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Abstract

Arguably, Deformable Part Models (DPMs) are one of
the most prominent approaches for face alignment with im-
pressive results being recently reported for both controlled
lab and unconstrained settings. Fitting in most DPM meth-
ods is typically formulated as a two-step process during
which discriminatively trained part templates are first cor-
related with the image to yield a filter response for each
landmark and then shape optimization is performed over
these filter responses. This process, although computation-
ally efficient, is based on fixed part templates which are
assumed to be independent, and has been shown to result
in imperfect filter responses and detection ambiguities. To
address this limitation, in this paper, we propose to jointly
optimize a part-based, trained in-the-wild, flexible appear-
ance model along with a global shape model which results
in a joint translational motion model for the model parts
via Gauss-Newton (GN) optimization. We show how signif-
icant computational reductions can be achieved by build-
ing a full model during training but then efficiently opti-
mizing the proposed cost function on a sparse grid using
weighted least-squares during fitting. We coin the proposed
formulation Gauss-Newton Deformable Part Model (GN-
DPM). Finally, we compare its performance against the
state-of-the-art and show that the proposed GN-DPM out-
performs it, in some cases, by a large margin. Code for our
method is available from http://ibug.doc.ic.ac.
uk/resources

1. Introduction

Deformable models are extremely popular in computer
vision for two reasons. The first reason is that they span a
wide range of applications. For example, they have been ex-
tensively used for analyzing faces and medical images. The
second reason is that learning and fitting deformable models
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Figure 1. Overview of GN-DPMs: Given a shape estimate (a),
parts are extracted around the current estimate of the landmarks’
location (b), and reconstructed by a part-based, trained in-the-wild,
flexible appearance model (c). The reconstruction error (d) drives
the joint optimization of shape and appearance which is performed
by an efficient and robust Gauss-Newton algorithm. The optimiza-
tion results in a joint translational motion model for the parts and,
at each iteration, an update for the landmarks’ location is com-
puted. After a few iterations, we obtain the fitted shape of (e).

is one of the most challenging problems in computer vision
research. While some impressive developments have been
reported over the last years, arguably, we are still far away
from considering this problem solved. The focus of this
work is on the difficult problem of fitting facial deformable
models to unconstrained images, also known as face align-
ment in-the-wild.

Perhaps the most popular deformable models are the
Active Shape Models (ASMs) and the Active Appearance
Models (AAMs) [5, 4]. ASMs are generative models of
global shape built by applying Principal Component Anal-
ysis (PCA) to a set of aligned training shapes. Appearance
in ASMs is modelled locally by learning a patch expert for
each point of the shape model. Fitting the shape model to a
new image is an iterative process that entails (a) convolving
the local experts with the image, (b) generating candidate
locations for the landmarks by finding the locations of the
maximum filter responses, and (c) refining these locations
by a global shape optimization procedure. AAMs were pro-
posed as a sophisticated extension of ASMs for modelling
the process of generating instances of both shape and ap-
pearance of a specific object class. The shape model of an
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AAM is the same point distribution model of an ASM. An
AAM additionally models global appearance using PCA,
however, after removing texture variation due to shape de-
formation. As in ASMs, fitting an AAM to an image is
an iterative process. At each iteration, an update for the
model parameters is estimated which is typically a function
of the error between the model instance and the given im-
age. AAM fitting approaches include learning this function
via regression [4, 16, 17] or directly minimizing the error
via non-linear optimization [14, 20].

Because AAM fitting is considered a difficult problem,
recent research effort has concentrated on part-based meth-
ods commonly known as Deformable Part Models (DPMs)
[8, 18, 23]. DPMs are considered easier to optimize, more
robust and accurate due to the use of the local, part-based
representation which is less sensitive to lighting and global
appearance variations. A popular and very successful ap-
proach is the family of methods coined Constrained Local
Models (CLMs) one example of which is the original ASM
formulation [18]. CLMs differ from ASMs mainly in the
way that filter responses are used in the optimization of the
global shape model [6, 9, 21, 18, 13, 1]. For example in [6]
a general purpose optimizer is used, while [9, 21, 18, 13]
propose better tailored optimization strategies by assuming
various parametric/non-parametric models for the filter re-
sponses. We refer the reader to [18] for a seminal frame-
work which unifies various CLM approaches. The CLM of
[1] along with the Explicit Shape Regression approach of
[3] and the Supervised Descent Method (SDM) of [22] are
considered the state-of-the-art in face alignment.

