals with positive definite
kernels, our approach uses a class of special indefinite kernels,
which renders finding preimages unnecessary. Therefore, our
method is not only faster but also exact.

IV. VISUAL TRACKING

We use our robust and efficient online learning frame-
work for visual tracking. In particular, we combine our
appearance model with a motion affine transformation in a
particle filter framework, in a similar fashion to [6], [21],
and [38].

Generally, a particle filter calculates the posterior of a
system’s states based on a transition model and an observation
model. In our tracking framework, the transition model is
described as a Gaussian mixture model around an approx-
imation of the state posterior distribution of the previous
time step

p
(

Ai
t |A1:P

t−1

)
=

P∑
i=1

wi
t−1N

(
At ; Ai

t−1,

)

(29)

where Ai
t is the affine transformation of particle i at time t ,

A1:P
t−1 is the set of P transformations of the previous time step

whose weights are denoted by w1:P
t−1, and 
 is an independent

covariance matrix. In the first phase, P particles are drawn
from (29). In the second phase, the observation model is
applied to estimate the weighting for the next iteration (the
weights are normalized to ensure

∑P
i=1 w

i
t = 1). Furthermore,

the most probable sample is selected as the state Abest
t at

time t . Thus, the estimation of the posterior distribution is
an incremental process and utilizes a hidden Markov model
which only relies on the previous time step.

Our observation model computes the probability of a sample
being generated by the learned eigenspace in the appearance
model. We also assume the probability of the observation
in Krein space, given the tracking parameters at t , to be

Algorithm 3 DIKT at Time t
Input: The previous eigenspace Uat−1 , Ubt−1 , �ψt−1 , locations

A1:P
t−1, weights w1:P

t−1, image frame It ∈ [0, 1] and the
explicit mappings a(.) and b(.) of the kernel.

1: Draw P particles A1:P
t from p(Ai

t |A1:P
t−1) as in (29).

2: Take all image patches from It which correspond to par-
ticles A1:P

t , compute their gradients G1:P and order them
lexicographically to form vectors y1:P

t .
3: Compute the probability of each particle p(ψ(yi

t )|Ai
t ) as

(30) and extract the weights w1:P
t .

4: Choose Abest
t and ybest

t as the affine transform and features
of the particle with the largest weight.

5: Using ybest
t update subspace by applying Algorithm 2

in a batch after a certain number of frames (5 in our
implementation).

analogous to an exponential as

p(ψ(yi
t )|Ai

t ) ∝ e−γ |(ψ(yi
t )−UψU∗

ψψ(y
i
t ))

∗(ψ(yi
t )−UψU∗

ψψ(y
i
t ))|

= e−γ |(a(yi
t )

T−a(yi
t )

T UbUT
a )(b(y

i
t )−UbUT

a b(yi
t ))| (30)

where yi
t is the observation vector at time t of location Ai

t
and γ is the parameter that controls the spread. Note: the
distribution can be calculated via a(.), b(.), Ua , and Ub to
avoid the unknown subspace Uψ . Algorithm 3 describes the
proposed visual tracking framework, which we coin direct
incremental KPCA tracker (DIKT).

V. RESULTS AND DISCUSSION

We pursue our evaluation in two stages. First, we test the
performance of DIKT against other state-of-the-art holistic
online tracking algorithms. Second, we evaluate the general
robustness of our KPCA framework DKPCA with our kernel,
and compare it to standard PCA and KPCA in Hilber space
with a Gaussian RBF kernel.

A. Object Tracking

In this section, we present performance evaluation results
of the proposed DIKT. We also compare the performance of
our method with that of four other state-of-the-art tracking
approaches.

1) IVT [6], the MATLAB implementation of which is pub-
licly available at http://www.cs.toronto.edu/~dross/ivt/.

2) IKPCA [21], the MATLAB implementation of the
IKPCA was kindly provided by the authors of this paper.

3) L1 tracker proposed in [34], the implementation
of which is publicly available at http://www.ist.
temple.edu/~hbling/code_data.htm.

