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Abstract

Human face exhibits an inherent hierarchy in its repre-

sentations (i.e., holistic facial expressions can be encoded

via a set of facial action units (AUs) and their intensity).

Variational (deep) auto-encoders (VAE) have shown great

results in unsupervised extraction of hierarchical latent rep-

resentations from large amounts of image data, while be-

ing robust to noise and other undesired artifacts. Poten-

tially, this makes VAEs a suitable approach for learning

facial features for AU intensity estimation. Yet, most exist-

ing VAE-based methods apply classifiers learned separately

from the encoded features. By contrast, the non-parametric

(probabilistic) approaches, such as Gaussian Processes

(GPs), typically outperform their parametric counterparts,

but cannot deal easily with large amounts of data. To

this end, we propose a novel VAE semi-parametric mod-

eling framework, named DeepCoder, which combines the

modeling power of parametric (convolutional) and non-

parametric (ordinal GPs) VAEs, for joint learning of (1) la-

tent representations at multiple levels in a task hierarchy1,

and (2) classification of multiple ordinal outputs. We show

on benchmark datasets for AU intensity estimation that the

proposed DeepCoder outperforms the state-of-the-art ap-

proaches, and related VAEs and deep learning models.

1. Introduction

Automated analysis of facial expressions has many ap-

plications in health, entertainment, marketing and robotics,

where measuring facial affect can help to make inferences

about the patient’s conditions, user’s preferences, but also

∗These authors contributed equally to this work.
1The benefit of using VAE for hierarchical learning of image features

in an unsupervised fashion has been shown in [34], which is particularly

important for addressing the hierarchy in face representation: low - sign

level (AUs), high - judgment level (emotion expressions) [11].
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Figure 1: The proposed 2-layer DeepCoder: the input is a

face image, and the outputs are the reconstructed face image

and AU intensity levels. The top variational convolutional

autoencoder (VAE) performs the first level coding (Z0) of

the facial features, while further encoding (Z1) of these fea-

tures is optimized for AU intensity estimation using ordinal

GP variational autoencoder (VO-GPAE).

enable more user-friendly and engaging technology. Facial

expressions are typically described in terms of the config-

uration and intensity of facial muscle actions using the Fa-

cial Action Coding System (FACS) [11]. FACS defines a

unique set of 30+ atomic non-overlapping facial muscle ac-

tions named Action Units (AUs) [33], with rules for scoring

their intensity on a six-point ordinal scale. Using FACS,

nearly any anatomically possible facial expression can be

described as a combination of AUs and their intensities.

However, despite the rapid growth in available facial im-

ages (videos), there is an overall lack of annotated images

(in terms of AUs). This is mainly because it entails a costly

and time-consuming labeling effort by trained human an-

notators. For instance, it may take more than an hour for

the expert annotator to code the intensity of AUs in one

second of a face video. Even then, the annotations are bi-
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ased, resulting in a low agreement between the annotators.

This is further challenged by a large variability in imaging

conditions, facial morphology and dynamics of expressions.

Therefore, there is a need for machine learning models that

can efficiently and accurately perform the AU coding of tar-

get face images.

Recent advances in deep neural networks (DNN), and, in

particular, convolutional models (CNNs) [15], have shown

great advances towards automating the process of image

coding. The effectiveness of these models has been demon-

strated on many general vision problems [25, 48, 47]. In the

context of facial expression analysis, the majority of exist-

ing ’deep’ works consider only baseline tasks such as ex-

pression recognition and AU detection [30, 57, 21]. Only

a handful of these works attempted AU intensity estimation

[15]. This is due to the limited annotated face images of AU

intensity (that otherwise could fully be exploited in deep

learning), and the difficulty in discerning AU intensities.

Traditionally, the AU intensity estimation has been ad-

dressed by non-deep models (SVMs, CRFs, etc.) [54, 17],

and using geometric features such as the locations of char-

acteristic facial points, and/or hand-crafted appearance-

based features (such as LBPs, Gabors or SIFT). An alter-

native approach that is being commonly adopted in a vari-

ety of computer vision tasks is to automatically extract most

informative features from (high-dimensional) input images

using the notion of convolutitonal auto-encoders (CAE)

[34, 51, 24]. CAE differ from conventional AEs [7] as they

are built using convolutional layers with shared weights

among neighborhood pixels that preserve the spatial local-

ity. The CAE architectures are typically similar to that of

a CNN with additional inverse convolution operation [34].

The key ingredient of CAEs is that they are learned by min-

imizing the reconstruction loss without the need for image

labels, while reducing the effects of noise in the input.

Consider a practical example typically occurring in au-

tomated analysis of facial expressions, and, in particular,

AU intensity coding: we have access to a large corpora of

unlabeled face images, but only a few thousand images are

coded in terms of AU intensity. To fully leverage the avail-

able data, efficient and highly expressive generative models

based on VAE can be used to find a set of underlying fea-

tures from unlabeled images. Due to the reconstruction cost

of VAEs, it is assured that the obtained features represent

well the high dimensional face images. Then, highly ex-

pressive non-parametric prediction models (e.g., based on

GPs [39]) can be applied. This allows them to focus on

the main task - in our case, the AU intensity estimation,

instead of the computationally expensive feature selection.