A common characteristic of the majority of the afore-
mentioned works is that landmark detectors are learned dis-
criminately during training and remain fixed during fitting.
This process, although computationally efficient, has the
following limitations: (a) it is based on a fixed appearance
part model, and (b) object parts are assumed to be indepen-
dent, and each landmark detector is applied independently
of the others. Because of (a) and (b), such an approach has
been shown to result in imperfect filter responses and de-
tection ambiguities which hinder the accurate localization
of landmarks [18]. Hence, the focus of most works is how
these inaccuracies and ambiguities can be remedied by the
global shape optimization step.

Main contributions. To alleviate (a) and (b) mentioned
above, we propose Gauss-Newton Deformable Part Models
(GN-DPMs). Unlike the majority of part-based face align-
ment methods (like CLMs), in the proposed GN-DPMs, the
fitting procedure is totally different: there is no correlation-
based independent local search followed by global shape
optimization; instead we propose to jointly optimize a part-
based, trained in-the-wild, flexible appearance model along
with a global shape model via efficient and robust Gauss-
Newton (GN) optimization [10, 14, 20]. We show that

the proposed model/fitting strategy results in a joint trans-
lational motion model for the model parts the location of
which along with their appearance are jointly updated at
each iteration. Please see Fig. 1 for an overview of our
approach. As in [22], we use SIFT features [12] to build
the appearance model of GN-DPM. Although very robust,
such a formulation results in a high dimensional appearance
model which renders the fitting process slow. To alleviate
this problem, we show how significant computational re-
ductions can be achieved by building a full model during
training, but then efficiently optimizing the proposed cost
function on a sparse grid during fitting. Via a number of
experiments, we show that the proposed GN-DPM outper-
forms the state-of-the-art SDM [22] in all three major in-
the-wild facial databases, namely LFPW [2], Helen [11] and
AFW [23].

2. Related work
The proposed GN-DPM entails fitting a part-based ap-

pearance model to a new image using efficient and robust
GN optimization. As such our method is primarily re-
lated to the generative GN formulation of [10, 14]. In [10],
the authors proposed a GN formulation for fitting a rigid
but flexible linear generative appearance model learned via
PCA. In [14], the authors extend the work of [10] in a
number of ways for the case of deformable models and
AAMs. In general, fitting AAMs to unconstrained images
is considered a difficult task. Perhaps, the most widely ac-
knowledged reason for this is the limited representational
power of the appearance model which is unable to gener-
alize well to unseen variations. As it was recently shown
in [20] though, when the appearance model of the AAM is
trained in-the-wild and exact GN algorithms are used for
model fitting, AAMs perform notably well for the case of
unconstrained images even without resorting to sophisti-
cated shape priors, robust features or robust norms for im-
proving performance.

The proposed GN-DPM also employs a flexible, linear
generative appearance model trained in-the-wild and fitted
via GN, however, motivated by the recent success of part-
based models [6, 21, 18, 22], it uses parts and a translational
motion model as opposed to the holistic appearance model
and the piecewise affine warp used in [20]. Among a large
number of works in part-based deformable face alignment,
our algorithm is more closely related to [21] and [22]. In
particular, the shape optimization step employed in [21] is
inspired by the problem of fitting a fixed part-based tem-
plate to an image via GN. However, the authors in [21] ad-
vocated a standard CLM framework in which a set of fixed
discriminatively trained part templates are first correlated
with the image to yield a set of filter responses, each re-
sponse is approximated by a quadratic, and then the afore-
mentioned shape optimization step is performed to update



the current shape estimate. Contrary to [21], we advocate
a flexible part-based appearance model trained in-the-wild
and propose to jointly optimize shape and appearance via an
efficient and robust GN algorithm. A critical aspect in GN
optimization is how to increase the basin of attraction. To
this end, and similarly to [22], we employed SIFT features
to build the appearance model of the proposed GN-DPM.