4) MIL tracker [45], the implementation of which (only
for translation motion model) is publicly available at
http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml
and which we carefully modified it in order to support
an affine motion model in a particle filter framework.

We evaluate the performance of all methods on nine very
popular video sequences, Vi , i = 1, . . . , 9 (subsets of which
are used in [6], [34], and [45]–[47]). The videos contain
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drastic changes of the target’s appearance, including pose
variation, occlusions, and nonuniform illumination. Repre-
sentative frames of the video sequences are illustrated in
Fig. 1, while the videos of the tracking results can be
found at http://www.doc.ic.ac.uk/~sl609/dikt/. We use videos
V1 − V5 to illustrate performance for the application of face
tracking. Tracking of vehicles is assessed using V6 and
V7. Finally, other objects are tracked in V8 and V9.
Videos V4 and V5 are available at http://vision.ucsd.edu/~
bbabenko/project_miltrack.shtml and the remaining videos are
published at http://www.cs.toronto.edu/~dross/ivt/.

Video V1 is provided along with seven annotated points
which indicate the ground truth. We also annotate 3–7 fiducial
points for the remaining sequences. As usual, our quantitative
performance evaluation is based on the root mean square
(RMS) errors between the true and the estimated locations
of these points [6]. Similar to [45], we additionally present
precision plots that visualize the quality of the tracking.
Such graphs show the percentage of frames in which the
target was tracked with an RMS error less than a certain
threshold.

In our experiments, all trackers use an affine motion model
with a fixed number of drawn particles (800 particles). In the
following, we present the results obtained for two versions of
our experimental settings. In the first version, we attempt to
optimize the performance of all trackers using video-specific
parameters. That is, for each tracker and video, we found
the parameters that gave the best performance in terms of
robustness (i.e., how many times the tracker went completely
off) and accuracy (measured by the RMS error). In the second
and most interesting version, we present results by keeping
the parameters of each tracker fixed for all videos. Again, we
use the parameters that gave the best performance in terms of
robustness and accuracy.

1) Tracking With Video-Specific Parameters: We denote by
DIKT-specific, IVT-specific, IKPCA-specific, L1-specific, and
MIL-specific the video-specific versions of the trackers. The
optimization criterion was the minimization of the RMS error
between the true and the estimated location of the points. Apart
from the L1-specific tracker (for which the resolution of the
template increases geometrically the complexity), the tracking
template was chosen to be of resolution of 32 × 32. For all
trackers, we optimized with respect to (wrt) the variance of
the Gaussian from which we sample the particles. Expect for
the variance of the Gaussian, which is common for all the
systems, we optimize.

1) For DIKT-specific, IVT-specific, and IKPCA-specific
wrt the number of components (which ranged between
16 and 18) and the variance of the exponential that
models the probability of a sample being generated
by the learned subspace. For IKPCA-specific we also
optimized wrt the radius of the GRBF function.

2) For L1-specific wrt the number of templates and the res-
olution of the template (actually, the tracking becomes
impractical when choosing templates of resolution more
than 20 × 20).

3) For MIL-specific wrt the parameters mentioned in [45]
(i.e., the number of positives in each frame, the number

TABLE I

MEAN RMS ERROR FOR VIDEO-SPECIFIC TRACKING.

“(LOST)” INDICATES SEQUENCES IN WHICH THE TRACKER

CLEARLY DOES NOT FOLLOW THE TARGET THROUGHOUT

V1 V2 V3 V4 V5 V6 V7 V8 V9
IVT-specific 6.82 (Lost) 4.07 10.79 (Lost) 3.31 1.78 2.62 (Lost)

IKPCA-specific (Lost) (Lost) (Lost) (Lost) (Lost) (Lost) (Lost) (Lost) (Lost)
L1-specific 6.17 (Lost) 2.87 11.10 12.68 9.53 1.62 13.58 (Lost)

MIL-specific 16.95 (Lost) 13.61 14.62 37.56 12.73 4.14 23.87 17.62
DIKT-specific 4.48 2.27 2.49 5.62 11.28 3.40 1.80 1.96 5.90