More importantly, such non-parametric approaches when

applied to robust input features are expected to generalize

better than their parametric counterparts (e.g., soft-max out-

put layer of DNNs) due to the ability to preserve specific

structures in target features – such as subject-specific varia-

tion in AU intensity. This is achieved by means of their ker-

nel functions that can focus on data samples in the VAE fea-

ture space, effectively doing smoothing over training sub-

jects to make best prediction of AU intensity levels for the

test subject.

While the approach described above is a promising av-

enue for the design of a class of semi-parametric auto-

encoding models, independently applying the two models

(e.g., VAE for feature extraction, and non-parametric mod-

els for AU intensity estimation) is suboptimal as there is no

sharing of information (and parameters). To this end, we

propose a novel model, named DeepCoder, that leverages

the power of parametric and non-parametric VAEs in a uni-

fied probabilistic framework. Specifically, DeepCoder is a

general framework that builds upon a hierarchy of any num-

ber of VAEs, where each coding/decoding part of the inter-

mediate VAEs interacts with the neighboring VAEs during

learning, assuring the sharing of information in both direc-

tions (bottom-up & top-down). This is achieved through a

newly introduced approximate learning of VAEs in Deep-

Coder. We illustrate this approach by designing an instance

of DeepCoder as a two-level semi-parametric VAE (2DC) -

the top level being the standard parametric VAE [23], and

the bottom level (also used for AU intensity estimation) be-

ing a non-parametric Variational Ordinal Gaussian Process

AE (VO-GPAE) [12]. We choose these two approaches as

their probabilistic formulation allows for tying of their pri-

ors over the latent features, in a principled manner. The

model is depicted in Fig. (1). We show on two benchmark

datasets for AU intensity estimation (DISFA[35] and FERA

[50]) that the proposed approach outperforms the state-of-

the-art approaches for the AU intensity estimation.

2. Related Work

2.1. Facial Action Unit Intensity Estimation

Estimation of AUs intensity is often posed as a multi-

class problem approached using Neural Networks [19], Ad-

aboost [3], SVMs [32] and belief networks [31] classifiers.

Yet, these methods are limited to a single output, thus, a

separate classifier is learned for each AU - ignoring the AU

dependencies. This has been addressed using the multi-

output learning approaches. For example, [36] proposed a

multi-task learning for AU detection, where a metric with

shared properties among multiple AUs was learned. Simi-

larly, [41] proposed a MRF-tree-like model for joint inten-

sity estimation of AUs. [17] proposed Latent-Trees (LTs)

for joint AU-intensity estimation that captures higher-order

dependencies among the input features and AU intensities.

More recently, [54] proposed a multi-output Copula Regres-

sion for ordinal estimation of AU intensity. However, these

cannot directly handle high-dimensional input face images.
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2.2. CNNs for Facial Expression Analysis

CNNs operate directly on the input face images to ex-

tract optimal image features. [30] introduced an AU-aware

receptive field layer in a deep network, designed to search

subsets of the over-complete representation, each of which

aims at simulating the best combination of AUs. Its output

is then passed through additional layers aimed at the expres-

sion classification, showing a large improvement over the

traditional hand-crafted features. In [15], a CNN is jointly

trained for detection and intensity estimation of AUs. More

recently, [57] introduced an intermediate region layer learn-

ing region specific weights. These methods are paramet-

ric, with the CNN used to extract deep features; yet, the

network output remains unstructured. Thus, none of these

models exploits CNNs in the context of (ordinal) deep semi-

parametric models, as done in DeepCoder. Note also that in

DeepCoder we exploit a label-augmented version of VAEs,

which can be seen as a variant of CNNs used for classifica-

tion, but with an additional noise-reduction cost (decoder).

2.3. Autoencoders (AE)

The main idea of AEs is to learn latent representa-

tions automatically from inputs, usually in an unsuper-

vised manner [34, 2, 29]. Recenly, variational AEs (VAEs)

have gained attention as parametric generative models [14,

23, 22, 45] and their stacked or convolutional variations

[26, 27]. Example applications include the reconstruction

of noisy and/or partially missing data [52, 53], or feature

extraction for classification [7]. Furthermore, AEs based

on deep networks have shown their efficacy in many face-

related recognition problems [18, 31, 56].

AEs are also closely related to GP Latent Variable Mod-

els (GPLVMs) with ”back-constraints” [28, 49, 44]. This

mapping facilitates a fast inference mechanism and enforces

structure preservation in the latent space. In [10, 8], the

authors proposed a variational approximation to the latent

space posterior. [16] proposed deep GPs for unsupervised

data compression. More recently, [12] introduced a Vari-

ational Ordinal GP AE (VO-GPAE), which includes a GP

mapping as the decoding model. This allows VO-GPAE to

learn the GP encoders/decoders in a joint framework. We

extend this formulation of the non-parametric VAE by em-

bedding it into the bottom layer of DeepCoder, while using

the (parametric) convolutional AE at the top - achieving an

efficient feature extraction.

