2006.13026v1 [cs.LG] 20 Jun 2020

arxXiv

Deep Polynomial Neural Networks

Grigorios G. Chrysos,
Jiankang Deng,

Stylianos Moschoglou,
Yannis Panagakis,

Giorgos Bouritsas,
Stefanos Zafeiriou

Abstract—Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for
discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their
building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose
TI-Nets, a new class of DCNNs. II-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. The
unknown parameters, which are naturally represented by high-order tensors, are estimated through a collective tensor factorization with
factors sharing. We introduce three tensor decompositions that significantly reduce the number of parameters and show how they can be
efficiently implemented by hierarchical neural networks. We empirically demonstrate that I1-Nets are very expressive and they even
produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and
audio. When used in conjunction with activation functions, IT-Nets produce state-of-the-art results in three challenging tasks, i.e. image

generation, face verification and 3D mesh representation learning.

Index Terms—Polynomial neural networks, tensor decompositions, high-order polynomials, generative models, discriminative models,

face verification

1 INTRODUCTION

Deep Convolutional Neural Networks (DCNNs) [1], [2] have
demonstrated impressive results in a number of tasks the last few
years [2], [3], [4]. Arguably, the careful selection of architectural
pipelines, e.g. skip connections [5], normalization schemes [6] etc.,
is significant, however the core structure relies on compositional
functions of linear and nonlinear operators. Both theoretical [7], [&]
and empirical studies reveal the limitations of the existing structure.

Recent empirical [9] and theoretical [10] results support that
multiplicative interactions expand the classes of functions that can
be approximated. Motivated by these findings, we study a new
class of function approximators, which we coin II—nets, where
the output is a polynomial function of the input. Specifically, we
model a vector-valued function G(2) : RY — R by a high-order
multivariate polynomial of the input 2, whose unknown parameters
are naturally represented by high-order tensors. The number of
parameters required to accommodate all higher-order correlations
of the input explodes with the desired order of the polynomial. To
that end, we cast polynomial parameters estimation as a coupled
tensor factorization [1] that jointly factorizes all the polynomial
parameters tensors. We introduce three joint decompositions with
shared factors and exhibit the resulting hierarchical structures (i.e.,
architectures of neural networks).

In our preliminary works [12], [13], we introduced the concept
of higher-order expansions for both generative and discriminative
networks. In this work, our improvements are threefold. The con-
cepts and the motivation behind each model are elaborated; the new
intuitions will enable practitioners to devise new models tailored to
their specific tasks. In addition, we extend the experimental results,
e.g. include experiment in the challenging task of face verification
and identification. Lastly, we conduct a thorough discussion on

e GC, SM, GB, JD, SZ are with the Department of Computing, Imperial
College London, SW7 2AZ, UK. YP is with the Department of Informatics
and Telecommunications , University of Athens, GR.

Corresponding author’s e-mail: g.chrysos@imperial.ac.uk

II-net V1

II-net V2

|
Fig. 1: In this paper we introduce a class of networks called II—nets,
where the output is a polynomial of the input. The input in this case,
z, can be either the latent space of Generative Adversarial Network
for a generative task or an image in the case of a discriminative task.
Our polynomial networks can be easily implemented.

several challenging topics that require further work on this new
class of neural networks.
In particular, the paper bears the following contributions:

o A new family of neural networks (called II—nets) where the
output is a high-order polynomial of the input is introduced.
To avoid the combinatorial explosion in the number of
parameters of polynomial activation functions [14], our
II—nets cast polynomial parameters estimation as a coupled
tensor factorization with shared factors (please see Fig. 1
for an indicative schematic representation).

o The proposed architectures are applied in a) generative
models such as GANSs, and b) discriminative networks.
Additionally, the polynomial architectures are used to
learn high-dimensional distributions without non-linear
activation functions.

« We convert state-of-the-art baselines using the proposed

II—nets and show how they can largely improve the
expressivity of the baseline. We demonstrate it conclusively
in a battery of tasks (i.e., generation, classification and face
verification/identification). Our architectures are applicable
to many different signals (e.g. images, meshes, and audio)
and outperform the prior art.

The rest of the paper is organized as follows: Sec. 2 summarizes
the related work. In Sec. 3 we introduce the polynomial networks
and showcase the resulting architectures for three decompositions.
Experiments with generative and discriminative models without
using activation functions are conducted in Sec. 4, while the bulk
of the experiments is conducted in Sec. 5. The existing limitations
and future directions of the polynomial networks are discussed in
Sec. 6, while Sec. 7 concludes the paper.

2 RELATED WORK

Expressivity of (deep) neural networks: The last few years,
(deep) neural networks have been applied to a wide range of
applications with impressive results. The performance boost can be
attributed to a host of factors including: a) the availability of mas-
sive datasets [15], [16], b) the machine learning libraries [17], [18]
running on massively parallel hardware, c¢) training improvements.
The training improvements include a) optimizer improvement [19],
[20], b) augmented capacity of the network [21], c¢) regularization
tricks [0], [22], [23], [24]. However, the paradigm for each layer
remains largely unchanged for several decades: each layer is
composed of a linear transformation and an element-wise activation
function. Despite the variety of linear transformations [1], [2], [25]
and activation functions [26], [27] being used, the effort to extend
this paradigm has not drawn much attention to date.

Recently, hierarchical models have exhibited stellar perfor-
mance in learning expressive generative models [9], [28], [29].
For instance, the recent BigGAN [28] performs a hierarchical
composition through skip connections from the noise z to mul-
tiple resolutions of the generator. A similar idea emerged in
StyleGAN [9], which is an improvement over the Progressive
Growing of GANs (ProGAN) [30]. As ProGAN, StyleGAN is
a highly-engineered network that achieves compelling results on
synthesized 2D images. In order to provide an explanation on
the improvements of StyleGAN over ProGAN, the authors adopt
arguments from the style transfer literature [31]. We believe that
these improvements can be better explained under the light of
our proposed polynomial function approximation. Despite the
hierarchical composition proposed in these works, we present
an intuitive and mathematically elaborate method to achieve a
more precise approximation with a polynomial expansion. We also
demonstrate that such a polynomial expansion can be used in both
image generation (as in [9], [28]), image classification, and graph
representation learning.

Polynomial networks: Polynomial relationships have been in-
vestigated in two specific categories of networks: a) self-organizing
networks with hard-coded feature selection, b) pi-sigma networks.

The idea of learnable polynomial features can be traced back
to Group Method of Data Handling (GMDH) [32]'. GMDH learns
partial descriptors that capture quadratic correlations between two
predefined input elements. In [34], more input elements are allowed,
while higher-order polynomials are used. The input to each partial
descriptor is predefined (subset of the input elements), which

1. This is often referred to as the first deep neural network [33].

2

does not allow the method to scale to high-dimensional data with
complex correlations.

Shin et al. [35] introduce the pi-sigma network, which is
a neural network with a single hidden layer. Multiple affine
transformations of the data are learned; a product unit multiplies
all the features to obtain the output. Improvements in the pi-sigma
network include regularization for training in [36] or using multiple
product units to obtain the output in [37]. The pi-sigma network is
extended in sigma-pi-sigma neural network (SPSNN) [38]. The idea
of SPSNN relies on summing different pi-sigma networks to obtain
each output. SPSNN also uses a predefined basis (overlapping
rectangular pulses) on each pi-sigma sub-network to filter the
input features. Even though such networks use polynomial features
or products, they do not scale well in high-dimensional signals.
In addition, their experimental evaluation is conducted only on
signals with known ground-truth distributions (and with up to 3
dimensional input/output), unlike the modern generative models
where only a finite number of samples from high-dimensional
ground-truth distributions is available.

Another instance of such polynomial networks is through mul-
tiplicative interactions. Recently, there is a surge of methods [39],
[40], [41] reporting superior performance through multiplicative
interactions. The work of [10] provides a theoretical understanding
on why such connections might be beneficial. The aforementioned
works model interactions of second or third order. Polynomial
networks can be seen as high-order generalizations of such
multiplicative interactions [10], [39], [40].

3 METHOD

Notation’: Tensors are symbolized by calligraphic letters, e.g.,
X, while matrices (vectors) are denoted by uppercase (lowercase)
boldface letters e.g., X, (x). The mode-m vector product of X
with a vector u € R’ is denoted by X x,,, u. A core tool in our
analysis is the CP decomposition [42]. By considering the mode-1
unfolding of an M th_order tensor X, the CP decomposition can bjg

written in matrix form as [42]: X 1) = Upy <®12n_M U[m]>

where {UJ,, }2_, are the factor matrices.

We want to learn a function approximator where each element
of the output z;, with j € [1, 0], is expressed as a polynomial® of
all the input elements z;, with 4 € [1, d]. That is, we want to learn
a function G : R? — R of order N € N, such that:

T
z; = G(z); :ﬁj-i-wj[-l] z+zTWj[2]z+
5 Ll (1

Wg.]xlzx2z><3z+---+W£-] | | X pZ

n=1

where 3; € R, and {Wgn] e RlITn= de}:;l are parameters
for approximating the output x;. The correlations (of the input
elements z;) up to IV th order emerge in (1). A more compact
expression of (1) is obtained by vectorizing the outputs:

N n+1
T=Gz)=) (w["] I1 sz) +p)
n=1 j=2

2. A detailed tensor notation is deferred to the supplementary.

3. The theorem of [43] guarantees that any smooth function can be
approximated by a polynomial. The approximation of multivariate functions is
covered by an extension of the Weierstrass theorem, e.g., in [44] (pg 19).

