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Abstract—Automatic non-obtrusive deception detection is
highly desirable because of its objectivity, accuracy and reliability.
Eye blinking has been shown to be one of the informative non-
verbal behavioural cues for solving this problem. Traditional
blink recognition methods tend to use a tracker to extract static
eye region images and classify those images as open and closed
eyes to detect blinks. However, those recognition systems are
frame based and do not incorporate temporal information. For
this reason, they perform poorly as the tracker fails to detect
eyes due to rapid head movement or occlusion. In this paper,
we present an approach which combines Hidden Markov Models
and Support Vector Machines to model the temporal dynamics
of eye blinks and improve the blink detection accuracy.

I. INTRODUCTION

Deception detection and determination of concealment-of-
intent are very important areas of research as they have a wide
range of applications. These include airport security check-
points, border crossing stations, and other security screening
points. Also thousands of people are treated on a daily basis
for suicidal depression, schizophrenia, and eating disorders.
The ability to deceive is considered to have been part of
the evolution process, as being able to conceal your intent
improved an individuals survival chances. For this reason,
deception is an inevitable aspect of human interaction [1].
Given its pervasiveness, one might expect that humans would
be adept at spotting deceit. However, several recent meta-
analytic studies [2] have shown that professionals and lay
people alike perform poorly at detecting deceit or concealed
intent to do others harm, achieving detection accuracy averages
that hover slightly above chance (54%). In addition, several
studies in experimental psychology suggest that some of the
visual behavioural signals can not be identified or tracked by
the human eye because they are too subtle and fleeting to
measure [3]. Hence, automated, unobtrusive monitoring and
assessment of concealment-of-intent behaviours will form a
valuable tool for all involved professionals. In addition to
several popular non-verbal behavioural cues which have been
adopted for deception detection (such as facial expression,
body gestures, voice and verbal style), there is conclusive
evidences showing that eye blinking behaviour is also related
[4]. Thus, we employed eye blinking as cues in our research.

In recent decades, research regarding eye blink detection
has been conducted. In [5], a method based on dual state track-
ing was presented which used intensity and edge information
to distinguish closed and open eyes. An improved version of
their techniques was later proposed in [6] in order to detect
more states including open, narrow and closed. In particular,

the system fed Gabor coefficients into a neural network and
analysed eye-relevant action units (AU41, AU42 and AU43)
to recognize eye state. In [7][8], the method localized eyes
by applying motion analysis and it calculated the normalized
cross correlation with pre-trained open-eye and closed-eye
templates for each frame. It detected blinks by observing the
waveform of the correlation scores and helped to classify
voluntary and spontaneous blinks based on the blink duration.
This method was applied in a real-time vision-based HCI
system which was designed to help disabled people to interact
with computer using voluntary blinks. Another technique,
introduced in [9], clustered upper and lower eyelids after
processing point-based motion pictures. The blink waveform
was plotted through calculating the space between the upper
and the lower eyelid. And a driver drowsiness detection system
was developed based on this technique for security concerns.
In [10][11], an approach using frame differencing and optical
flow was introduced. It was shown that image flow analysis
which contains both the magnitude and the direction of eyelid
movement was more reliable than static appearance. In [12],
an eye-blinking detection system was designed based on the
analysis of the deformation of active contours that captured the
eye. In [13], features produced by the application of a bank
of Gabor filters were used for eye-blink detection. In [14],
a detailed eye region model was used for blinking detection.
Finally, a comparison between different features for open and
closed eye detection was performed in [15]. Noticeably, these
systems all require robust algorithms for eye tracking and
may not perform well when the tracker can not detect the
eye region correctly. A robust eye blink recognition system
in unconstrained environment remains a challenging problem.
Particularly, the aforementioned methods do not take temporal
information into consideration, so they may produce erroneous
results in frames in which the eye regions cannot be accurately
identified.

To solve this problem, we propose a hybrid blink detection
method which combines Hidden Markov Models and Support
Vector Machines. The introduction of the temporal dynamics
also enables our method to distinguish between the states of
closed and half-open eyes. Therefore, in the line of previous
work on temporal segmentation of AUs [16], [17], [18], [19],
our method can segment blinks from continuous videos and
detect four states according to four temporal segments of
blinking: neutral (open-eye), onset (closing eye), apex (closed-
eye) and offset (half-open eye). Several features were extracted
from each frame and their performances were compared in
testing process. Two hybrid models, the blink model and
the non-blink model, were trained on image sequences with



and without blinks respectively. Blinks were detected by
comparing the two models’ likelihoods, and durations were
obtained through calculating the number of the apex states
after decoding. A sliding window was further applied to enable
on-line blink detection in real-time.