3. Generative Deformable Part Models in-the-
Wild

In our formulation, a generative DPM is described by
generative models of global shape and local appearance
both learned via PCA, as in the original CLM paper of [6]
1. A key feature of the appearance model is that it is learned
from all parts jointly, and hence parts, although capture lo-
cal appearance, are not assumed independent.

Learning the shape model of the generative DPM re-
quires strong supervision, and can be summarized in 4
steps: (a) u landmarks li = [xi,1 ; yi,1 ; . . . ; xi,u ; yi,u]
are consistently annotated across D training face images
Ii, i = 1, . . . , D. (b) Procrustes Analysis is applied for
removing similarity transformations (scale, rotation and
translation). (c) PCA is applied to the resulting shapes to
obtain a shape model defined by the mean shape s0 and n
shape eigenvectors si, compactly represented as columns of
S ∈ R{2u,n}. (d) S is appended with 4 similarity eigenvec-
tors and re-orthonormalized [14]. An instance of the shape
model s(p) is given by

s(p) = s0 + Sp, (1)

where p ∈ Rn is the vector of the shape parameters. We
also denote by sk = [xk ; yk] and si,k = [xsi

k ; ysik ]
the k−th landmark of s(p) and si, respectively. These are
related by

sk = [xk ; yk] = [xs0
k +

n∑
i=1

xsi
k pi ; ys0k +

n∑
i=1

ysik pi]. (2)

The appearance model of the generative DPM is ob-
tained by (a) warping each training image Ii to a reference
frame so that similarity transformations are removed, (b)
extracting a Np = Ns × Ns pixel-based part (i.e. patch)
around each landmark, (c) obtaining a part-based texture for
the whole image by concatenating all parts in a N = uNp

vector, and (d) applying PCA to the part-based textures of
all training images. In this way, we obtain the mean ap-
pearance A0 and m appearance eigenvectors Ai, compactly
represented as columns of A ∈ R{N,m}. An instance of the
appearance model A(c) is given by

A(c) = A0 + Ac, (3)
1Unlike [6], both models are kept independent [14] i.e. we do not apply

a third PCA on the embeddings of the shape and texture.

Figure 2. First row: Images taken from the test set of LFPW along
with their ground truth landmarks. The images were not seen dur-
ing training. Second row: parts extracted around landmarks. Third
row: Reconstruction of the parts from the part-based appearance
subspace. The appearance subspace is powerful because it was
built in-the-wild.

where c ∈ Rm is the vector of the appearance parame-
ters. It is worth noting that each Ai (this also applies to
the part-based texture representation of each training im-
age Ii) can be re-arranged as a u × Np representation
[Ai,1 Ai,2 . . . Ai,Np ]. Each column Ai,j ∈ Ru contains
u pixels all belonging to a different part but all sharing the
same index location j within their part. This representation
allows us to interpret each patch as a Np-dimensional de-
scriptor for the corresponding landmark. Finally, we define
Aj = [A1,j A2,j . . . Am,j ] ∈ Ru×m.

A notable deviation from prior work is that we lever-
age recently annotated in-the-wild face databases [15, 19]
to train the generative DPM. In this way, the learned ap-
pearance model is powerful enough to faithfully reconstruct
unseen unconstrained face images. Consider for example
the images shown in the first row of Fig. 2. These are test
images from the LFPW data set. The images were not seen
during training, but similar images of unconstrained nature
were used to train the shape and the appearance model of the
DPM. The second row of Fig. 2 shows the parts extracted
around the ground truth landmarks and the third row the re-
construction of the parts from the appearance subspace. As
we may see, the part-based appearance model is powerful
enough to reconstruct the parts almost perfectly.

4. Fitting Generative Deformable Part Models
with Gauss-Newton

The proposed Gauss-Newton DPM is based on fitting the
generative DPM of Section 3 to a test image using non-
linear least-squares optimization [10, 14, 20].