TABLE II

MEAN RMS ERROR FOR GENERAL TRACKING. “(LOST)” INDICATES

SEQUENCES IN WHICH THE TRACKER CLEARLY DOES NOT FOLLOW THE

TARGET THROUGHOUT

V1 V2 V3 V4 V5 V6 V7 V8 V9

IVT 8.13 (Lost) 4.13 13.14 (Lost) 27.79 2.02 24.48 (Lost)

IKPCA (Lost) (Lost) (Lost) (Lost) (Lost) (Lost) (Lost) (Lost) (Lost)

L1 (Lost) (Lost) 2.87 (Lost) 12.94 (Lost) 1.67 39.15 (Lost)

MIL 51.36 (Lost) 13.61 17.78 38.19 (Lost) 4.14 40.80 (Lost)

DIKT 4.81 2.43 2.49 (Lost) (Lost) 3.51 2.15 2.26 (Lost)

that controls the sampling of negative examples, the
learning rate for the weak classifiers, etc).

The tracking rates for the tested systems on a desktop
running an Intel Core i7 870 at 2.93 GHz with 8 GB of RAM
and MATLAB 64 are as follows: for IVT 4 frames/s, for DIKT
3 frames/s, for IKPCA 0.7–1 frame/s, for MIL 0.25 frames/s,
and for L1 less than 0.1 frames/s.

For these versions of the trackers, Table I lists the mean
RMS error for all sequences, while Fig. 2 plots the RMS
error as a function of the frame number. Fig. 3 shows
the accuracy in terms of precision plots. Qualitative track-
ing results for all methods are shown in Fig. 1. Finally,
videos and sample code for DIKT may be found at http://
www.doc.ic.ac.uk/~sl609/dikt/.

In general, DIKT-specific outperforms all other trackers
in terms of robustness, accuracy, and precision. In terms of
robustness, DIKT-specific successfully follows the target for
all sequences, including V2, where all other trackers fail. In
terms of RMS error, DIKT-specific achieves by far the best
results for all videos with the exception of video V7, where
it is slightly outperformed by IVT-specific and L1-specific.
While MIL-specific appears to be robust (it loses the target
for one video sequence only), it is generally not as precise
as the other trackers. Clearly, IKPCA is inferior to the other
trackers. We believe that this performance degradation is
induced by the search for preimages, which accumulates
errors and eventually makes the tracker go off in prolonged
and challenging video sequences.

2) Tracking With Fixed Parameters: We denote by DIKT,
IVT, IKPCA, L1, and MIL the versions of the trackers that use
fixed parameters for all videos. The parameters were optimized
in two videos we recorded, which are not included in the test
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Fig. 1. Example frames of the tracking with video-specific parameters for V1–V9 (top to bottom). The results of DIKT-specific (©) versus IVT-specific (�),
IKPCA-specific (♦), L1-specific (�), and MIL-specific (�) are shown. The ground truth is indicated by ×. The tracked area of DIKT-specific is visualized
by a magenta bounding box.

set. The number of components for DIKT and IVT was set
to 16, and the resolution for all trackers except for L1 was
set to 32 × 32. For all the test videos, we list the mean RMS
errors in Table II, while Figs. 4 and 5 illustrate the accuracy
and precision of all trackers. The video results can be found
at http://www.doc.ic.ac.uk/~sl609/dikt/.

Compared to the performance of all other trackers, that
of DIKT appears to be significantly less affected by video-
specific parameter fine-tuning. In terms of robustness, DIKT
is still among the most robust trackers, because in six out of

nine videos the target was successfully tracked. In terms of
accuracy and precision, DIKT appears to be the only tracker
that performs almost equally well to its video-specific version
(DIKT-specific).