II. HYBRID SYSTEM

This paper introduces an approach which models full tem-
poral dynamics of eye blinking. This method comprises four
main steps: extracting features for each frame from eye image
sequences, classifying those features for each frame, training
hybrid temporal models and applying a sliding window on the
testing segment to enable the detection system to work in real-
time.

HMMs can represent the temporal dynamics of eye blink-
ing efficiently. The emission probabilities are usually estimated
using mixtures of Gaussian probability density functions.
These Gaussian mixtures suffer from poor discrimination be-
cause they are trained by likelihood maximization which as-
sumes the model is correct. In contrast, SVM discriminates one
class from the other one extremely well. Thus, a hybrid SVM-
HMM model was exploited by our blink detection system.

Previous works were revolving around capturing transitions
between open eyes and closed eyes. However, this is not able to
fully describe eye blinking since blinks are usually more subtle
and complex. Therefore, we employed four temporal states of
blinking in our system: neutral (open-eye), onset (closing eye),
apex (closed-eye) and offset (half-open eye). All the frames
were labelled as 1,2,3 and 4 according to which state was
appropriate.

A. Feature Extraction

We have exploited several popular features independently
and compared their performance in our blink detection sys-
tem: HOG (Histogram of oriented gradients), Gabor filter,
LBP (Local Binary Pattern), optical flow and pixel intensity:
HOG counts the distributions of gradient direction and edge
orientation in each localized cell of a static image. It can
be used as a spatial descriptor which can recognize eyelid
position in order to detect blink. Another method which can
also be used to monitor the position of eyelids is the Gabor
Filter. It is a complex exponential modulated by a Gaussian
function in the spatial domain. Generally, a Gabor filter bank is
created by filters of five scales and four orientations. Another
feature used is LBP, which compares each pixel with its
neighbours in the cell of an image and gets an eight-digit
output for each cell. The distribution of those outputs was
calculated and applied for different eye state classification.
Additionally, optical flow is employed, which captures the
relative motion between consecutive frames which can indicate
both magnitude and direction of the eyelid movement.

B. Pairwise SVM Classification

Once the features for all sets of image sequences have been
extracted, a group of pairwise SVM classifiers were trained for
the multi-class classification. For each pair of temporal seg-
ments, we used one pairwise classifier. Thus, there were C2

4 =
4× (4− 1)/2 = 6 classifiers trained to distinguish four states,
which were µ12/µ21(neutral and onset), µ13/µ31(neutral and

apex), µ14/µ41(neutral and offset), µ23/µ32(onset and apex),
µ24/µ42(onset and offset) and µ34/µ43(apex and offset). Each
pairwise SVM was fully trained on frames belonging to the
two classes it is supposed to classify. At each iteration of the
testing algorithm, all the SVM classifiers were applied on every
frame in the testing sequence. Theoretically, the output of the
SVM is the distance between a test pattern and the hyperplane
defined by the support vectors. In [20], Platt proposed a method
to estimate posterior probability by fitting this output with a
sigmoid function. It is shown in Equation (1), in which h(x)
is the distance between the testing data x with the decision
boundary of the SVM and parameters A and B are estimated
by maximum likelihood from a training set. Consequently,
those SVMs produced predicted labels for each frame, along
with confidence levels of these labels.

p(y = +1|x) = g(h(x), wT , b)

=
1

1 + exp(wTh(x) + b)

(1)

C. Temporal Modelling

HMMs are well-known robust machine learning tools
and have been applied successfully in speech recognition
and analysis of facial expression dynamics. Besides emission
probability (B), as previously mentioned, there are two other
parameters which are used to define an HMM: transition
probability (Λ) and initial probability (Π). Where Λ is the
probability of different transitions between underlying states of
the model, B is the probability of one observation belonging
to each state and Π is the probability distribution of the initial
frame in each image sequence. Among them, Λ and Π were
estimated from the distribution of training data directly while
B was trained on the emission output from the SVM classifiers,
which is formulated by Platt in [20]. The transformation from
the pairwise probability to the posterior probability is shown
in Equation (2), where S indicates the number of state, µij
indicates the pairwise probability, i and j indicate the state
indexes of each pair.