4.1. 1-pixel GN-DPM

We start by describing the fitting process of a simplified
version of the generative DPM by assuming that the patch
for each landmark sk is reduced to 1 × 1 (Ns = 1), that
is 1 pixel is used to represent the appearance of each land-
mark and similarly the appearance model in (3) has a total of
N = u pixels. In this case, the construction of the appear-
ance model in Section 3 implicitly assumes a translational
motion model in which each training image is sampled at
N = u locations Ii(li) and then u pixels are shifted to a
common reference frame which is defined as the frame of
the mean shape s0. In this model, a model instance My

is created by first generating u pixels using (3) for some
c = cy and then shifting these pixels to u pixel locations
obtained from (1) for some p = py . Hence, we can write

My(s(py)) = A(cy). (4)

Optimization of GN-DPM. The above model can be
readily used to locate the landmarks in an unseen image I
using non-linear least-squares. In particular, we wish to find
{p, c} such that

arg min
p,c
||I(s(p))−A(c)||2. (5)

The difference term in the above cost function is linear in
c but non-linear in p. We therefore proceed by applying
a first-order Taylor approximation. As mentioned in [14],
we can linearize either the image or the model. The former
case results in forward algorithms whereas the latter case in
inverse algorithms. In this paper, we follow the inverse case
which can result in significant pre-computations. Therefore,
we proceed by linearizing the model. To do so, we first
write I = I(s(p)), and Ai = Ai(s(p = 0)) = Ai(s0).
Then, we have

arg min
∆p,∆c

||I−A0−J0∆p−
m∑
i=1

(ci+∆ci)(Ai+Ji∆p)||2,

(6)
where Ji ∈ RN×n is the Jacobian of Ai (notice that N =
u). We construct Ji as follows: The k−th row of Ji con-
tains the 1× n vector [Ai,x(s0,k) Ai,y(s0,k)]∂sk(p)

∂p |p=0.
Ai,x and Ai,y are the x and y gradients of Ai

2. Finally differentiation of (2) yields ∂sk(p)
∂p |p=0=

[xs1
k . . . xsn

k ; ys1k . . . ysnk ] ∈ R2×n.
An update for ∆c and ∆p can be obtained only after

second order terms are omitted as follows

arg min
∆p,∆c

||I−A(c)−A∆c− J∆p)||2, (7)

where J = J0 +
∑m

i=1 ciJi. To optimize (7) we follow the
same strategy as the one used for the Fast-SIC algorithm

2In practice, we never use one pixel but a patch and hence we compute
gradients from a 3× 3 neighborhood.

described in [20]. More specifically, we optimize (7) with
respect to ∆c, and then plug in the solution back to (7).
Then, we can optimize (7), with respect to ∆p. Overall,
we can update the appearance and shape parameters in an
alternating fashion from

∆c = AT (I−A(c)− J∆p) (8)

∆p = H−1
P JT

P (I−A0), (9)

where JP = PJ and HP = JT
PJP , P = E −AAT is the

projection operator that projects out appearance variation,
and E is the identity matrix. The complexity per iteration is
O(nmN) for computing JP , O(n2N) for computing HP

and O(n3) for inverting HP .
Reducing the cost from O(nmN + n2N) to O(mN +

n2N). We describe an approximation which results in sig-
nificant reduction in the computational complexity and is
applicable to all versions of GN-DPMs introduced in this
paper. The main computational bottleneck in the above
algorithm is the computation of the projected-out Jaco-
bian JP . However, when computing (9), we can write
JT
P (I − A0) = JTPT (I − A0). Now PT (I − A0)

takes O(mN) and one can compute J as the Jacobian of
A(c) also in O(mN). Hence, if we approximate HP with
H = JTJ, the overall cost of the algorithm is reduced to
O(mN + n2N) where typically m ≈ n2. We observed no
deterioration in performance when this approximation was
used.

Inverse Composition Vs. Addition. A key feature
of the inverse framework of [14] is that the update for
the shape parameters is estimated in the model coordinate
frame and then composed to the current shape estimate. For
the piecewise affine warp used in [14], a first order approx-
imation to inverse composition is used. On the contrary,
because of the translational motion model employed in GN-
DPMs, inverse composition is reduced to addition. To read-
ily see this, let us first write sy = f(sx;pa) = sx + Spa.
Then, sz = f(sy;pb) = sy + Spb = sx + Spa + Spb =
sx +S(pa +pb), hence composition is reduced to addition.
Similarly, we have f(sx;pa)−1 = f(sx;−pa). Overall, in-
verse composition is reduced to addition, and hence p can
be readily updated in an additive fashion from p← p−∆p.