3. DeepCoder: Methodology

Assume we are given a training dataset D = {X,Y },

with ND input images X = [x1, . . . ,xi, . . . ,xND
]T .

The corresponding labels Y = [y1, . . . ,yi, . . . ,yND
]T

are comprised of multivariate outputs stored in yi =

{y1
i , . . .y

q
i , . . .y

Q
i }, where Q is the number of AUs, and

y
q
i takes one of {1, ..., Lq} intensity levels. Our goal is to

predict y∗ and reconstruct x
′

∗, given a new test input im-

age x∗. To learn the highly non-linear mappings X → Y ,

we perform encoding and decoding of input features X via

multiple layers of VAEs. These layers are encoded by the

latent variables Z = {Zi}, i = 0, . . . , N − 1, where the

dimension of Zi can vary for each i, and N is the num-

ber of layers. For simplicity, we first assume a single VAE

layer with latent variables Z0. This leads to the following

marginal log-likelihood and its corresponding variational

lower bound:

log p(X,Y ) = log

∫

p(X|Z0)p(y|Z0)p(Z0)dZ0 (1)

≥ Eq(Z0|X)[ log p(X|Z0)]

+ Eq(Z0|X)[ log p(Y |Z0)]

−DKL(q(Z0|X)||p(Z0))

(2)

In Eq. (1), the first two terms are the reconstruction loss

over the input features and output labels, respectively, under

the estimated posterior. The second term is the Kullback-

Leibler (KL) divergence which measures the difference be-

tween the approximate and true posterior. We obtain the lat-

ter by exploiting the conditional independence X ⊥⊥ y|Z0

(see [12] for details). To account for more complex depen-

dencies between (X,Y ), we generalize Eq. (2) by expand-

ing p(Z0) as a stack of N VAE layers (see Fig. (2))

∫
p(Z0|Z1) . . .

∫
p(ZN−1|ZN )p(ZN )dZN

︸ ︷︷ ︸

p̃(Zn−1)

...

. . . dZ1

︸ ︷︷ ︸

p̃(Z0)

(3)

This approach has high modeling power; however, it comes

X Z0 Z1 Zn−1 Zn Y

X|Z0

Z0|X

p̃(Z0) ∼ Z0|Z1

Z1|Z0 ZN |ZN−1

p̃(ZN−1) ∼ ZN−1|ZN

Y |ZN

Figure 2: The general formulation of DeepCoder as a

stack of N VAEs, modeling the input-output pairs: (X ,Y ).

The conditionals (Z0|X), . . . (Y |ZN ) from left to right in

DeepCoder perform the coding part, while from right to left

perform the decoding part via (ZN−1|ZN ), . . . (X|Z0).
Note that for N=2, we obtain the proposed 2-layer Deep-

Coder, modeled using VC-AE and VO-GPAE, respectively.

with the cost of having to simultaneously learn multiple

(deep) layers of latent variables Z. While this is compu-

tationally tractable for a single layer (Z0), in the case of
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more layers, we need to resort to approximate methods.

To this end, we propose an optimization approach that se-

quentially performs a chain-like propagation of uncertainty

of each coder. Specifically, we solve for the posteriors of

each coder ’locally’ and use the learned posteriors to de-

fine the (approximate) prior p(Z), needed to compute the

KL divergence of each subsequent coder in the sequence

from ’bottom-up’ (a practical example of this is described

in Alg. (1)). For the (N − 1)-th VAE, instead of using a flat

Gauss prior p(ZN−1), we approximate it using the poste-

rior of the N -th decoder learned as:

log p̃(Zn−1) ≥Eq(ZN |ZN−1)[ log p(ZN−1|ZN )]

−DKL(q(ZN |ZN−1)||p̃(ZN ))
(4)

Note the main benefit of the proposed: instead of assum-

ing a flat prior over the latent variables, as typically done

in existing VAE [23], we define the priors on Z that are

informed of the uncertainty of each coder ’below’ in the

deep structure, while also retaining the information about

the decoding error of all subsequent coders. Thus, by ex-

ploiting the conditional independence of Z at each level of

DeepCoder, we seamlessly ’encode’ complex relationships

between X and Y . From the regularization perspective, we

constrain the parameters via the KL terms (based on pri-

ors p̃(Z)) at each level of coding/decoding in DeepCoder.

Fig. (2) illustrates the main idea for the general case. Us-

ing this framework, we generate an instance of DeepCoder

as a two-layer semi-parametric coder: the top coder takes

the parametric form (Convolutional VAE) and the bottom

the non-parametric form (VAE based on GPs). We choose

these two because their probabilistic formulation allows us

to combine them in a Bayesian framework. Also, instead of

using directly CNNs in the first layer, we opt for using VAEs

due to their de-noising of input features (although we aug-

ment the subspace learning using target labels as in CNNs).