TABLE 1: Nomenclature

TABLE 2: Single polynomial

| Symbol | Dimension(s) | Definition | models (Sec. 3.1)
n, N N Polynomial term order, total approximation order. - -
% N Rank of the decompositions. | Name | Schematic | Recursive eq. |
z R Input to the polynomial approximator. CCP Fig. 2 %)
C,B Ro*k RO Parameters in all decompositions. NCP Fig. 3 (7)
S Rk RExk RwXk | Matrix parameters in the hierarchical decomposition. NCP-Skip Fig. 4 ®)

Aln]> Stn)» Bin
7*

- Khatri-Rao product, Hadamard product.

where 3 € R° and {W[n] e ROl de}:]:l are the
learnable parameters. This form of (2) allows us to approximate
any smooth function (for large V), however the parameters grow
with O(d™).

A variety of methods, such as pruning [
linear operators [47] with reduced parameters, parameter shar-
ing/prediction [48], [49], can be employed to reduce the parameters.
The aforementioned approaches are post-processing techniques,
i.e., given a (pre-trained) network, they reduce the parameters
of the specific network. Instead, we design two principled ways
which allow an efficient implementation. The first method relies
on performing an off-the-shelf tensor decomposition on (2), while
the second considers the final polynomial as the product of lower-
degree polynomials.

], [46], special

3.1

A tensor decomposition on the parameters is a natural way to reduce
the parameters and to implement (2) with a neural network. Below,
we demonstrate how three such decompositions result in novel
architectures for a neural network training. The main symbols are
summarized in Table 1, while the equivalence between the recursive
relationship and the polynomial is analyzed in the supplementary.

Single polynomial

Model 1: CCP (Coupled CP decomposition)

Instead of factorizing each parameter tensor win individually
we propose to jointly factorize all the parameter tensors using a
coupled CP decomposition [42] with a specific pattern of factor
sharing. To illustrate the factorization, we assume a third order
approximation (N = 3), and then provide the recursive relationship
that can scale to arbitrary expansion.

Let us assume that the parameter tensors admit the following
coupled CP decomposition with the factors corresponding to lower-
order levels of approximation being shared across all parameters
tensors. That is:

o« Let W = CUE], be the parameters for first level of
approximation.

« Let WU being a superposition of of two weights
tensors, namely W2l — WEQ]Q + WEZ% with W?j]
denoting parameters associated with the second order
interactions across the i*" and j** order of approxima-
tion. By enforcing the CP decomposition of the above
tensors to share the factor with tensors corresponding to
lower-order of approximation we obtain in matrix form:
W([12)] = C(U[3] ® U[l])T + C(U[g] © U[l])T.

o Similarly, we enforce the third-order parameters tensor to
admit the following CP decomposition (in matrix form)
W([lg)] = C(U[3] ® U[Q] ® U[l])T Note that all but the

U[3] factor matrices are shared in the factorization of

tensors capturing polynomial parameters for the first and

second order of approximation.

The parameters are C € RO**, U € Rk form = 1,2, 3.
Then, (2) for N = 3 is written as:

T
G(z) =B+ CUL 1z + C’(U[g] o U[l]) (20 2)+

T
C(UpoUn) (z02)+ 3)

T
C(U[s] OUp © U[1]> (z0z0z2)

Using the Lemma 1 (provided in the supplementary), we can
transform the (3) into a neural network as depicted in Fig. 2.

The CCP factorization generalizes to N th order expansion. The
recursive relationship for the N*" order approximation is:

T, = (U[E]Z> £ Tp_1 + Ty 0))

forn = 2,...,N with z; = U[:q]z and x = Cxy + 8. The
parameters C' € ROXk,U[n] e R™* form = 1,...,N are

learnable.

Fig. 2: Schematic illustration of the CCP (for third order approxima-
tion). Symbol * refers to the Hadamard product.

Model 2: NCP (Nested coupled CP decomposition)

Instead of explicitly separating the interactions between layers,
we can utilize a joint hierarchical decomposition on the polynomial
parameters. Let us first introduce learnable hyper-parameters

NV . .
{b[n] eR }n=1, which act as scaling factors for each parameter
tensor. Therefore, we modify (2) to:

N n+2
G(z)=). <W[n1 x2 by in | | sz> +8, O
n=1 Jj=3

with {W"] € Rox<xITs xmd} Y Similarly to CCP, we
demonstrate the decomposition assuming a third order approxima-
tion (/N = 3), and then provide the general recursive relationship.
To estimate the parameters (in N = 3 expansion) we
jointly factorize all parameter tensors by employing nested CP
decomposition with parameter sharing as follows (in matrix form):

o First order parameters : W([ll)] = C(A[3] ©) B[3])T-

« Second order parameters:

T
2
Wi = C{ABJ © [(A[z] ®B[2])5[3]]} :

o Third order parameters:

Wil = C{A[B] © [(A[z] © {(Am ©

B[l])sm})sm] }T

with C € ROXk,A[n] € Rka,S[n] € Rka,B[n] € Rwxk
forn =1,..., N. Altogether, (5) for N = 3 is written as:

G(Z) =08+ C(A[g] ® B[3])T(z ® b[g])+

C{A[g] © [(A[z] ®B[2])5[3]] }T(Z ©z0 b[2])+ (©)

C{A[S] © [(Am © { (A[l] © B[u) Sie] }) 5[3]] }Tﬂ

with pp = (z Oz0z0O b[l]). Using Lemmal and further
algebraic operations (see Sec. 3.2 in the supplementary), (6) can
be implemented by a neural network as depicted in Fig. 3.

The recursive relationship for N** order approximation is
defined as:

T, = (A[Tn]z) " (S[Tn]mn_l + B[Tn]b[n]) 7
forn =2,...,N with x; = (Aa]z) * (B[ji]b[l]) and £ =

Cxzy + (3. The parameters C € ROF Ap,; € Rk) €
RFxE B, € Rk, by, e R¥ form = 1,..., N, are learnable.

Fig. 3: Schematic illustration of the NCP (for third order approxima-
tion). Symbol * refers to the Hadamard product.

Model 3: NCP-Skip (Nested coupled CP decomposition with
skip)

The expressiveness of NCP can be further extended using a
skip connection (motivated by CCP). The new model uses a nested
coupled decomposition and has the following recursive expression:

€, = (A[Tn]z) * (S[Tn]:vnfl + B[Q;L]b[n]) +x, 1 (B

forn = 2,...,N with z; = (Aa]z) * (B[jl]b[l]) and
x = Cxy + 3. The learnable parameters are the same as in NCP,
however the difference in the recursive form results in a different
polynomial expansion and thus architecture.

Comparison between the models

All three models (see Table 2 for names and schematics) are
based on a polynomial expansion, however their recursive forms
and employed decompositions differ.

CCP is a straightforward coupled decomposition and is a
proof of concept that polynomials can learn high-dimensional
distributions. NCP illustrates how to convert a popular CNN/linear
model of the form x; = S[j;c]sck_l + by to a polynomial

(e, zp = (Afy2) * (Sfy@r—1 + biy)). Similarly, NCP-Skip

Fig. 4: Schematic illustration of the NCP-Skip (for third order
approximation). The difference from Fig. 3 is the skip connections
added in this model.

demonstrates how a residual network can be transformed into a
polynomial. In Sec. 4.2, an experimental comparison is conducted;
all three models are assessed on image generation. In the remainder
of the paper, for comparison purposes we use the NCP by default
for the image generation and NCP-Skip for the image classification.
In all cases, to mitigate stability issues that might emerge during
training, we employ certain normalization schemes that constrain
the magnitude of the gradients.

3.2 Product of polynomials

Instead of using a single polynomial, we express the function
approximation as a product of polynomials. The product is
implemented as successive polynomials where the output of the i*
polynomial is used as the input for the (i + 1) polynomial. The
concept is visually depicted in Fig. 5; each polynomial expresses
a second order expansion. Stacking N such polynomials results
in an overall order of 2. Trivially, if the approximation of each
polynomial is B and we stack N such polynomials, the total order
is BY. The product does not necessarily demand the same order
in each polynomial, the expressivity and the expansion order of
each polynomial can be different and dependent on the task, e.g.,
for generative tasks that the resolution increases progressively, the
expansion order could increase in the last polynomials. In all cases,
the final order will be the product of each polynomial power.

There are two main benefits of the product over the single
polynomial: a) it allows using different decompositions (e.g., like
in Sec. 3.1) and expressive power for each polynomial; b) it
requires much fewer parameters for achieving the same order
of approximation. Given the benefits of the product of polynomials,
we assume below that a product of polynomials is used, unless
explicitly mentioned otherwise. The respective model of product
polynomials is called ProdPoly.