4.2. GN-DPM

Having defined the 1-pixel version of our model, we can
now readily move on to GN-DPM. The only difference is
that the appearance of a landmark is now represented by an
Np = Ns × Ns patch (descriptor) each pixel (element) of
which can be seen as a 1-pixel appearance model for the cor-
responding landmark. Using the Aj representation defined
in Section 3, the cost function to optimize for GN-DPMs is



given by

arg min
∆p,∆c

Np∑
j=1

||Ij −Aj(c)−Aj∆c− Jj∆p)||2. (10)

By re-arranging the terms above appropriately, it is not dif-
ficult to re-write (10) as in (7) where now the error term
I − A(c) has size N = uNp, J has size N × n, and
the solutions for ∆c and ∆p take the form of (8) and (9).
The complexity of the exact and approximate versions is
O(nmuNp+n2uNp) and O(muNp+n2uNp) respectively.

As in most works on deformable registration, our best
performing implementation is based on robust descriptors.
Our formulation can be readily extended to accommodate
such a case. Assume that each pixel within a patch is de-
scribed by a Nh-dimensional descriptor. Therefore, the ap-
pearance of a landmark is now represented by a Np × Nh

descriptor each element of which can be seen as a 1-pixel
appearance model, and similarly the cost function to opti-
mize is also given by (10) (the summation now is from 1
to Np × Nh). In particular, we describe each pixel with a
reduced SIFT representation with Nh = 8 features com-
puted over an 8× 8 cell using the implementation provided
in [22]. Finally, the complexity of the exact and approxi-
mate versions in this case is O(nmuNpNh + n2uNpNh)
and O(muNpNh + n2uNpNh), respectively.

4.3. Efficient weighted least-squares optimization of
SIFT features

Although robust, one disadvantage inherent to the
descriptor-based formulation described above is the in-
creased computational complexity. Our experiments have
shown that, in this case, our GN-DPM is very robust but
also quite slow. The main reason for this increased com-
putational burden is the fact that a descriptor of size Nh is
computed for every pixel resulting in a very dense repre-
sentation. Prior works on object and face detection though
(please see for example [7, 23]) have shown that almost as
good performance can be achieved by computing a single
descriptor for (typically) an 8 × 8 window. For example,
the size of the HOG descriptor [7, 23] is less than the total
number of pixels in the 8 × 8 neighborhood used to com-
pute the descriptor. In this section, we propose an approach
which results in similar computational reduction but is quite
different from the one used in object detection algorithms.

In particular, rather than creating a model based on
sparsely computed descriptors as in [7, 23], we create a
dense model (i.e. we use a descriptor for each pixel), but
then evaluate the cost function of (10) on a sparse grid. In
our case, this sparse grid is defined by an indicator function
for each patch Wp of size Ns ×Ns with elements wj = 1
corresponding to the points that we wish to evaluate our cost
function and wj = 0 otherwise. Hence, our cost function in

(10) becomes

arg min
∆p,∆c

Np∑
j=1

wj ||Ij−Aj(c)−Aj∆c−Jj∆p)||2. (11)

It is not difficult to re-formulate (11) as a weighted least-
squares problem

arg min
∆p,∆c

||I−A(c)−A∆c− J∆p)||2W, (12)

where we have used the notation ||z||2W = zTWz to denote
the weighted `2 norm and W is a N × N diagonal matrix
the elements of which are equal to 1 corresponding to the
locations that we wish to evaluate our cost function and 0
otherwise.