3.1. Variational Convolutional AEs (VC­AE)

In the top layer, we use the VC-AE to map the inputs X

onto the latent space Z0. A decoder network is then used

to map these latent space points back to the original input

data. Formally, the parameters of VC-AE are learned by

maximizing the objective:

LV C−AE(Wd, µ, σ) = Lkl,X + Lr,X

Lkl,X = −DKL(qµ,σ(Z0|X)||p(Z0))

Lr,X = Eq(Z0|X)[ log p(X|Z0)]

(5)

where the KL divergence (Lkl,X ) and reconstruction term

(Lr,X ), form the variational lower bound typically opti-

mized in VC-AEs. The conditionals are parametrized as:

X|Z0 = fZ0→X(·; θZ0→X), (6)

Z0|X = fX→Z0
(·; θX→Z0

). (7)

Their functional forms are given by the VC encoder (Z0|X)

and decoder (X|Z0). For the convolutional coder part

(θZ0→X ), we used 5 convolutional layers containing 128,

64, 32, 16 and 8 filters. The filter size was set to 5 × 5
pixel followed by ReLu (Rectified Linear Unit) activation

functions [23]. We also used 2× 2 max pooling layers after

each convolutinonal layer. The compressed representations

are 15 × 20 × 16 pixels and are passed to two fully con-

nected layers, which return 2000 features each, with the

latent space variational posterior q(Z0|X) ∼ N (µ, σ2).
For deconvolution (θX→Z0

), we used up-scaling instead of

max-pooling and deployed the inverse encoder architecture.

For this, we exploited the re-parameterization trick [23]. We

sample points z at random from the distribution of latent

variables Z0, in order to generate the data. Finally, the de-

coder network maps z back to the original input.

3.2. Variational Ordinal GP AEs (VO­GPAE)

We employ the VO-GPAE [12] approach to model the

second VAE in DeepCoder: Z0 ∈ R
ND×ND0 being the

input and Z1 the corresponding latent variables. Similar to

VC-AEs (Sec. (3.1)), the objective of this layer becomes:

LV O−GPAE(Wo, θGP , V ) = Lkl,Z0
+ Lr,Z0

+ Lo,Z0

Lkl,Z0
= −DKL(q(Z1|Z0)||p(Z1))

Lr,Z0
=

D0∑

d=0

Eq(Z1|Z0)[ log p(z
d
0|Z1)]

Lo,Z0
= Eq(Z1|Z0)[log p(Y |Z1,Wo)],

(8)

where

Z0|Z1 = fZ1→Z0
(·; θZ1→Z0

), (9)

Z1|Z0 = fZ0→Z1
(·; θZ0→Z1

), (10)

Y |Z1 = fZ1→Y (·;Wo). (11)

Here, fZ1→Z0
and fZ0→Z1

are the encoding and decod-

ing mappings with GP priors, θZ1→Z0
and θZ0→Z1

are the

corresponding kernel parameters, and fZ1→Y is the clas-

sification function. We place GP priors on both mappings,

resulting in:

p(Z0|Z1) = N (0,KZ1→Z0
+ σ2

vI), (12)

p(Z1|Z0) = N (0,KZ0→Z1
+ σ2

rI), (13)

p(Z0) =

∫ D0∏

d=1

p(zd
0|Z1)p(Z1)dZ1, (14)

where Do is the dimension of Z0. Since computing its

marginal likelihood is intractable (due to the non-linear cou-

pling of the GP kernels), we resort to approximations. To
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this end, the approximate variational distribution q(Z1|Z0)
is used to recover a Bayesian non-parametric solution for

both the GP encoder & decoder, and is defined as:

q(Z1|Z0) =
∏

i
N (m̂i,Si + σ̂2

i I), (15)

where M = {mi}, i = 1, ..., N and S = {Si}, i =
1, ..., N are variational parameters, and m̂i = mi −
[
K−1

Z1→Z0
M

]

i
/
[
K−1

Z1→Z0

]

ii
and σ̂2

i = 1/
[
K−1

Z1→Z0

]

ii
is the leave-one-out solution of GP [39].

We further constrain the latent variable Z1 by imposing

the ordinal structure on the output labels Y as:

p(Y |Z1) =
∏

i,c

■(yi = c)p(yi|z1i) , (16)

p(yi = s|z1i) =

{

1 if fZ1→Y (z1i) ∈ (γc,s−1, γc,s]

0 otherwise,
,

(17)

fZ1→Y (z1i) = wT
o z1i + ǫ, ǫ ∼ N (0, σ2

o), (18)

where ■(·) is the indicator function that returns 1 (0) if the

argument is true (false) and i = 1, . . . , N indexes the train-

ing data. γc,0 = −∞ ≤ · · · ≤ γc,S = +∞ are the

thresholds or cut-off points that partition the real line into

s = 1, . . . , S contiguous intervals. We arrive at the ordinal

log-likelihood (see [5] for details):

Eq(Z1|Z0)(log p(Y |Z1,W o)) =
∑

i,c

I(yic = s) log

(

Φ

(
γc,s −wT

o z1i

σo

)

− Φ

(
γc,s−1 −wT

o z1i

σo

)) (19)

where Φ(·) is the Gaussian cumulative density function.