3.3 Task-dependent input/output

The aforementioned polynomials are a function z = G(z), where
the input/output are task-dependent. For a generative task, e.g.,
learning a decoder, the input z is typically some low-dimensional
noise, while the output is a high-dimensional signal, e.g., an image.
For a discriminative task the input z is an image; for a domain
adaptation task the signal z denotes the source domain and @ the
target domain.

4 PROOF OF CONCEPT

In this section, we conduct motivational experiments in both
generative and discriminative tasks to demonstrate the expressivity
of II—nets. Specifically, the networks are implemented without ac-
tivation functions, i.e., only linear operations (e.g., convolutions)
and Hadamard products are used. In this setting, the output is linear
or multi-linear with respect to the parameters.

Order 2V
Order 2 | Order 2 ‘ ‘
| | |
r i l |
2o ko > K e G(2)	

Fig. 5: Abstract illustration of the ProdPoly. The input variable z on the
left is the input to a 2"¢ order expansion; the output of this is used as
the input for the next polynomial (also with a 2"¢ order expansion) and
so on. If we use N such polynomials, the final output G(z) expresses
a 2~ order expansion. In addition to the high order of approximation,
the benefit of using the product of polynomials is that the model is
flexible, in the sense that each polynomial can be implemented as a
different decomposition of Sec. 3.1.

4.1 Generation without activation functions

One of the most popular generative models is Generative Adver-
sarial Nets (GANs) [52]. GANSs typically consist of two deep
networks, namely a generator G and a discriminator D. G is a
decoder, which receives as input a random noise vector z € R< and
outputs a sample & = G(z). D receives as input both G(z) and
real samples and tries to differentiate the fake and the real samples.
During training, both G and D compete against each other. We
design a GAN, where the generator is implemented as a product of
polynomials (using the NCP), while the discriminator of [4] is used.
The activation functions in-between the layers are removed*. In the
image-related tasks, we add a single activation function (hyperbolic
tangent) in the output space of the generator.

Qualitative results on surface generation: The approxima-
tion power of a single polynomial is scrutinized in four different
manifolds in 2D/3D. The generator does not have a single activation
function. In Fig. 6, both the target manifolds and the synthesized
samples are visualized. Notice that Gabriel’s Horn (i.e., the second
from the left) has a parametric form [z,a - 5% o - S2L] for
t € [0,1607] and = € [1,4]. The dependence on both the
sinusoidal and the function % poses challenges for a polynomial
expansion. However, we demonstrate that a single polynomial can
approximate the distribution.

Qualitative results on image generation: Three experiments
are conducted with a polynomial generator (Fashion-Mnist, Color-
Mnist* and YaleB). We perform a linear interpolation in the latent
space when trained with Fashion-Mnist [50] and with YaleB [51]
and visualize the results in Figs. 7. Note that the linear interpolation
generates plausible images and traverses through i) different
categories, e.g., trousers to sneakers or trousers to t-shirts, ii)
different colors and digits, iii) extreme illuminations in parts of the
face.

Quantitative results on image generation: CIFAR10 [53] is
used for the evaluation. The generator of [4] with three residual
blocks is used; we omit the activation functions in the generator.
That is the ‘Orig’ baseline; then we use NCP to convert this
generator into a single polynomial (called PolyGAN). If we replace
the Hadamard operator with concatenation, we obtain the ‘Concat’
method; while by adding FC polynomials to PolyGAN, we convert

4. Additional details are deferred to the supplementary material.

5

it into a product of polynomials. We note that ‘Orig’ and ‘Concat’
are designed to work along with non-linearities, however we add
them as a reference metric.

The Inception score (IS) and Frechet Inception Distance (FID)
are reported in Tab. 3. The single polynomial, i.e., PolyGAN,
demonstrates the benefits of polynomial expansion; when combined
with additional polynomials to increase the expansion order, we
obtain scores that have never emerged for generators without
activation functions.

4.2 Model comparison

The three different decompositions of Sec. 3.1 are experimen-
tally scrutinized. Each model is implemented as a product of
polynomials. The base for each respective model is one of the
three decompositions, i.e., CCP, NCP, NCP-Skip. To evaluate
the expressivity of each model, we train each without activation
functions, i.e., similarly to the previous paragraph.

The three models are originally compared in fashion image
generation. The outcomes, visualized in Fig. 8, demonstrate similar
generation properties.

In Fig. 9, samples of the three models (in the product of
polynomials case) are synthesized; all three models can generate
faces without activation functions. The three models share similar
generation quality.

4.3 Classification without activation functions

The performance of polynomial networks without activation
functions is also assessed in a classification setting. We use
ResNet without activation functions for classification. Residual
Network (ResNet) [5], [40] and its variants [3], [54], [55], [56],
[57] have been applied to diverse tasks including object detection
and image generation [4], [58], [59]. The core component of
ResNet is the residual block; the tth residual block is expressed as
zi+1 = z¢ + Cz for input z;.

We modify each residual block to express a higher order inter-
action, which can be achieved with NCP-Skip. The output of each
residual block is the input for the next residual block, which makes
our ResNet a product of polynomials. We conduct a classification
experiment with CIFAR10 [53] (10 classes) and CIFAR100 [60]
(100 classes). Each residual block is modified in two ways: a) all the
activation functions are removed, b) it is converted into an it order
expansion with ¢ € [2,5]. The second order expansion (for the tth
residual block) is expressed as z;11 = z; + Cz; + (Czt> * 24
higher orders are constructed similarly by performing a Hadamard
product of the last term with 2z; (e.g., for third order expansion it
would be z;11 = 2z + Cz; + (Czt x 2z + (Czy
The following two variations are evaluated: a) a single residual
block is used in each ‘group layer’, b) two blocks are used per
‘group layer’. The latter variation is equivalent to ResNet18 without
activations.

Each method is trained for 120 epochs with batch size 128.
The SGD optimizer is used with initial learning rate of 0.1.
The learning rate is multiplied with a factor of 0.1 in epochs
40,60, 80, 100. Each experiment is repeated 10 times; the mean
accuracy is reported in Fig. 10 and Table 5. We note that the same
trends emerge in both datasets®. The performance remains similar

* Zt * Zt)-

5. The performance of the baselines, i.e., ResNet18 without activation
functions, is 0.391 and 0.168 for CIFAR10 and CIFARI00 respectively.
However, we emphasize that the original ResNet was not designed to work
without activation functions. The performance of ResNet18 in CIFAR10 and
CIFAR100 with activation functions is 0.945 and 0.769 respectively.

(a) Target manifolds

(b) ©

Fig. 7: Linear interpolation in the latent space of ProdPoly when trained on a) fashion images [

], b) colored MNIST, c) facial images [51].

Note that the generator does not include any activation functions in between the linear blocks (Sec. 4.1). All the images are synthesized; the
image on the leftmost column is the source, while the one in the rightmost is the target synthesized image.

TABLE 3: IS/FID scores on CIFAR10 [

] generation without activation

functions.
Image generation without activation functions on CIFART0 | TABLE 4: Training accuracy in the CIFAR10 classification.
Model Unsupervised Conditional Order | BIIII1 | bI2222 | Order | BIII11 | bI2222
IS (M FID (}) IS (M) FID (1) 2 0.99 1.00 4 0.98 0.99
Orig 3.25 + 0.28 211.33 +12.47 4.47 4+ 0.21 156.67 + 12.29 3 0.98 0'99 5 0.96 0.98
Concat 3.17+0.27 233.13 +12.47 2.47+0.19 192.08 + 13.49 = = = = =
PolyGAN 5.52 +£0.18 78.23 £ 7.23 6.43 +0.11 53.50 + 2.71
ProdPoly | 6.95 + 0.18 40.45 + 1.40 | 7.50 £ 0.13 36.77 + 1.85

(a) GT
Fig. 8: Comparison of the proposed models in fashion image [

(b) ProdPoly - CCP

irrespective of the amount of residual blocks in the group layer.
The performance is affected by the order of the expansion, i.e.,
higher orders cause a decrease in the accuracy. Our conjecture is
that this can be partially attributed to overfitting (note that a 3%
order expansion for the 2222 block - in total 8 res. units - yields a
polynomial of 3% power). The training accuracy of the CIFAR10
experiment in Table 4 is > 95%. Nevertheless, in all cases without
activations the accuracy is close to the original ResNetl8 with
activation functions®.

(c) ProdPoly - NCP (d) ProdPoly - NCP-Skip
] generation without activation functions.

5 EXPERIMENTS

We conduct four experiments against state-of-the-art models in
three diverse tasks: image generation, image classification, face
verification/identification and graph representation learning. In each
case, the baseline considered is converted into an instance of our
family of II-nets and the two models are compared.

5.1 Image generation

The robustness of ProdPoly in image generation is assessed in two
different architectures/datasets below.

(a) GT (b) ProdPoly - CCP

I blocks111l1 [blocks2222

1.0 1.0
0.8 0.8

> >

0.6 206

— —

=) >

go0.4 go0.4

< <
0.2 0.2
0.0 2 4 5 0.0 2 4 5

3 3

Order Order
Fig. 10: Image classification accuracy without using activation func-
tions in the residual blocks’. The schematic on the left is on CIFAR10
classification, while the one on the right is on CIFAR100 classification.