The question of interest now is whether one can come up
with closed-form solutions for ∆c and ∆p, as in (8) and (9).
Fortunately, the answer is positive. Let us define matrices
Aw = WA, Ji,w = WJi, Jw = J0,w +

∑m
i=1 ciJi,w,

Pw = W −Aw(AT
wAw)−1AT

w. Then we can update ∆c
and ∆p in alternating fashion from

∆c = (AT
wAw)−1AT

w(W(I−A(c))− Jw∆p) (13)

∆p = H−1
Pw

JT
Pw

(W(I−A(c))), (14)

where JPw = PwJw and HPw = JT
Pw

JPw , respectively.
Finally, notice that in practice, we never calculate and store
matrix multiplications of the form WX, for any matrix
X ∈ RN×l. Essentially, the effect of this multiplication
is a reduced size matrix of dimension Nw × l, where Nw is
the number of non-zero elements in W. In our implemen-
tation, we used a grid such that Nw/N < 1/Nh. Hence,
in our SIFT-based GN-DPM, there are less features than the
number of pixels in the original GN-DPM based on pixel-
based parts. This version is very fast.

5. Comparison with AAMs
Two questions that naturally arise when comparing the

part-based GN-DPMs over the holistic approach of AAMs
are: (a) do both models have the same representational
power? and (b) which model is easier to optimize? Because
it is difficult to meaningfully compare the representational
power of the models directly, in this section, we provide an
attempt to shed some light on both questions by conducting
an indirect comparison between the two models.

In particular, we trained both models on the same train
set (the train set of LFPW), and then fitted both models on
the same unseen test set (the test set of LFPW) 3. For each
method, we report the achieved fitting accuracy by plot-
ting the familiar cumulative curve corresponding to the frac-
tion of images for which the normalized error between the

3We obtained very similar results by testing on Helen and AFW.
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Figure 3. Comparison between GN-DPMs and AAMs [20]. Both
algorithms were initialized using (a) the ground truth landmark lo-
cations, (b) the ground truth after a small perturbation of the first
shape parameter, and (c) the ground truth after a large perturba-
tion of the first shape parameter. The average (normalized) pt-pt
Euclidean error Vs fraction of images is plotted.

ground truth points and the fitted points was less than a spe-
cific value (please also see Section 6). To investigate ques-
tion (a), we initialized both algorithms using the ground
truth locations of the landmarks for each image. We assume
that the more powerful the appearance model is, the better
it will reconstruct the appearance of an unseen image, and
hence the fitting process will not cause much drifting from
the ground truth locations. Fig. 3 (a) shows the obtained
cumulative curves for GN-DPMs and AAMs. We may see
that both methods achieve literally the same fitting accuracy
illustrating that the part-based and holistic approaches have
the same representational power. An interesting observa-
tion is that the drift from ground truth is very small and the
achieved fitting accuracy is at least as good as any state-of-
the-art method in literature is able to produce. This shows
that generative deformable models when trained in-the-wild
are able to produce a very high degree of fitting accuracy.

To investigate question (b), we reconstructed the ground
truth points from the shape model, perturbed the first shape
parameter by some amount and then performed fitting us-
ing both algorithms. Fig. 3 (b) and (c) show the cumula-
tive curves obtained by applying a small and a large amount
of perturbation, respectively. Clearly, when the perturba-
tion is large, GN-DPMs largely outperform AAMs. This
shows that the part-based generative appearance model of
GN-DPMs is easier to optimize.

6. Experiments
The main aim of this section is to present a comprehen-

sive evaluation of the proposed GN-DPM formulation. We
present results for four cases of interest, an overview of
which follows below:
Case 1: GN-DPMs Vs AAMs. We further compare pixel-
based GN-DPMs (GN-DPM-PI) and the Fast-SIC (also
based on pixel intensities) AAM fitting approach of [20]. As
we show below, the proposed GN-DPM-PI largely outper-
forms Fast-SIC, further validating the conclusions of Sec-
tion 5.
Case 2: Variants of GN-DPMs. We compare two variants

of GN-DPMs based on SIFT features. The first is the full
model which is built and fitted on a dense grid, using exact
GN optimization. We call this variant GN-DPM-SIFT-Full.
The second one is the model which is built on a dense grid
but fitted on a sparse grid, using the approximate GN al-
gorithm based on the Hessian approximation described in
the last paragraphs of Section 4.1. We call this variant GN-
DPM-SIFT. GN-DPM-SIFT is orders of magnitude faster
than GN-DPM-SIFT-Full, nevertheless, as we show below,
it performs as well as GN-DPM-SIFT-Full.
Case 3: GN-DPMs Vs SDM. SDM [22] is currently con-
sidered the state-of-the-art method in face alignment. As
we show below, when trained on LFPW [2] and initialized
in the same way, GN-DPMs outperform SDM (trained on
thousands of images) sometimes by a large margin.
Case 4: GN-DPMs Vs Oracle. We compare GN-DPMs
(as well as all other methods considered in our experiments)
against the best possible fitting result achieved by an Oracle
who knows the location of the landmarks in the test images
and simply reconstructs them using the trained shape model.