The random process of recovering the latent variables

has two distinctive stages: (a) the latent variables Z1 are

generated from some general prior distribution p(Z1) =
N (0, I), and further projected to the labels’ ordinal plane

via p(Y |Z1); (b) the input Z1 is generated from the condi-

tional distribution p(Z1|Z0). The model parameters are:

θGP = {θZ1→Z0
, θZ0→Z1

}, Wo = {wo, σo}, and

V = {M,S} are variational parameters.

4. Learning and Inference

Learning of DeepCoder consists of maximizing the joint

lower bound (Sec. (4.3)) w.r.t the VC-AEs parameters (Wd,

µ, σ) and the VO-GPAE (hyper-) parameters (V , θGP ,Wo).2

For the GP-encoder/decoder kernel, we use the radial ba-

sis function (RBF) with automatic relevance determination

(ARD), which can effectively estimate the dimensionality

of the latent space [9]. For both VC-AE and VO-GPAE, we

2This is not an exact lower bound for target objective function but a

combination of the two bounds obtained via coupling of the posteriors.

utilize a joint optimization scheme using stochastic back-

propagation [40], with the re-parameterization trick [23].

Before we detail the steps of our learning algorithm, we

first describe the proposed iterative balanced batch learning

(Sec. (4.1)) and the warming criterion to efficiently learn

the latent features (Sec. (4.2)). These strategies turn out to

be critical in avoiding overfitting and achieving significant

learning speed-ups.

4.1. Iterative Balanced Batch Learning

Minimizing the model objective using all training data

can easily lead to a local minimum, and, thus, poor perfor-

mance. This is due to the inherent hierarchical structure of

the model (VAE layers), and highly imbalanced AU inten-

sity labels. We introduce an iterative balanced batch learn-

ing approach to deal with the data imbalance. The main

idea is to update each set of parameters with batches that

are balanced with respect to subjects in the dataset (number

of example images of each subject) and AU intensity levels.

This ensures that the network used for facial feature extrac-

tion is not biased towards a specific subject/AU level. We

use Stochastic Gradient Descent (SGD) with a batch size of

32, learning rate of 0.01 and momentum of 0.9.

4.2. Warming Strategy

The lower bound in Eq. (5&8) consists of three terms.

Each model that encodes a latent variable Zi will have a

non-zero KL term and a relatively small cross-entropy term.

Practically, implementations of such AEs will struggle to

learn this behavior. As pointed out in [46, 4, 38], training

these models will lead to consistently setting the approxi-

mate distribution q(Zi|Zi−1) equal to the prior p(Zi), and

thus bringing the KL divergence to zero. This can be of ad-

vantage and seen as ARD, but also be a challenge in train-

ing for the latent space to learn a useful (and discriminative)

representation. To avoid this, we propose different warm-up

strategies for training VAEs in DeepCoder. Specifically, in-

stead of directly maximizing the lower bound of the VC-AE

(Eq.(5)), we augment the learning by including the expecta-

tion of the predicted labels (Lp) for intensity classification

of AUs, steering the parameters towards more discrimina-

tive latent representations. Formally, this is attained by us-

ing the weighted objective given by:

LV C−AE = αLkl,X + Lr,X + (1− α)Lp,X , (20)

where

Lp,X = Eq(Z0|X)[ log(p(Y |Z0,Wd))], (21)

Y |Z0 = fZ0→Y (·;Wc). (22)

Here, (Y |Z0) can be modeled using any classifier Wc (we

used logistic regression). Note that initially (α = 0) we fo-

cus on finding a discriminative subspace at the first layer of
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DeepCoder. With the increasing number of iterations, the

KL divergence term overtakes the classification loss, assur-

ing the smoothness of the subspace Z0. We then construct

a lower bound for VO-GPAE with a warming term as:

LV O−GPAE = βLkl,Z0
+ Lr,Z0

+ Lo,Z0
. (23)

Both α and β are linearly increased from 0 to 1 during the

first Nt epochs of training. Note that in the beginning, we

include the classification loss in the first layer - which acts

as a regularizer. However, it slowly diminishes as we ob-

tain more stable estimates of the variational distributions at

each layer, since toward reaching the Nt-th epoch, the VO-

GPAE classifier stabilizes and Z0 need no more be class-

regularized. We found that this approach works very well

in practice, as shown in Sec. (5).