TABLE 5: Quantitative results on classification without the activation
functions. The symbol /N abbreviates the order of expansion in each
residual block, while ‘Acc’ abbreviates the accuracy.

(d) ProdPoly - NCP-Skip
Fig. 9: Comparison of the proposed models in facial image [51] generation without activation functions.

(c) ProdPoly - NCP

TABLE 6: IS/FID scores on CIFAR10 [53] generation. The scores of
[58], [59] are added from the respective papers as using similar residual
based generators. The scores of [64], [65], [60] represent alternative
generative models. ProdPoly outperforms the compared methods in
both metrics.

Image generation on CIFAR10
Model IS (1) FID ()
SNGAN 8.06 +0.10 19.06 + 0.50
NCP(Sec. 3.1) 8.30 £ 0.09 17.65 £ 0.76
ProdPoly 8.49+0.11 | 16.79+0.81
CSGAN- [58] 7.90 + 0.09 -
WGAN-GP- [59] 7.86 £ 0.08 -
CQFG- [66] 8.10 18.60
EBM [64] 6.78 38.2
GLANN [65] - 46.5 + 0.20

blocks N | Acc CIFARIO | Acc CIFARI100

2] 0.876 £0.003 | 0.626 + 0.004
| [1,1,1,1] | 3 | 0.870+0.003 | 0.616 + 0.003 |
| | 4 | 0.868+0.002 | 0.609 +0.002 |
\ | 5 | 0.8644+0.001 | 0.606 +0.003 |
	2] 0.907+0.003	0.667 +0.003	
[2,2,2,2]	3	0.891+0.001	0.648 +0.002
	4	0.877+0.003	0.626 +0.004
	5	0.856+0.006	0.598 +0.007

SNGAN on CIFAR10: In the first experiment, the architecture
of SNGAN [4] is selected as a strong baseline on CIFAR10 [53].
The baseline includes 3 residual blocks in the generator and the
discriminator.

The generator is converted into a II-net, where each residual
block is a single order of the polynomial. We implement two
versions, one with a single polynomial (NCP) and one with
product of polynomials (where each polynomial uses NCP). In
our implementation A, is a thin FC layer, (B[,))" by, is a bias
vector and S [n] 18 the transformation of the residual block. Other
than the aforementioned modifications, the hyper-parameters (e.g.,
discriminator, learning rate, optimization details) are kept the same
as in [4].

Each network was run for 10 times and the mean and variance
are reported. The popular Inception Score (IS) [61] and the Frechet
Inception Distance (FID) [62] are used for quantitative evaluation.
Both scores extract feature representations from a pre-trained
classifier (the Inception network [63]).

The quantitative results are summarized in Table 6. In addition
to SNGAN and our two variations with polynomials, we have added
the scores of [58], [59], [64], [65], [66] as reported in the respective
papers. Note that the single polynomial already outperforms the
baseline, while the ProdPoly boosts the performance further and
achieves a substantial improvement over the original SNGAN.

StyleGAN on FFHQ: StyleGAN [9] is the state-of-the-art
architecture in image generation. The generator is composed
of two parts, namely: (a) the mapping network, composed of
8 FC layers, and (b) the synthesis network, which is based
on ProGAN [30] and progressively learns to synthesize high
quality images. The sampled noise is transformed by the mapping
network and the resulting vector is then used for the synthesis
network. As discussed in the introduction, StyleGAN is already
an instance of the II-net family, due to AdaIN. Specifically, the
k" AdalN layer is hy = (Afw) * n(c(hg_1)), where n is a
normalization, ¢ the convolution operator and w is the transformed
noise w = M LP(z) (mapping network). This is equivalent to our
NCP model by setting S| [7,;] as the convolution operator.

In this experiment we illustrate how simple modifications,
using our family of products of polynomials, further improve the
representation power. We make a minimal modification in the
mapping network, while fixing the rest of the hyper-parameters.
In particular, we convert the mapping network into a polynomial
(specifically a NCP), which makes the generator a product of two
polynomials.

The Flickr-Faces-HQ Dataset (FFHQ) dataset [9] which in-
cludes 70,000 images of high-resolution faces is used. All the
images are resized to 256 x 256. The best FID scores of the
two methods (in 256 x 256 resolution) are 6.82 for ours and

7.15 for the original StyleGAN, respectively. That is, our method
improves the results by 5%. Synthesized samples of our approach
are visualized in Fig. 11.

5.2 Classification

We perform two experiments on classification: a) audio classifica-
tion, b) image classification.

Audio classification: The goal of this experiment is twofold:
a) to evaluate ResNet on a distribution that differs from that of
natural images, b) to validate whether higher-order blocks make
the model more expressive. The core assumption is that we can
increase the expressivity of our model, or equivalently we can
use fewer residual blocks of higher-order to achieve performance
similar to the baseline.

The performance of ResNet is evaluated on the Speech
Commands dataset [67]. The dataset includes 60, 000 audio files;
each audio contains a single word of a duration of one second.
There are 35 different words (classes) with each word having
1,500 — 4,100 recordings. Every audio file is converted into a
mel-spectrogram of resolution 32 x 32.

The baseline is a ResNet34 architecture; we use second-
order residual blocks to build the Prodpoly-ResNet to match the
performance of the baseline. The quantitative results are added
in Table 7. The two models share the same accuracy, however
Prodpoly-ResNet includes 38% fewer parameters. This result
validates our assumption that our model is more expressive and
with even fewer parameters, it can achieve the same performance.

TABLE 7: Speech classification with ResNet. The accuracy of the
compared methods is similar, but Prodpoly-ResNet has 38% fewer
parameters. The symbol ‘# par’ abbreviates the number of parameters
(in millions).

Speech Commands classification with ResNet
Model # blocks # par Accuracy
ResNet34 3,4,6,3] 21.3 | 0.951 +0.002
Prodpoly-ResNet 3,3,3,2 13.2 | 0.951 £ 0.002

Classification on CIFAR: The expressivity of the polynomial
networks is also assessed on CIFAR10 classification. That is, we
can reduce the number of residual blocks (of higher-order) to
achieve the same performance as vanilla residual blocks.

We select the ResNet18 and ResNet34 as baselines, while the
rest training details are similar to Sec. 4.3. Prodpoly-ResNet is
implemented by employing second-order residual blocks.

In Table 8 the two different ResNet baselines are compared
against Prodpoly-ResNet on CIFARI10; the respective Prodpoly-
ResNet models have the same accuracy. However, each Prodpoly-
ResNet has ~ 40% less parameters than the respective baseline.
In addition, we visualize the test accuracy for ResNet18 and the
respective Prodpoly-ResNet in Fig. 12. The test error of the two
models is similar throughout the training.

The same experiment is repeated on CIFAR100 with ResNet34
as the baseline. Table 9 exhibits a similar pattern. That is, the test

8

TABLE 8: Image classification on CIFAR10 with ResNet. The #
abbreviates ‘number of’, while the parameters are measured in millions.
The term ‘block’ abbreviates a ‘residual block’. Note that each baseline,
e.g. ResNet18, has the same performance with the respective Prodpoly-
ResNet, but significantly more parameters.

CIFARIO classification with ResNet
Model # blocks # params (M) Accuracy
ResNet18 2,2,2,2 11.2 0.945 + 0.000
Prodpoly-ResNet 2,2,1,1 6.0 0.945 + 0.001
ResNet34 3,4,6,3 21.3 0.948 + 0.001
Prodpoly-ResNet 3,3,2,2 13.0 0.949 + 0.002
1.0 1.0
0.9 0.9
>
808 808
507 go.7
0.6 0.6
9520 40 60 80 100 120 050 20 40 60 80 100 120
Epochs Epochs

(a) ResNet18 (b) Prodpoly-ResNet
Fig. 12: The test accuracy of (a) ResNetl8 and (b) the respective
Prodpoly-ResNet are plotted (CIFAR10 training). The two models
perform similarly throughout the training, while ours has 46% less
parameters. The width of the highlighted region denotes the standard
deviation of each model.

accuracy of ResNet34 and Prodpoly-ResNet is similar, however
Prodpoly-ResNet has ~ 30% less parameters.

TABLE 9: CIFARI100 classification with ResNet. The accuracy of
the compared methods is similar, but Prodpoly-ResNet has 30% less
parameters.

CIFAR100 classification with ResNet
Model # blocks # params (M) Accuracy
ResNet34 3,4,6,3 21.3 0.769 + 0.003
Prodpoly-ResNet 3,4,3,2 14.7 0.769 + 0.001

Classification on ImageNet: We perform a large-scale classi-
fication experiment on ImageNet [68]. To stabilize the training, the
second order of each residual block is normalized with a hyperbolic
tangent unit. SGD with momentum 0.9, weight decay 10~ and a
mini-batch size of 512 is used. The initial learning rate is set to 0.2
and decreased by a factor of 10 at 30, 60, and 80 epochs. Models
are trained for 90 epochs from scratch, using linear warm-up of
the learning rate during first five epochs according to [69].