We trained all GN-DPMs on LFPW [2]. We used a
patch of size 27 × 27. To fit, we used a multi-resolution
approach with two levels. At the highest level, the shape
model has 15 shape eigenvectors and 400 appearance eigen-
vectors. We tested on LFPW and additionally on Helen
[11] and AFW [23] with the latter being two challenging
out-of-database experiments. We created our models using
the publicly available 68-point landmark configurations of
the 300-W competition [15, 19]. For initialization, we used
the method of [23]. To measure performance, we used the
point-to-point Euclidean distance (pt-pt error) normalized
by the face size [23] and report the cumulative curve corre-
sponding to the fraction of images for which the error was
less than a specific value. As for the comparison with SDM,
we note that we initialized SDM using the same face detec-
tor [23] (following the authors’ instructions), and we report
performance on the 49 interior points because these are the
points that the publicly available implementation of SDM
provides.

Fig. 4 shows our results on LFPW, Helen and AFW.
Evaluation is based on all 68 points. We may observe that:
(a) For all methods, the best performance is achieved on
LFPW. There is a drop in performance for all methods on
Helen and AFW because the faces of these databases are
much more difficult to detect and fit. Nevertheless the rel-
ative difference in performance is similar. (b) GN-DPM-
PI largely outperforms the AAM of [20] almost across the
whole range of the pt-pt error, i.e. it is significantly more
robust and accurate. (c) There is a significant boost in per-
formance when SIFT features are used, as expected. (d)
The difference in performance between GN-DPM-SIFT and
GN-DPM-SIFT-Full is negligible, although GN-DPM-SIFT
is orders of magnitude faster. (e) There is a very large per-



Figure 4. Average pt-pt Euclidean error (normalized by the face size) Vs fraction of images for LFPW, Helen and AFW. Evaluation is based
on 68 points. The performance of different GN-DPMs variants and AAMs [20] is compared.

Figure 5. Average pt-pt Euclidean error (normalized by the face size) Vs fraction of images for LFPW, Helen and AFW. Evaluation is based
on 49 points. The performance of GN-DPMs and SDM [22] is compared.

formance gap between GN-DPM-SIFT, which is the best
performing method, and the best achievable result provided
by the Oracle. This shows that we are still far away from
considering face alignment in-the-wild a solved problem.

Fig. 5 shows our results for GN-DPM, GN-DPM-SIFT
and SDM on LFPW, Helen and AFW. Evaluation is based
on 49 points. We may observe that: (a) GN-DPM-SIFT
outperforms SDM on all three databases and is significantly
more accurate. (b) Interestingly, GN-DPM-PI (based on
pixel intensities) performs better than SDM (based on SIFT
features) for errors less than 0.02, that is it is more accurate,
but worse than SDM for errors greater than 0.02, that is it is
less robust.

Finally, representative fitting examples from LFPW and
Helen can be seen in Fig. 6.

7. Conclusions
We introduced a DPM fitting strategy which jointly opti-

mizes a global shape model and a part-based, trained in-
the-wild, flexible appearance model, and thus by-passes
some of the limitations of most current DPM methods for
face alignment. Our model results in a translational mo-
tion model which shifts parts so that a joint cost function of
shape and appearance is minimized using efficient and ro-
bust GN optimization. Additionally, we showed that signif-
icant computational reductions can be achieved by building
a full model during training, but then evaluating the pro-

posed cost function on a sparse grid using weighted least-
squares during fitting. We coined the proposed formula-
tion GN-DPM. Finally, we conducted a number of exper-
iments which showed that the proposed GN-DPM outper-
forms prior work sometimes by a large margin.

8. Acknowledgements

This work has been funded by the European Community
7th Framework Programme [FP7/2007-2013] under grant
agreement no. 288235 (FROG).

References
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