B. Face Recognition

In this section, we evaluate the performance of DKPCA for
face recognition with illumination changes and pose variations
(as the number of training sample is small, we apply the batch
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Fig. 2. RMS error for each frame of the tuned DIKT-specific against IVT-specific, IKPCA-specific, L1-specific, and MIL-specific for V1–V9 (left to right,
top to bottom). There is no RMS error during complete occlusions.
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Fig. 3. Frame precision plots (showing the percentage of frames in which the target was tracked with an RMS error less than a certain threshold) for the
tuned DIKT-specific against IVT-specific, IKPCA-specific, L1-specific, and MIL-specific for V1–V9 (left to right, top to bottom).

version of our method as seen in Algorithm 1). We compare
the results to standard PCA and KPCA with a Gaussian RBF
kernel. We optimize the Gaussian RBF kernel’s deviation for
each experiment.

1) Extended Yale B Database: The extended Yale B data-
base [48] contains 16 128 images of 38 subjects under
9 poses and 64 illumination conditions. We use a subset

that consists of 64 near-frontal images for each subject.
For training, we randomly select a subset with 5, 10, or
20 images per subject. For testing, we utilize the remaining
images. Finally, we perform 20 different random realizations
of the training/test sets. Table III shows the average recognition
rate of the tested methods. DKPCA performs best for all
setups.
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Fig. 4. RMS error for each frame of DIKT against IVT, IKPCA, L1, and MIL for V1 − V9 (left to right, top to bottom). There is no RMS error during
complete occlusions.
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Fig. 5. Frame precision plots (showing the percentage of frames in which the target was tracked with an RMS error less than a certain threshold) for DIKT
against IVT, IKPCA, L1, and MIL for V1–V9 (left to right, top to bottom).

Furthermore, we train each method with the same random
selection of three classes, each class with the same five random
training images. After computing the subspace of each algo-
rithm (linear PCA, KPCA with Gaussian RBF kernel, and the
proposed DKPCA), we project the samples of the test set onto
it (the deviation of the RBF kernel was set to the one that gave

the best performance in the recognition experiment). Fig. 6
plots the features corresponding to the two largest eigenvalues
along with some ellipsis which describes the distribution of
each facial class. Standard PCA and KPCA with Gaussian
RBF cluster the training data poorly. Our DKPCA is more
successful in separating the classes.
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Fig. 6. Test data, as projected by the learned subspaces of PCA, Gaussian RBF, and DKPCA (left to right). We train with three randomly selected classes
(i.e., subjects) in the usual manner (trained on five). We then plot the corresponding projections of the test samples.

TABLE III

AVERAGE RECOGNITION RATE WITH YALE DATABASE

Trained on 5 Trained on 10 Trained on 20

PCA 31.1% 45.2% 59.3%
Gaussian RBF 31.6% 45.5% 59.4%

DKPCA 62.1% 77.7% 88.4%

TABLE IV

AVERAGE RECOGNITION RATE WITH CMU PIE DATABASE

Trained on 5 Trained on 10

PCA 26.1% 39.1%
Gaussian RBF 26.1% 39.1%

DKPCA 52.3% 69.4%

The enhanced class-separability achieved by the proposed
method can be explained by the metric multidimensional
scaling (MMS) perspective of PCA, which can be pro-
vided through [49] and [50]. Under this perspective, stan-
dard �2 PCA finds the optimal linear projections that best
preserve the �2 distances. As is well known, these dis-
tances can be arbitrarily biased by the presence of outliers
(the same holds for KPCA with Gaussian RBF kernels).
Therefore, in the presence of outliers, PCA and KPCA with
Gaussian RBF are not suitable for providing a consistent
way of measuring distances in a facial class. On the other
hand, under the MMS perspective, the proposed DKPCA finds
the optimal linear projections that best preserve the proposed
robust distance. And because, as we argue in our paper, this
distance is robust to outliers, the proposed DKPCA provides
a more consistent way of representing the samples in a facial
class.

2) CMU PIE Database: Our final tests are conducted
with the CMU PIE database [51]. The dataset consists of
more than 41 000 face images of 68 subjects. The data-
base contains faces under varying pose, illumination, and
expression. We use the near frontal poses (C05, C07, C09,
C27, and C29) and a total of 170 images for each sub-
ject. For training, we randomly selected a subset with
5 or 10 images per subject. For testing, we utilize the
remaining images. Finally, we perform 20 different random

realizations of the training and test sets. The results are shown
in Table IV.