p(qi|X) =
1∑S

j=1,j 6=i
1
µij
− (S − 2)

(2)

Afterwards, using the Bayes theorem we can obtain the
emission probability p(X|q) from the posterior probability
p(q|X) by dividing the distribution of each state p(q) (equation
(3)).

p(X|q) =
p(q|X)

p(q)
(3)

We modelled two sequences in our system: blink sequence
which contains blinks and non-blink sequence which does not
contain any blinks. In modelling non-blink sequence, only
one of the four segments was used: the neutral state. Hence,
there was only one kind of transition in this model: neutral
to itself, which is shown in Fig. 1. Meanwhile, we modelled
another sequence which represents a complete blink using four
different temporal states: neutral, onset, apex and offset. The
general form of this blink model is shown in the Fig. 2. The



blink model allows transitions from every state to its next state,
as well as, to itself (besides neutral), but also from offset back
to neutral. We assumed that the blinking started from neutral,
progressed through the rest of the states and finally returned to
the neutral state. Since the only state transition in the non-blink
model is from neutral to neutral, we avoided having the same
transition in the blink model in order to better discriminate
between the two models. Therefore, we kept only the first and
the last frame as neural state during the blink sequence pre-
segmentation so that there was no transition from neutral to
itself in blink sequences.

Fig. 1: Transitions of Non-blink Model

Fig. 2: Transitions of Blink Model

D. Real-time Processing Using Sliding Window

In order to detect blinks in real-time video streams (instead
of pre-segmented sequences), we exploited a sliding window
on the testing image sequence. The principle of the sliding
window is explained in Fig. 3 below: It starts sliding from the
first frame of the raw sequence from time T and after N steps
it stops when the window reaches the end of the raw sequence.

Fig. 3: Real-time Processing using Sliding Window

The sliding window allowed segmentation of the testing
sequences to obtain much shorter sequences for processing,
which saved on computation in each iteration. Once the
segment was extracted, we evaluated its probability of whether
contains a blink or not. In addition, we were able to decode
each frame so that we obtained the frame predicted labels
and could then estimate the blink duration by calculating the
number of apex states (labelled as 3). In our system, the
forward algorithm and Viterbi algorithm were used to solve
the evaluation and decoding problems respectively.

Once the window began to slide and returned the frames
within it, we evaluated the segment using the two pre-trained
hybrid models, namely the blink model and non-blink model.
The likelihoods, which describe how probable it is that this
segment was generated by each model, were compared in order
to determine the existence of a blink or not. The segment was
predicted to contain blink if the blink model’s likelihood was
higher and vice versa.

Correspondingly, for every segment, we also decoded each
frame using the model whose likelihood was higher during
the comparison. However, some frames might be decoded
more than once because they were captured in multiple sliding
windows. For these frames, we applied majority voting in order
to determine the final predicted label of each frame.

III. EXPERIMENT AND DISCUSSION

For the presented work, we conducted experiments using
the gaze data recordings from the MAHNOB-HCI Database
[21]. This data consists of spontaneous audio-visual data which
records interactions between a participant and a computer. The
recordings were made in a lab setting, using six cameras(61
fps), a uniform background and constant lighting conditions.
There are three scenarios in the dataset: i) Office scenarios
ii) Multimedia scenarios iii) Interaction with an avatar in-
terrogator where the subject may lie or tell the truth in the
conversation. We used the front-view camera and the third
scenario in our experiments. The experiment uses the data
recorded from 12 subjects (out of 33 in the dataset). For each
subject, blink sequences varied much more significantly than
non-blink sequence. Hence, we pre-segmented 40 video clips
with blinks and 4 video clips without blinks for each subject.
Additionally, in order to apply on-line testing, a 30 second
video clip was segmented randomly (excluding the 44 clips)
for each subject as well. DIKT [22], an on-line tracker, was
applied accompanied with EyeAPI, an eye centre localization
tool [23], to automate the extraction of eye region for each
frame. Fig. 4 shows an entire blink sequence. Every frame of
the dataset was annotated as neutral, onset, apex and offset
state.

Fig. 4: Full Blinking Behaviour

Once We extracted features frame by frame for all sets
of image sequences using methods described in Section 2.1.
Those features were fed into classifiers and six pairwise SVMs
were trained. We then fully trained two hybrid models, the
blink and non-blink model, based on these SVMs through
estimating three parameters, as described in Section 2.3. While
the transformation from pairwise probability to posterior prob-
ability was implemented by Libsvm[24].