4.3. Joint Learning

In the 2-layer DeepCoder, we optimize the lower bound:

LDC = LV C−AE + LV O−GPAE . (24)

The main bottleneck of the second AE is that it cannot use

all training data as the computation of covariance function

in VO-GPAE would be prohibitively expensive. Because

of this, we propose a ’leave-subset-out’ strategy, where we

learn the target AEs in an iterative manner. Specifically, we

split the training dataset X in two non-overlapping subsets,

XR and XL, XR >> XL. XR is used for training VC-AE,

while XL is used for training VO-GPAE. First, VC-AE is

initialized using XR by minimizing Eq. (5) for 5 epochs,

followed by the two-step iterative training algorithm. In the

first step, we find the latent projections using XL, i.e., Z0,L

by VC-AE and learned parameter Wd, µR and σR from XR.

Z0,L are then used to train VO-GPAE for one epoch, min-

imizing Eq. (8). In the second step, we reconstruct XR as

Z0,R, and also compute the posteriors p̃(Z0,R), which are

then fed into the VC-AE to update its parameters by mini-

mizing Eq. (5) in one epoch. These two steps are repeated

until convergence of the joint lower bound L2DC . In this

way, we constantly update the prior on Z0, which prop-

agates the information from the bottom VO-GPAE, effec-

tively tying the parameters of the two AEs.

Inference in the proposed 2DC: the test data X∗ is first

projected to the latent space Z0 via the VC-AE, and then

further passed through the VO-GPAE via Z1. The obtained

latent positions are then used for ordinal classification of

target AU intensities. The decoding starts with the recon-

struction of the latent points in Z0, followed by the recon-

struction of X∗. These steps are summarized in Alg. (1).

5. Experiments

Datasets. We evaluate the proposed DeepCoder on

two benchmark datasets for AU intensity estimation:

Algorithm 1 DeepCoder: Learning and Inference

Learning: Input Dtr = (X,y)
Split X ∈ XR ∪XL, XR >> XL, and XR ∩XL = ∅.

repeat

if init run, p(Z0,R) ∼ N (0, 1)
else p̃(Z0,R) = p(Z0,R|Z1,L) end

Step 1: for 1 epoch, optimize LV C−AE given XR,

Z0,R = fX→Z0
(XR) and Z0,L = fX→Z0

(XL)
Step 2: for 1 epoch, optimize LV O−GPAE given Z0,L,

Z0,R = fZ1→Z0
(fZ0→Z1

(Z0,R))
until convergence of L2DC

Output: Wd, µR, σR,Wo, θGP , VL

Inference: Input Dte = (X∗)
Step 1: Z1,∗ = fZ0→Z1

(fX→Z0
(X∗,Wd))

Step 2: y
∗
= fZ1→Y (Z1,∗,Wo)

X ′

∗ = fZ0→X(fZ1→Z0
(Z1,∗),Wd)

Output: X ′

∗, y∗

DISFA [35] and FERA2015 challenge data [50]. Both con-

tain per frame AU intensity annotations on a 6-point ordinal

scale (DISFA 12, FERA2015 6 AUs). Also, we performed

subject-independent validation: DISFA (3 folds: 18 train/9

test subjects), and FERA2015 (2 fold: 21 train / 20 test).

Pre-Processing. For the CNN-based models, we used

the dlib face detector [20] to extract the face location from

images in each dataset. We then registered the 49 facial

points to a reference frame (average points in each dataset)

using a similarity transform and cropped a bounding box

of 240 × 160 pixel size. These were then normalized

using per-image histogram-equalization, which increases

the robustness against illumination changes. For models

in which it is not feasible to process high dimensional

features from raw images, we extracted the 2000-D fea-

tures (Z0) from the CNN - in our experiments, this size

was found optimal for the competing methods. During

evaluation, we used the negative log-predictive density

(NLPD) for the reconstruction error, and for classification

the mean squared error (MSE), the classifier’s consistency

of the relative order of the intensity levels, and intra-class

correlation (ICC(3,1)) [42] - agreement between annotators.

Models. As a baseline, we use the multivariate linear

regression (MLR) for joint estimation of AU intensities

and the standard ordinal regression (SOR) [1] serves as

the second baseline. The CNN [15] model is a standard

2-layer CNN for multi-output classification (we used the

same setting as in [15]). The OR-CNN [37] is an ordinal

CNN that was originally introduced for the task of age

estimation; we applied it to our task. VGG16 [43] is a

widely used NN for object detection. To adapt it for our

task, we used the pre-trained model and fine-tuned the last

3 layers. As a baseline for the GP-based models, we use the
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Table 1: Performance of different models for AU intensity estimation on the DISFA and FERA2015 database. DC- and

CNN-based models were trained using raw images as input. The results for the models highlighted with † were taken from

[12] (the model trained with LBP+landmark features). The model highlighted with ⋆ was trained with the deep features,

extracted from the last layer of the best performing CNN [15], and, thus, is directly comparable to the proposed 2DC.

Dataset: DISFA FERA2015

AU: 1 2 4 5 6 9 12 15 17 20 25 26 Avg. 6 10 12 14 17 Avg.