VI. CONCLUSION

We proposed a robust online kernel learning framework
for efficient visual tracking. We used a nonlinear appearance
model learned via KPCA and a robust gradient-based kernel.
As this kernel is not semipositive definite, we showed how to
extend the KPCA formulation into Krein spaces. Finally, we
showed that our kernel has a very special form which enables
us to formulate a direct version of KPCA in Krein space and
does not require the calculation of preimages. Based on this
property, we then proposed an efficient and exact incremental
KPCA. By combining our appearance model with a particle
filter, the proposed tracking framework achieved state-of-the-
art performance in many popular difficult tracking scenarios.
We showed further applications of our kernel framework
by testing on face recognition, for which we improve upon
�2-norm PCA and KPCA in Hilbert space with a Gaussian
RBF kernel.

In future work, we intend to apply our kernel framework to
other applications which would benefit from its robustness. In
relation to tracking, we plan to investigate the influence of the
forgetting factor to our incremental KPCA in Krein space.

APPENDIX

KERNEL PROPERTIES

Let kernel k : C
d × C

d → R be the kernel from (7) and
xi , x j ∈ C

d are two samples.

Lemma 1:
∑d

c=1 R(c) ≤ √
d
√∑d

c=1 R2(c).
Proof: We show for any d-dimensional R ∈ R

+

d∑
c=1

R(c) ≤ √
d

√√√√ d∑
c=1

R2(c)

⇔
d∑

c=1

R(c)
d∑

c=1

R(c) ≤ d
d∑

c=1

R2(c)

⇔
d∑

c=1

R2(c)+ 2
d−1∑
c=1

d∑
e=c+1

R(c)R(e)
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≤
d∑

c=1

R2(c)+
d∑

c=1

R2(c)(d − 1)

⇔ 0 ≤
d∑

c=1

R2(c)(d − 1)− 2
d−1∑
c=1

d∑
e=c+1

R(c)R(e)

=
d−1∑
c=1

d∑
e=c+1

(R(c)− R(e))2. (31)

Remark 1: |k(xi , x j )| ≤ 1.
Proof: With Lemma 1, the following holds:

|k(xi , x j )| =

∣∣∣∣∣∣∣∣∣

d∑
c=1

Ri (c) cos(�θ(c))

2
√∑d

c=1 R2
i (c)d

+

d∑
c=1

R j (c) cos(�θ(c))

2
√∑d

c=1 R2
j (c)d

∣∣∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣

d∑
c=1

Ri (c) cos(�θ(c))

2
√∑d

c=1 R2
i (c)d

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

d∑
c=1

R j (c) cos(�θ(c))

2
√∑d

c=1 R2
j (c)d

∣∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣
∑d

c=1 Ri (c)

2
√∑d

c=1 R2
i (c)d

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑d

c=1 R j (c)

2
√∑d

c=1 R2
j (c)d

∣∣∣∣∣∣
≤

√
d

2
√

d
+

√
d

2
√

d
= 1. (32)

Remark 2: l2(xi , x j ) ≥ 0.
Proof: The distance is denoted by l2 : C

d × C
d → R

l2(xi , x j ) = k(xi , xi )− 2k(xi , x j )+ k(x j , x j )

= 2
∑d

c=1 Ri (c)

2
√∑d

c=1 R2
i (c)d

− 2

⎛
⎝
∑d

c=1 Ri (c) cos(�θ(c))

2
√∑d

c=1 R2
i (c)d

+
∑d

c=1 R j (c) cos(�θ(c))

2
√∑d

c=1 R2
j (c)d

⎞
⎠+ 2

∑d
c=1 R j (c)

2
√∑d

c=1 R2
j (c)d

≥
∑d

c=1 Ri (c)√∑d
c=1 R2

i (c)d
−

∑d
c=1 Ri (c)√∑d
c=1 R2

i (c)d

−
∑d

c=1 R j (c)√∑d
c=1 R2

j (c)d
+

∑d
c=1 R j (c)√∑d
c=1 R2

j (c)d
= 0. (33)
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