The layout of the following three sections are: 3.1) ex-
periment adopting leave one subject out cross validation and
classifying pre-segmented sequences as blink sequences or
non-blink sequences. 3.2) experiment using leave one subject
out cross validation and decoding each frame as one of the
temporal states. 3.3) experiment exploiting a sliding window.

A. Pre-segmented Sequences Classification

In each iteration of this experiment, we left one subject
out (40 blink sequences and 4 non-blink sequences) for test
and trained on the other 11 subjects. Each pre-trained hybrid
model, the blink and non-blink, applied on every test se-
quence and estimated a likelihood. We classified each sequence
through comparing their likelihoods, which was described in
Section 2.4.

We conducted testing using five different features and
compared the results which are shown in Table I. In this
table, we display the precisions, recalls and F1 measures for
the five feature sets employed. After comparing, the intensity
feature was found to discriminate blink segments from non-
blink segments best.

HOG INT Gabor LBP OF
Precision 94.58% 99.38% 98.75% 68.13% 97.50%
Recall 100.00% 99.58% 100.00% 100.00% 100.00%
F1 measure 97.22% 99.48% 99.38% 81.04% 98.74%

TABLE I: Classification Results of Per-segmented Se-
quences(INT means pixel intensity, Gabor means Gabor filter
and OF means Optical Flow)

B. Frame By Frame Classification

There is only one state in the non-blink model so that
this model always classifies every frame as neutral. Thus, we
conducted this experiment only using blink model and blink
sequences. In each iteration, we left one subject out (40 blink
sequences) for test and trained on the other 11 subjects. The
pre-trained blink model classified each frame of the testing
sequences as one of the temporal states: neutral, onset, apex
and offset. In order to compare with the temporal model, we
employed a four-class SVM using Libsvm [24] as a classifier
without temporal information.

Table II displays the classification accuracy of two dif-
ferent approaches and five different features exploited. After
introducing temporal information, the accuracy was found to
increase significantly when using all features with optical flow
displays the best discriminative ability. However, HOG and
Gabor filter were found to struggle from distinguishing the
onset from the offset since eyes appear narrow in both states
and both these features are edge detection descriptors. By
contrast, optical flow can classify these two states easily by
calculating eye motion direction. However, sometimes optical
flow failed to differentiate neutral and apex states as the eyes
rarely move in these cases.

C. Testing With The Sliding Window

In this experiment, a sliding window was applied on the
testing sequence in order to detect blinks and calculate blink

HOG INT Gabor LBP OF
4-class SVM 52.45% 50.19% 54.45% 48.00% 62.83%
Hybrid Model 78.9% 69.96% 72.99% 66.06% 79.36%

TABLE II: Frame-by-frame Classification Results

durations in real-time. In each iteration, we left one subject
(randomly segmented 30 second video clip) out for test and
trained two models on the pre-segmented sequences (40 blink
sequences and 4 non-blink sequences) of the other 11 subjects.
During testing, for each segment extracted by the window,
the two pre-trained hybrid models evaluated and classified it
as a sequence with or without blinks. The blink model was
exploited to decode each frame if the segment was detected
to contain blink. Otherwise, we used non-blink model to
decode each frame as neutral state. After applying majority
voting on those frames which were decoded for many times,
we calculated the number of apex states and estimated blink
durations.

Among all the testing results, 90.99% of the blinks were
recognized successfully while 7.21% of the patterns were
misclassified as blinks. Even all estimations of blink durations
were longer than the ground truth, we could still spot spon-
taneous blinks from voluntary blinks. A real-time detection
result for one of the subjects is shown in Fig. 5.

IV. CONCLUSION

In this paper, we have demonstrated a hybrid system
combining HMM and SVM for automatic eye blink detection
and blink duration calculation. Several popular blink detection
features were extracted and their performances were compared.
In particular, pixel intensity has the best performance in
sequence classification while optical flow achieves highest
accuracy in decoding per frame. Unlike previous work, we
modelled blink temporal dynamics into our system. As a result,
the temporal model works significantly better than multi-class
SVM when classifying each frame. However, the frame-by-
frame classification accuracy is still not good enough and one
of the reason might be the ambiguity in annotation: sometimes
the difference of eyes between each state is not obvious.
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