IC
C

2DC .70 .55 .69 .05 .59 .57 .88 .32 .10 .08 .90 .50 .50 .76 .71 .85 .45 .53 .66

DCp .52 .49 .48 .18 .59 .39 .74 .15 .26 .08 .80 .44 .43 .74 .72 .84 .33 .52 .63

CNN [15] .58 .52 .55 .20 .59 .42 .78 .08 .25 .04 .84 .54 .44 .76 .70 .85 .36 .49 .63

OR-CNN [37] .33 .31 .32 .16 .32 .28 .71 .33 .44 .27 .51 .36 .36 .71 .63 .87 .41 .31 .58

CCNN-IT [55] .18 .15 .61 .07 .65 .55 .82 .44 .37 .28 .77 .54 .45 .75 .69 .86 .40 .45 .63

VGG16 [43] .46 .44 .44 .06 .44 .34 .59 .01 .11 .03 .71 .42 .32 .63 .61 .73 .25 .31 .51

VO-GPAE [12]⋆ .18 .00 .27 .15 .57 .34 .80 .01 .00 .02 .88 .55 .31 .72 .66 .78 .43 .56 .63

VO-GPAE [12]† .48 .47 .62 .19 .50 .42 .80 .19 .36 .15 .84 .53 .46 .75 .66 .88 .47 .49 .65

VAE-DGP [8]⋆ .37 .32 .43 .17 .45 .52 .76 .04 .21 .08 .80 .51 .39 .70 .68 .78 .43 .31 .58

GP [39]⋆ .26 .11 .32 .12 .45 .32 .31 .02 .18 .06 .85 .42 .28 .61 .57 .71 .32 .35 .51

SOR [1]⋆ .15 .13 .34 .03 .48 .22 .78 .00 .10 .06 .79 .42 .29 .61 .57 .77 .29 .27 .50

MLR⋆ .45 .39 .30 .11 .52 .26 .72 .09 .00 .01 .82 .39 .29 .74 .67 .81 .42 .25 .57

M
S

E

2DC .32 .39 .53 .26 .43 .30 .25 .27 .61 .18 .37 .55 .37 .75 1.02 .66 1.44 .88 .95

DCp .35 .44 .90 .03 .36 .36 .37 .26 .30 .19 .71 .57 .40 .85 1.03 .75 1.80 0.81 1.05

CNN [15] .34 .39 .81 .05 .37 .38 .34 .27 .31 .24 .63 .49 .38 .80 1.06 .66 1.57 .96 1.01

OR-CNN [37] .41 .44 .91 .12 .42 .33 .31 .42 .35 .27 .71 .51 .43 .88 1.12 .68 1.52 .93 1.02

CCNN-IT [55] .76 .40 .74 .07 .54 .41 .33 .14 .33 .20 .66 .41 .41 1.23 1.69 .98 2.72 1.17 1.57

VGG16 [43] .41 .54 1.14 .07 .39 .47 .40 .29 .53 .19 .64 .51 .39 .93 1.04 .91 1.51 1.10 1.10

VO-GPAE [12]⋆ 1.18 .77 1.14 .11 .22 .53 .16 .18 .99 .81 .21 .46 .56 0.9 .98 .67 1.81 1.31 1.11

VO-GPAE [12]† .51 .32 1.13 .08 .56 .31 .47 .20 .28 .16 .49 .44 .41 .82 1.28 .70 1.43 .77 1.00

VAE-DGP [8]⋆ 1.02 1.13 .92 .10 .67 .19 .33 .46 .58 .19 .69 .65 .57 .93 1.15 .80 1.66 1.14 1.13

GP [39]⋆ .49 .60 1.06 .08 .38 .30 .26 .25 .30 .19 .61 .69 .63 1.07 1.27 1.03 1.52 0.94 1.17

SOR [1]⋆ 1.35 .57 1.43 .09 .46 1.48 .40 .25 .62 .49 1.27 .93 .78 1.59 1.71 1.06 2.90 2.24 1.90

MLR⋆ .42 .49 1.04 .05 .40 .33 .45 .23 .24 .13 .62 .55 .41 .84 1.06 .72 1.35 1.04 1.00

standard GP [39] with a shared covariance function among

outputs. We also compare the proposed to VO-GPAE

[12], the state-of-the-art GP model for variational ordinal

regression. Here, we evaluated the model on two sets of

features: LBPs with facial landmarks, and deep features,

extracted using the CNN (our first coder). We evaluate

the proposed model in two settings: DCp is the fully

parametric DeepCoder (DCp), where we simply apply a

stack of two VC-AEs with a 50D latent space (Z1) and

2000D (Z0) features- as also set in our semi-parametric

2DC model, with VO-GPAE at the bottom layer. For

the iterative 2DC learning algorithm, we split the dataset

according to the algorithm in two subsets NL and NR.

Due to the computational complexity of GPs (O(N3)),
we chose a rather small subset of NL = 5000 to train

the VO-GPAE, while using the rest of data set for our

convolutional auto-encoder VC-AE (NR = 71223 for

FERA2015 and NR = 87209 for DISFA). For subset

NL, we also chose a subject balanced subset, i.e. every

subject is equally represented in the number of frames.