The Top-1 and Top-5 error throughout the training is visualized
in Fig. 13, while the validation results are added in Table 10.
For a fair comparison, we report the results from our training in
both the original ResNet and Prodpoly-ResNet®. Prodpoly-ResNet
consistently improves the performance with a negligible increase in
computational complexity and model size. Remarkably, Prodpoly-
ResNet50 achieves a single-crop Top-1 validation error of 22.827%
and Top-5 validation error of 6.431%, exceeding ResNet50 by
0.719% and 0.473%, respectively.

TABLE 10: ImageNet classification results of ResNet50 and the
proposed Prodpoly-ResNet.

Model Top-1 error (%) | Top-5 error (%)
ResNet50 23.546 6.904
Prodpoly-ResNet50 | 22.827 (| o0.719) 6.431 (1 0.473)

6. The performance of the original ResNet [5] is inferior to the one reported
here and in [70].

0.7
—— ProdPoly-ResNet50-val-topl
0.6 4 F oo ProdPoly-ResNet50-train-topl
—— ResNet50-val-topl
054 VAL ResNet50-train-topl
2
§ 0.4 1
=
w
=03
Q
(<}
2
0.2
0.1
0.0 T T T T T T

0 10 20 30 40 50 60 70 80 90
Epoch

(a) Top-1 Error

0.7
—— ProdPoly-ResNet50-val-top5
064 F e ProdPoly-ResNet50-train-top5
—— ResNet50-val-top5
054 F b ResNet50-train-top5
9
§ 0.4
S
w
0 0.3 A
Q
O
2
0.2
01 7 B
0.0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Epoch
(b) Top-5 Error

Fig. 13: Top-1 and Top-5 error curves on the ImageNet dataset.

5.3 Face verification and identification

We scrutinize the performance of the IT-nets on the challenging task
of face recognition. The architecture of the current state-of-the-art
method of ArcFace [71] is a ResNet, which we can convert into a
polynomial network using the NCP-Skip.

Training Data: The data of MSI1M-RetinaFace dataset [72],
[73] consist the training images; all face images inside MS1M-
RetinaFace are pre-processed to the size of 112 x 112 based on the
five facial landmarks predicted by RetinaFace [74]. In total, there
are 5.1M images of 93K identities.

Testing Data: The performance is compared on widely used face
verification data-sets (e.g., LFW [75], CFP [76], AgeDB [77],
CPLFW [78], CALFW [79] and RFW [80]). Besides, we also
extensively test the proposed method on large-scale benchmarks
(e.g., IIB-B [81], IIB-C [82] and MegaFace [83]); the fundamental
statistics of all the datasets are summarized in Table 11. During
testing, we only keep the feature embedding network without the
fully connected layer and extract the 512-D features for each
normalized face. To get the embedding features for templates (e.g.,
IJB-B [81] and IIB-C [82]), we simply calculate the feature center
of all images from the template or all frames from the video.
Training Details: For the baseline embedding network, we employ
the widely used CNN architecture, ResNet50. Specifically, we
follow [71] to set the feature scale s to 64 and choose the angular
margin m at 0.5. The batch size is set to 512 with momentum 0.9
and weight decay 5e — 4, while we decrease the learning rate in
iterations 100K, 160K, 220K. The training finishes after 30 epochs
and is trained on 8§ NVIDIA 2080ti (11GB) GPUs.

The baseline residual block is converted into a second-order
residual block to build the Prodpoly-ResNet, while we keep
all the other settings exactly the same as the baseline. For the
baseline ResNet50, the model size is 175MB and the computational
complexity is 12.6G FLOPS. For Prodpoly-ResNet50, the model
size is 182MB and the computational complexity is 13.2G FLOPS.
Results on LFW, CFP-FF, CFP-FP, CPLFW, AgeDB-30,
CALFW and RFW. LFW [75] contains 13,233 web-collected
images from 5,749 different identities, with limited variations
in pose, age, expression and illuminations. CFP [76] consists of
collected images of celebrities in frontal and profile views. On
CFP, there are two evaluation protocols: CFP-Frontal-Frontal and
CFP-Frontal-Profile. CFP-Frontal-Profile is very challenging as

TABLE 11: Face datasets for training and testing. “(P)” and “(G)” refer
to the probe and gallery set, respectively.

Datasets #ldentity | #Image
MSIMV2 93K 5.IM
LFW [75] 5,749 13,233
CFP [76] 500 7,000
AgeDB [77] 568 16,488
CPLFW [78] 5,749 11,652
CALFW [79] 5,749 12,174
RFW [80] 11,430 40,607
RFW-Caucasian [80] 2,959 10,196
RFW-Indian [80] 2,984 10,308
RFW-Asian [80] 2,492 9,688
RFW-African [80] 2,995 10,415
MegaFace [83] 530 (P) 1M (G)
IUB-B [81] 1,845 76.8K
1JB-C [82] 3,531 148.8K

the pose gap within positive pairs is around 90°. CPLFW [7§]
was collected by crowd-sourcing efforts to seek the pictures of
people in LFW with pose gap as large as possible from the Internet.
CALFW [79] is similar to CALFW, but from the perspective of
age difference. AgeDB [77] contains manually annotated images.
In this paper, we use the evaluation protocol with 30 years gap
[71]. RFW [80] is a benchmark for measuring racial bias, which
consists of four test subsets, namely Caucasian, Indian, Asian and
African. The quantitative results of the comparisons are exhibited
in Table 12. On LFW and CFP-FP, the results of ResNet50 and
Prodpoly-ResNet50 are similar to face verification on semi-frontal
faces is saturated. Nevertheless, Prodpoly-ResNet50 significantly
outperforms ResNet50 on CFP-FP, CPLFW, AgeDB-30, CALFW
and RFW, indicating that the proposed method can enhance the
robustness of the embedding features under pose variations, age
variations and racial variations.
Results on IJB-B and 1JB-C. The 1JB-B dataset [$1] contains
1,845 subjects with 21.8K still images and 55K frames from
7,011 videos. The IJB-C dataset [81] is a further extension of
IIB-B, having 3, 531 subjects with 31.3K still images and 117.5K
frames from 11,779 videos. On IJB-B and IJB-C datasets, there
are two evaluation protocols, 1:1 verification and 1:N identification.
In Figure 14, ROC curves of ResNet50 and Prodpoly-ResNet50
under 1:1 verification protocol on IJB-B and IJB-C is plotted. On
1JB-B, there are 12, 115 templates with 10, 270 genuine matches

TABLE 12: Verification performance (%) of ResNet50 and the

proposed Prodpoly-ResNet50 on LFW, CFP-FF, CFP-FP, CPLFW,

AgeDB-30, CALFW and RFW (Caucasian, Indian, Asian and African).

Method ResNet50 Prodpoly-ResNet50
LFW 99.733 £ 0.309 | 99.833+0.211 (1 0.100)
CFP-FF 99.871 + 0.135 | 99.886+0.178 (1 0.015)
CFP-FP 98.800 + 0.249 | 98.986+0.274 (1 0.186)
CPLFW 92.433 + 1.245 | 93.317+1.343 (1 0.884)
AgeDB-30 98.233 + 0.655 | 98.467+0.623 (1 0.234)
CALFW 95.917 + 1.209 | 96.233+1.114 (+ 0.316)
RFW-Caucasian | 99.333 + 0.307 | 99.700+0.100 ¢+ 0.367)
RFW-Indian 98.567 + 0.507 | 99.300+0.296 (+ 0.733)
RFW-Asian 98.333 +£ 0.435 | 98.950+0.350 (1 0.617)
RFW-African 98.650 + 0.329 | 99.417+0.227 (+ 0.767)

and 8M impostor matches. On IJB-C, there are 23, 124 templates

with 19,557 genuine matches and 15, 639K impostor matches.

The proposed method surpasses the baseline by a clear margin. The
comparison of TAR in Table 13 illustrates that Prodpoly-ResNet50
improves the TAR (@FAR=1¢e-4) by 0.46% and 0.41% on 1JB-B
and IJB-C, respectively.

Table 14 compares ResNet50 and Prodpoly-ResNet50 under
the 1:N end-to-end mixed protocol, which contains both still
images and full-motion videos. On IJB-B, there are 10, 270 probe
templates containing 60, 758 still images and video frames. On
IJB-C, there are 19,593 probe templates containing 127,152
still images and video frames. Prodpoly-ResNet50 outperforms
ResNet50 by 0.23% and 0.34% on 1JB-B and IJB-C rank-1 face
identification.

"

True Positive Rate

True Positive Rate

generalization error

—— Prodpoly-ResNet50
ResNet50

0.85 0.85
10 10+ 102 10 10 10

088 —— Prodpoly-ResNet50
ResNet50

1o~ 10 10 10
False Positive Rate

(a) ROC for JB-B (b) ROC for IJB-C

Fig. 14: ROC curves of ResNet50 and Prodpoly-ResNet50 under 1:1
verification protocol on the 1JB-B and 1JB-C dataset.

10
False Positive Rate

Results on MegaFace. The MegaFace dataset [83] includes 1M
images of 690K different individuals as the gallery set and 100K
photos of 530 unique individuals from FaceScrub [84] as the
probe set. On MegaFace, there are two testing protocols (e.g.,
identification and verification). Table 15 show the identification
and verification results on MegaFace dataset. In particular, the
proposed Prodpoly-ResNet50 achieve 0.50% improvement at the
Rank-1@1e6 identification rate and 0.31% improvement at the
verification TPR@FAR=1e-6 rate over the baseline ResNet50. In
Figure 15, Prodpoly-ResNet50 shows superiority over ResNet50
and forms an upper envelope under both identification and
verification scenarios.

5.4 3D Mesh representation learning

Below, we evaluate higher order correlations in graph related tasks.
We experiment with 3D deformable meshes of fixed topology [85],
i.e., the connectivity of the graph G = {V, £} remains the same
and each different shape is defined as a different signal « on the
vertices of the graph: ¢ : V — R<. As in the previous experiments,
we extend a state-of-the-art operator, namely spiral convolutions

10

98
96

94

92 —— Prodpoly-ResNet50
——ResNet50

Identification Rate (%)
True Positive Rate (%)

92 —— Prodpoly-ResNet50
—— ResNet50

Ll 90
100 100 102 10° 10* 10° 10° 10% 10° 10% 10% 102 100 10°
Rank False Positive Rate
(a) CMC (b) ROC

Fig. 15: CMC and ROC curves of ResNet50 and the proposed Prodpoly-
ResNet50 on MegaFace. Results are evaluated on the refined MegaFace
dataset [71].

COMA dataset

Y --#- ProdPoly simple, non-linear

A ProdPoly full, non-linear

#- ProdPoly full, non-linear, residual

-*- ProdPoly simple, linear

®- ProdPoly full, linear

-#- ProdPoly full, linear, residual
GAT

0.8

o
9

¢ FeastNet
+ MoNet
® SpiralGNN
« COMA
+*

generalization error
o
o

o
n

0.4

order
DFAUST dataset

- ProdPoly simple, non-linear
ProdPoly full, non-linear
ProdPoly full, non-linear, residual

- ProdPoly simple, linear
ProdPoly full, linear

- ProdPoly full, linear, residual
SpiralGNN
COMA
PCA

+
*

30

N
o
'l-liaoio

N
=]

15 ‘--x::::::::::::"”" o

10

1 2 3 4
order

Fig. 16: ProdPoly vs 1°* order graph learnable operators for mesh
autoencoding. Note that even without using activation functions the
proposed methods significantly improve upon the state-of-the-art.

[86], with the ProdPoly formulation and test our method on the
task of autoencoding 3D shapes. We use the existing architecture
and hyper-parameters of [86], thus showing that ProdPoly can be
used as a plug-and-play operator to existing models, turning the
aforementioned one into a Spiral IT-Net. Our implementation uses
a product of polynomials (referred as ProdPoly full), where each
layer is a N** order polynomial instantiated as a specific case of
(7) or (8):

NCP: z,, = (A%;l]acl) * (S[j;l]mn_l) + Aﬁ]ml

NCP-Skip: z,, = (A%;L]ml) * (S[I;L]a:n_1> + A[I;L]ml + Ty_1,
x =xy + B, where A[,), S|, are spiral convolutions written

11

TABLE 13: 1:1 verification TAR on the IJB-B and IJB-C datasets.

Methods (%) { B-B UB-C
FAR=1e—6 FAR=1e—5 FAR=1e—4 FAR=1e—3 FAR=1e—6 FAR=1e—5 FAR=1e—4 FAR=1e—3
ResNet50 37.28 90.73 94.73 96.63 90.47 94.28 96.17 97.57
Prodpoly-ResNet50 | 43.46 (1t 6.18y 91.95 (4 1.22) 9519 (t 0.46) 96.67 (1 0.049) | 90.77 1+ 0.300 95.16 (+ 0.88) 96.58 (1 0.41) 97.66 (1 0.09)

TABLE 14: 1:N (mixed media) Identification on the IJB-B and IJB-C datasets. False positive identification rate (FPIR) is the proportion of
non-mated searches returning any (1 or more) candidates at or above a threshold.

Methods (%) [1JB-B 1JB-C
FPIR=0.01 FPIR=0.1 Rank 1 Rank 5 FPIR=0.01 FPIR=0.1 Rank 1 Rank 5
ResNet50 84.70 94.01 95.29 97.14 92.87 95.28 96.52 97.69
Prodpoly-ResNet50 | 85.58 (1 0.88) 94.69 (+ 0.68) 95.52 (1 0.23 97.16 1+ 0.02) | 93.60 + 0.73) 9593 1 0.65) 96.86 (1 0.35 97.79 (4 0.10)

TABLE 15: Face identification and verification evaluation of ResNet50
and the proposed Prodpoly-ResNet50 on MegaFace Challengel using
FaceScrub as the probe set. “Id” refers to the rank-1 face identification
accuracy with 1M distractors, and “Ver” refers to the face verification
TAR at 10~° FAR. Results are evaluated on the refined MegaFace
dataset [71].

Methods 1d (%) Ver (%)
ResNet50 98.28 98.64
Prodpoly-ResNet50 | 98.78 (+ 0.50) | 98.95 (1 0.31)

in matrix form, 3 is a bias vector, ®1, @ is the input (which is
equal to the output of the previous layer) and the output of the
layer respectively. Stability of the optimization is ensured by
applying vertex-wise instance normalization on the 2"¢ order term
of the recursive formulation.

Additionally, we evaluate our formulation with a simpler
model (ProdPoly simple) that allows for an attractive trade-off
between increased expressivity and constrained parameter budget.
In specific, we can create higher-order polynomials without adding
new blocks in the original architecture as follows:
zy = SN (ST:cl) * (STazl) (S’Tml) +8Txz, + 3.

n=2

n times
We use the same normalization scheme as before, by independently

normalizing each higher order term. Note that here we only use one
learnable operator S (spiral convolution) per layer. It is interesting
to notice that this model can be also re-interpreted as a learnable
polynomial activation function as in [14], which is a specific case
of ProdPoly. As evidence from the experiments suggests, such
polynomial activation functions lead to increased expressivity per
se, but are less expressive when compared to richer multiplicative
interactions as introduced by our NCP and NCP-skip models.

In Fig. 16, we compare the reconstruction error of the proposed
method to the baseline spiral convolutions along with other
popular graph learnable operators, i.e. the Graph Attention Network
(GAT) [87], FeastNet [88], Mixture model CNNs (MoNet) [89],
Convolutional Mesh Autoencoders (COMA) [85] which are based
on the spectral graph filters of ChebNet [90], as well as with
Principal Component Analysis (PCA), which is quite popular
in shape analysis applications [91]. The evaluation is performed
on two popular 3D deformable shape benchmarks, COMA [85]
and DFAUST [92], that depict facial expressions and body poses
respectively. II-nets outperform all published methods even when

discarding the activation functions across the entire network.

Similar patterns emerge in both datasets: NCP and NCP-Skip
behave similarly regardless of the absence of activation functions
or not, leading to an increased performance when the order of
the polynomial increases, i.e. generalization improves along with

Fig. 17: Color coding of the per vertex reconstruction error on an
exemplary human body mesh. From left to right: ground truth mesh,
1st order SpiralGNN, 2"¢, 37¢ and 4*" order Spiral ProdPoly.

expressivity. Moreover, the simple model provides a boost in
performance as well, although we observe a decrease for the 3%
and 4" order of the linear model, which might be attributed to
overfitting (similarly to the linear experiments in Sec. 4.3). Thus,
we showcase that expressivity improves by seamlessly converting
the existing architecture to a polynomial, without having to increase
the depth or width of the architecture as frequently done by ML
practitioners, and with small sacrifices in terms of inference time
and parameter count.

Finally, in Fig. 17 we assess how the order of the polynomial
qualitatively reflects in the reconstruction of an exemplary mesh.
In particular, we color code the per vertex reconstruction error on
the reconstructed meshes (right) and compare them with the input
(left). Notice that the overall shape resembles the input more as we
increase the order of the polynomial (especially in the head), while
body parts with strong articulations (e.g. hands) are reconstructed
with higher fidelity.

6 FUTURE DIRECTIONS

The new class of II—nets has strong experimental results and few
empirical theoretical results already. We expect in the following
years new works that improve our results and extend our formula-
tion. To that end, we summarize below several fundamental topics
that are open for interested practitioners.

A core topic is the theoretical properties of II—nets. That
includes the expressivity of this class of neural networks. The
recent study of [10] proves that second-order correlations are
beneficial, however the expressivity on higher-order polynomials
remains yet to be studied. The generalization of the II—nets is
also crucial. In our evaluation without activation functions, we

noticed that polynomials might be prone to overfitting (e.g., in
the classification setting of Sec. 4.3). When we add the non-linear
activations we did not observe such a consistent pattern.

Reducing the network redundancy is also an exciting topic.
The theoretical properties of multiplicative interactions along with
our experiments, exhibit how polynomial neural networks can be
used to reduce the network redundancy. Additional post-processing
techniques, such as pruning, or exploiting tools from the tensor
methods, such as low-rank constraints, might be beneficial in this
context.