We used the pre-processed raw images as input to the

proposed DeepCoder and CNN based models. As the

GP-based models and the other baselines are not directly

applicable to high dimensional image data, we trained on

the LBP+landmark features and/or deep features, extracted

from the last layer of the best performing CNN [15] model.

For the sake of comparisons, we also include the results

from the recently published deep structured learning model

with the database augmentation - CCNN-IT [55] (we show

the reported results).

6. Results

Quantitative Results. Table (1) shows the comparative

results. On average, the CNN based models largely outper-

form the GPs in both measures across most of the AUs. This

is because CNNs are capable to jointly learn the embedded

space and classifier from raw images, while GPs are trained

on hand-crafted features, which turn out to be less discrim-

inative for the task. This can be particularly observed from

AU17 in both datasets. Also, both the relative shallow CNN

[15] and the DCp model achieve an ICC of 44%/43% on

DISFA and 63% on FERA2015, which is highest perfor-

mance using current deep models. By comparing the pre-

dictions of these two models, we see that the performance

of the fully parametric DCp does not increase by blindly

stacking VC-AEs on top of each other. The same applies

to the basic CNNs models. Furthermore, both models are

outperformed by the proposed semi-parametric 2DC. This

is mainly because GPs are known to provide a better classi-

fier (non-parametric, hence they are more flexible in mod-
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eling complex distributions). This can be seen from Fig. (

3), where the samples on the latent space Z1 are clustered

into different subjects. Note that this subject clustering in

the latent space has been done in an unsupervised manner

by GPs (i.e., no subject id was provided). The bottom VO-

GPAE layer benefits from the robust features coming from

the top VC-AE, and the jointly learned ordinal classifier us-

ing the proposed iterative algorithm (Alg. (1)).

The standard VGG16 [43] network does not achieve

competitive results with the proposed model, most likely

because it does not account for ordinal intensity levels and

does not perform simultaneous learning of latent features.

The OR-CNN [37] model, which has the same architecture

as CNN [15] but with the ordinal classifier, learns one bi-

nary classifier for each intensity level of each AU, result-

ing in a large number of parameters, easily prone to over-

fitting. Overall, from average results on both datasets, we

clearly see the benefits of the joint learning in the proposed

DeepCoder (2DC). Finally, note that the proposed Deep-

Coder outperforms the state-of-the-art approach (CCNN-IT

[55]), which takes advantage of CNNs and data augmenta-

tion based on multiple face datasets. Again, we attribute

this to the lack of non-parametric feature learning and ordi-

nal classifier in the latter.

Qualitative Results. Fig. (3) shows a summary of the

model loss per iteration and the learned latent spaces for the

two levels of the proposed DeepCoder, for the FERA2015

dataset. Fig. (3a) depicts the reconstruction error of the in-

put images X measured by (MSE) while Fig. (3b) visual-

izes the NLPD of the latent space Z0. While the recon-

struction loss of the images converges quickly after five it-

eration, the NLPD of Z0 steadily decreases but needs 50

iterations to converge. The reason is the initialization. The

weights for the latent space Z0 were initialized according

to [13] which has proven to converge quickly, while VO-

GPAE was initialized by drawing randomly from a normal

distribution. Thus, Z1 required more iterations to converge.

In Fig. (3c), we compare the lower bounds with and with-

out warming strategy (see Sec. (4.2)). As expected, with-

out warming strategy, the lower bound gets stuck in a local

minimum, while the warming strategy lead to a steady de-

crease in the bound value. From the latent spaces Z0 and

Z1 in Fig. (3e,3f), we observe that Z0 is clustered accord-

ing to subjects, but still the subjects are scattered over the

latent space (showing the model’s invariance to identity, as

also shown in [6]). However, in Z1 space, the model fits

each subject into a separate cluster. As evidenced by our

results, this clustering of the subjects leads to more efficient

features for AU intensity estimation. We attribute this to

the fact that GPs do an efficient smoothing over the training

subjects closest to the test subject in the learned subspace -

evidencing the importance of addressing the subject differ-

ences using non-parametric models.
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Figure 3: FERA2015: (a) the MSE reconstruction error, (b)

the NLPD of VO-GPAE, (c) the estimated variational lower

bound per data point, (d) ICC for the AU intensity estima-

tion, and the recovered latent spaces: Z0 (e), and Z1 (f).

7. Conclusions

We proposed a novel deep probabilistic framework,

DeepCoder, for learning of deep latent representations and

simultaneous classification of multiple ordinal labels. We

showed in the context of face analysis that the joint learn-

ing of parametric features, followed by learning of the non-

parametric latent features and target classifier, results in im-

proved performance on the target task achieved by the pro-

posed semi-parametric DeepCoder. We showed that this

approach outperforms parametric deep AEs, and the state-

of-the-art models for AU intensity estimation.
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