7 CONCLUSION

In this work, we have introduced a new class of DCNNS, called II-
Nets, that perform function approximation using a polynomial
neural network. Our II-Nets can be efficiently implemented
via a special kind of skip connections that lead to high-order
polynomials, naturally expressed with tensorial factors. The pro-
posed formulation extends the standard compositional paradigm of
overlaying linear operations with activation functions. We motivate
our method by a sequence of experiments without activation
functions that showcase the expressive power of polynomials,
and demonstrate that II-Nets are effective in both discriminative,
as well as generative tasks. Trivially modifying state-of-the-art
architectures in image generation, image and audio classification,
face verification/identification as well as mesh representation
learning, the performance consistently improves.

8 ACKNOWLEDGEMENTS

We are thankful to Nvidia for the hardware donation and Amazon
web services for the cloud credits. The work of GC, SM, and GB
was partially funded by an Imperial College DTA. The work of
JD was partially funded by Imperial President’s PhD Scholarship.
The work of SZ was partially funded by the EPSRC Fellowship
DEFORM: Large Scale Shape Analysis of Deformable Models of
Humans (EP/S010203/1) and a Google Faculty Award.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278-2324, 1998. 1,2

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural informa-
tion processing systems (NeurlPS), 2012, pp. 1097-1105. 1, 2

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp. 4700-4708. 1, 5

T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normaliza-
tion for generative adversarial networks,” in International Conference on
Learning Representations (ICLR), 2018. 1, 5,7

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 770-778. 1, 5, 8

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference
on Machine Learning (ICML), 2015. 1, 2

S. Arora, N. Cohen, N. Golowich, and W. Hu, “A convergence analysis
of gradient descent for deep linear neural networks,” in International
Conference on Learning Representations (ICLR), 2019. 1

K. Ji and Y. Liang, “Minimax estimation of neural net distance,” in
Advances in neural information processing systems (NeurlPS), 2018, pp.
3845-3854. 1

T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in Conference on Computer Vision and
Pattern Recognition (CVPR), 2019. 1, 2,7

(2]

[3]

(4]

(3]

(6]

(71

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[31]

(32]
[33]

(34]

[35]

12

S. M. Jayakumar, W. M. Czarnecki, J. Menick, J. Schwarz, J. Rae,
S. Osindero, Y. W. Teh, T. Harley, and R. Pascanu, “Multiplicative
interactions and where to find them,” in International Conference on
Learning Representations (ICLR), 2020. 1, 2, 11

N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis,
and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551-3582, 2017. 1

G. Chrysos, S. Moschoglou, Y. Panagakis, and S. Zafeiriou, ‘“Polygan:
High-order polynomial generators,” arXiv preprint arXiv:1908.06571,
2019. 1

G. Chrysos, S. Moschoglou, G. Bouritsas, Y. Panagakis, J. Deng, and
S. Zafeiriou, “w—nets: Deep polynomial neural networks,” in Conference
on Computer Vision and Pattern Recognition (CVPR), 2020. 1

J. Kileel, M. Trager, and J. Bruna, “On the expressive power of
deep polynomial neural networks,” in Advances in neural information
processing systems (NeurlPS), 2019. 1, 11

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Conference on Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 248-255. 2

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in
the wild,” in International Conference on Computer Vision (ICCV), 2015,
pp. 3730-3738. 2

S. Tokui, K. Oono, S. Hido, and J. Clayton, “Chainer: a next-generation
open source framework for deep learning,” in NeurlPS Workshops, 2015.
2

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in NeurIPS Workshops, 2017. 2

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,’
in International Conference on Learning Representations (ICLR), 2015. 2
S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” in International Conference on Learning Representations (ICLR),
2018. 2

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations (ICLR), 2015. 2

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International Conference on Artificial
Intelligence and Statistics (AISTATS), 2010, pp. 249-256. 2

A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to
the nonlinear dynamics of learning in deep linear neural networks,” in
International Conference on Learning Representations (ICLR), 2014. 2
D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” arXiv preprint arXiv:1607.08022,
2016. 2

K. Fukushima, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological cybernetics, vol. 36, no. 4, pp. 193-202, 1980. 2

P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017. 2

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th international conference
on machine learning (ICML-10), 2010, pp. 807-814. 2

A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for
high fidelity natural image synthesis,” in International Conference on
Learning Representations (ICLR), 2019. 2

S. Zhao, J. Song, and S. Ermon, “Learning hierarchical features from deep
generative models,” in International Conference on Machine Learning
(ICML), 2017, pp. 4091-4099. 2

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans
for improved quality, stability, and variation,” in International Conference
on Learning Representations (ICLR), 2018. 2,7

X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adap-
tive instance normalization,” in International Conference on Computer
Vision (ICCV), 2017, pp. 1501-1510. 2

A. G. Ivakhnenko, “Polynomial theory of complex systems,” transactions
on Systems, Man, and Cybernetics, no. 4, pp. 364-378, 1971. 2

J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
networks, vol. 61, pp. 85-117, 2015. 2

S.-K. Oh, W. Pedrycz, and B.-J. Park, “Polynomial neural networks
architecture: analysis and design,” Computers & Electrical Engineering,
vol. 29, no. 6, pp. 703-725, 2003. 2

Y. Shin and J. Ghosh, “The pi-sigma network: An efficient higher-order
neural network for pattern classification and function approximation,” in
International Joint Conference on Neural Networks, vol. 1, 1991, pp.
13-18. 2

3

)

[36]

(371

[38]

(391

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]
[54]

[55]

[56]

[57]
(58]

[59]

[60]

[61]

Y. Xiong, W. Wu, X. Kang, and C. Zhang, “Training pi-sigma network by
online gradient algorithm with penalty for small weight update,” Neural
computation, vol. 19, no. 12, pp. 3356-3368, 2007. 2

C. Voutriaridis, Y. S. Boutalis, and B. G. Mertzios, “Ridge polynomial
networks in pattern recognition,” in EURASIP Conference focused on
Video/Image Processing and Multimedia Communications, vol. 2, 2003,
pp. 519-524. 2

C.-K. Li, “A sigma-pi-sigma neural network (spsnn),” Neural Processing
Letters, vol. 17, no. 1, pp. 1-19, 2003. 2

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in International Conference on
Learning Representations (ICLR), 2015. 2

R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
arXiv preprint arXiv:1505.00387, 2015. 2, 5

S. Reed, K. Sohn, Y. Zhang, and H. Lee, “Learning to disentangle factors
of variation with manifold interaction,” in International Conference on
Machine Learning (ICML), 2014, pp. 1431-1439. 2

T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455-500, 2009. 2, 3

M. H. Stone, “The generalized weierstrass approximation theorem,”
Mathematics Magazine, vol. 21, no. 5, pp. 237-254, 1948. 2

S. Nikol’skii, Analysis Ill: Spaces of Differentiable Functions, ser.
Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg,
2013. 2

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in International Conference on Learning
Representations (ICLR), 2019. 3

S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems (NeurIPS), 2015, pp. 1135-1143. 3

C. Ding, S. Liao, Y. Wang, Z. Li, N. Liu, Y. Zhuo, C. Wang, X. Qian,
Y. Bai, G. Yuan et al., “Circnn: accelerating and compressing deep neural
networks using block-circulant weight matrices,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
2017, pp. 395-408. 3

C. Yunpeng, J. Xiaojie, K. Bingyi, F. Jiashi, and Y. Shuicheng, “Sharing
residual units through collective tensor factorization in deep neural
networks,” in International Joint Conferences on Artificial Intelligence
(IJCAI), 2018. 3

M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. De Freitas, “Pre-
dicting parameters in deep learning,” in Advances in neural information
processing systems (NeurlPS), 2013, pp. 2148-2156. 3

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017. 5, 6

A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few
to many: Illumination cone models for face recognition under variable
lighting and pose,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (T-PAMI), no. 6, pp. 643—660, 2001. 5, 6, 7

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems (NeurIPS), 2014. 5
A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:
http:/fwww. cs. toronto. edu/kriz/cifar. html, vol. 55, 2014. 5, 6,7

W. Wang, X. Li, J. Yang, and T. Lu, “Mixed link networks,” in
International Joint Conferences on Artificial Intelligence (IJCAI), 2018. 5
S. Xie, R. Girshick, P. Dolldr, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2017, pp. 1492—
1500. 5

K. Zhang, M. Sun, T. X. Han, X. Yuan, L. Guo, and T. Liu, “Residual
networks of residual networks: Multilevel residual networks,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 28,
no. 6, pp. 1303-1314, 2017. 5

S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv preprint
arXiv:1605.07146, 2016. 5

G. L. Grinblat, L. C. Uzal, and P. M. Granitto, “Class-splitting generative
adversarial networks,” arXiv preprint arXiv:1709.07359, 2017. 5,7

1. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville,
“Improved training of wasserstein gans,” in Advances in neural information
processing systems (NeurIPS), 2017, pp. 5767-5777. 5,7

A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-100 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
~kriz/cifar.html 5

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Advances in neural
information processing systems (NeurIPS), 2016, pp. 2234-2242. 7

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

(751

[76]

(771

[78]

[79]

[80]

(81]

(82]

(83]

[84]

[85]

[86]

13

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter,
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium,” in Advances in neural information processing systems
(NeurIPS), 2017, pp. 6626-6637. 7

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2015,
pp- 1-9. 7

Y. Du and 1. Mordatch, “Implicit generation and generalization in energy-
based models,” in Advances in neural information processing systems
(NeurIPS), 2019. 7

Y. Hoshen, K. Li, and J. Malik, “Non-adversarial image synthesis with
generative latent nearest neighbors,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 5811-5819. 7

T. Lucas, K. Shmelkov, K. Alahari, C. Schmid, and J. Verbeek, “Adversar-
ial training of partially invertible variational autoencoders,” arXiv preprint
arXiv:1901.01091, 2019. 7

P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018. §

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211-252, 2015. 8

P. Goyal, P. Dolldr, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: Training
imagenet in 1 hour,” arXiv:1706.02677, 2017. 8

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 7132-7141. 8

J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 4690-4699. 9, 10, 11

Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition,” in European Conference
on Computer Vision (ECCV). Springer, 2016, pp. 87-102. 9

J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu, and S. Shi, “Lightweight face
recognition challenge,” in CVPRW, 2019, pp. 0-0. 9

J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “Retinaface:
Single-stage dense face localisation in the wild,” Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 9

G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database forstudying face recognition in unconstrained
environments,” 2008. 9

S. Sengupta, J.-C. Chen, C. Castillo, V. M. Patel, R. Chellappa, and D. W.
Jacobs, “Frontal to profile face verification in the wild,” in WACV, 2016. 9
S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, 1. Kotsia, and
S. Zafeiriou, “Agedb: The first manually collected in-the-wild age
database,” in CVPR Workshop, 2017. 9

T. Zheng and W. Deng, “Cross-pose 1Ifw: A database for studying cross-
pose face recognition in unconstrained environments,” Technical Report,
2018. 9

T. Zheng, W. Deng, and J. Hu, “Cross-age lfw: A database for
studying cross-age face recognition in unconstrained environments,”
arXiv:1708.08197,2017. 9

M. Wang, W. Deng, J. Hu, X. Tao, and Y. Huang, “Racial faces in the wild:
Reducing racial bias by information maximization adaptation network,”
in ICCV, 2019. 9

C. Whitelam, E. Taborsky, A. Blanton, B. Maze, J. C. Adams, T. Miller,
N. D. Kalka, A. K. Jain, J. A. Duncan, and K. Allen, “Tarpa janus
benchmark-b face dataset.” in CVPR Workshop, 2017. 9

B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto, A. K.
Jain, W. T. Niggel, J. Anderson, and J. Cheney, “Iarpa janus benchmark—c:
Face dataset and protocol,” in /CB, 2018. 9

I. Kemelmacher-Shlizerman, S. M. Seitz, D. Miller, and E. Brossard, “The
megaface benchmark: 1 million faces for recognition at scale,” in CVPR,
2016. 9, 10

H.-W. Ng and S. Winkler, “A data-driven approach to cleaning large face
datasets,” in ICIP, 2014. 10

A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black, “Generating 3d faces
using convolutional mesh autoencoders,” in European Conference on
Computer Vision (ECCV), 2018, pp. 704-720. 10, 11

G. Bouritsas, S. Bokhnyak, S. Ploumpis, M. Bronstein, and S. Zafeiriou,
“Neural 3d morphable models: Spiral convolutional networks for 3d shape
representation learning and generation,” in International Conference on
Computer Vision (ICCV), 2019. 10

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

[87] P. Velickovié, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” International Conference on
Learning Representations (ICLR), 2018. 11

N. Verma, E. Boyer, and J. Verbeek, “Feastnet: Feature-steered graph
convolutions for 3d shape analysis,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2018. 11

F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M.
Bronstein, “Geometric deep learning on graphs and manifolds using
mixture model cnns,” in Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 11

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Advances in
neural information processing systems (NeurIPS), 2016. 11

V. Blanz and T. Vetter, “A morphable model for the synthesis of 3d faces,”
in Proceedings of the 26th annual conference on Computer graphics and
interactive techniques (SIGGRAPH), 1999. 11

F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black, “Dynamic faust:
Registering human bodies in motion,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. 11

[88]

[89]

[90]

[91]

[92]

Grigorios G. Chrysos is a fourth year PhD
student in Imperial College London working with
Stefanos Zafeiriou. Previously, he graduated
from National Technical University of Athens
(2014). He has published his work on deformable
models in prestigious journals (T-PAMI, IJCV,
T-IP), while he has co-organised workshops for
deformable models, e.g. 2D/3D facial landmark
tracking, in CVPR/ICCV. He is a reviewer in
prestigious journals including T-PAMI, IJCV.
Currently, his primary research interest is on
machine learning, including generative models, tensor decompositions
and modelling high dimensional distributions; his recent work has been
published in top tier conferences (CVPR, ICLR).

Stylianos Moschoglou received his
Diploma/MEng in Electrical and Computer
Engineering from Aristotle University of
Thessaloniki, Greece, in 2014. In 2015-16, he
pursued an MSc in Computing (specialisation
Artificial Intelligence) at Imperial College London,
U.K., where he completed his project under
the supervision of Dr. Stefanos Zafeiriou. He
is currently a PhD student at the Department
of Computing, Imperial College London, under
the supervision of Dr. Stefanos Zafeiriou. His
interests lie within the area of Machine Learning and in particular in
Generative Adversarial Networks and Component Analysis.

Giorgos Bouritsas is a 2nd year PhD student
in Imperial College London working with Prof.
Michael Bronstein and Prof. Stefanos Zafeiriou.
Giorgos graduated from National Technical
University of Athens (NTUA) with an MEng
Diploma in Electrical and Computer Engineering
in 2017. Before starting his PhD he spent
time as a visiting researcher at the Universitat
Politécnica de Catalunya (UPC), Barcelona, and
as a research associate at the National Center
for Scientific Research “Demokritos”, Athens
conducting research on computer vision and machine learning. His
current research interests lie within the field of on non-Euclidean deep
learning, graph neural networks, graph signal processing & network
science, and he is particularly focused on the expressivity of graph
neural networks and generative models for non-Euclidean data.

14

Jiankang Deng is a Ph.D. candidate in the In-
telligent Behaviour Understanding Group (IBUG)
at Imperial College London (ICL), supervised by
Stefanos Zafeiriou and funded by the Imperial
President’s PhD Scholarships. He is in the project
of EPSRC FACER2VM (Face Matching for Auto-
matic Identity Retrieval, Recognition, Verification
and Management). His Ph.D. research topic is
face analysis (face detection, face alignment,
face recognition and face generation). During
his PhD studies, he has organised the Menpo
2D Challenge (CVPR 2017), the Menpo 3D Challenge (ICCV 2017)
and Lightweight Face Recognition Challenge (ICCV 2019). He also
won many academic challenges, such as ILSVRC Object Detection
and Tracking 2017, Activity-Net Untrimmed Video Classification 2017,
iQlIYI Celebrity Video Identification Challenge 2018, Disguised Face
Recognition Challenge 2019. He is a reviewer in prestigious computer
vision journals and conferences including T-PAMI, IJCV, CVPR, ICCV
and ECCV. He is the main contributor of the widely used open-source
platform Insightface.

Yannis Panagakis is an Associate Professor of
machine learning and signal processing at the
University of Athens. His research interests lie
in machine learning and its interface with sig-
nal processing, high-dimensional statistics, and
computational optimization. Specifically, Yannis
is working on models and algorithms for robust
and efficient learning from high-dimensional data
and signals representing audio, visual, affective,
and social information. He has been awarded
the prestigious Marie-Curie Fellowship, among
various scholarships and awards for his studies and research. He co-
organized the BMVC 2017 conference and several workshops and
special sessions in top venues such as ICCV. He received his PhD and
MSc degrees from the Department of Informatics, Aristotle University of
Thessaloniki and his BSc degree in Informatics and Telecommunication
from the University of Athens, Greece.

Stefanos Zafeiriou (M'09) is a Reader in Ma-
chine Learning and Computer Vision with the De-
partment of Computing, Imperial College London,
U.K, and a Distinguishing Research Fellow with
University of Oulu. He was a recipient of the Pres-
tigious Junior Research Fellowships from Impe-
rial College London in 2011 to start his own inde-
pendent research group. He was the recipient of
the President’'s Medal for Excellence in Research
Supervision for 2016. He currently serves as an
Associate Editor of the IEEE Transactions on
Affective Computing and Computer Vision and Image Understanding jour-
nal. He has been a Guest Editor of over six journal special issues and co-
organised over 13 workshops/special sessions on specialised computer
vision topics in top venues, such as CVPR/FG/ICCV/ECCV. He has co-
authored over 55 journal papers mainly on novel statistical machine learn-
ing methodologies applied to computer vision problems, such as 2-D/3-D
face analysis, deformable object fitting and tracking, published in the most
prestigious journals in his field of research, such as the IEEE T-PAMI,
the International Journal of Computer Vision, the IEEE T-IP, the IEEE
T-NNLS, the IEEE T-VCG, and the IEEE T-IFS, and many papers in top
conferences. He has more than 10000 citations to his work, h-index 51.

