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Abstract

Typically, the problems of spatial and temporal align-
ment of sequences are considered disjoint. That is, in order
to align two sequences, a methodology that (non)-rigidly
aligns the images is first applied, followed by temporal
alignment of the obtained aligned images. In this paper, we
propose the first, to the best of our knowledge, methodol-
ogy that can jointly spatio-temporally align two sequences,
which display highly deformable texture-varying objects.
We show that by treating the problems of deformable spa-
tial and temporal alignment jointly, we achieve better re-
sults than considering the problems independent. Further-
more, we show that deformable spatio-temporal alignment
of faces can be performed in an unsupervised manner (i.e.,
without employing face trackers or building person-specific
deformable models).

1. Introduction

Temporal and spatial alignment are two very well-
studied fields in various disciplines, including computer vi-
sion and machine learning [34, 14, 35, 3, 16]. Temporal
alignment is the first step towards analysis and synthesis of
human and animal motion, temporal clustering of sequences
and behaviour segmentation [34, 14, 35, 19, 30, 17, 36].
Spatial image alignment is among the main computer vi-
sion topics [3, 16, 1]. It is usually the first step towards
many pattern matching applications such as face and fa-
cial expression recognition, object detection etc. [23, 24, 6].
It is also the first step towards temporal alignment of se-
quences [34, 35, 19, 30, 17].

Typically, temporal and spatial alignment are treated as
two disjoint problems. Thus, they are solved separately,
usually by employing very different methodologies. This is
more evident in the task of spatio-temporal alignment of se-
quences that contain deformable objects. For example, the
typical framework for temporal alignment of two sequences

displaying objects that undergo non-rigid deformations, e.g.
a facial expression, is the following [34, 35, 19, 30, 17]:

1. The first step is to apply a statistical facial deformable
model (generic or person-specific) which aligns the
images and/or localizes a consistent set of facial land-
marks. Some examples of such state-of-the-art mod-
els are [28, 16]. Even though such deformable mod-
els demonstrate great capabilities, they require ei-
ther thousands of manually annotated facial samples
captured under various recording conditions (generic
models) or the manual annotation of a set of frames in
each and every video that is analysed (person-specific
models). However, such extended manual annotation
is a laborious and labour intensive procedure [22, 2].

2. The second step is to use the acquired densely aligned
images or the localized landmarks to perform tempo-
ral alignment. However, one of the main challenges
in aligning such visual data is their high dimensional-
ity. This is the reason why various recently proposed
methods perform temporal alignment by joint feature
extraction and dimensionality reduction [34, 30, 17].

Joint spatio-temporal alignment is more advantageous
than spatial alignment, since the spatial ambiguities that
may be present can be resolved. The alignment accuracy
can also be improved, because all the available informa-
tion is exploited. Despite those advantages, joint spatio-
temporal alignment has received limited attention, mainly
due to the difficulty in designing such frameworks [8, 12].
The methods that have been proposed typically assume rigid
spatial and temporal motion models (i.e., affine-like) [8].
Also, the video sequences display different views of the
same dynamic scene [8, 12]. Hence, such methods are
not suitable for the task of spatio-temporal alignment of se-
quences with deformable objects, such as faces.

To the best of our knowledge, no method has been
proposed that is able to perform deformable joint spatio-
temporal alignment of sequences that contain texture-
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varying deformable objects (e.g., faces). The existing meth-
ods for aligning such sequences usually require hours of
manual annotation in order to first develop models that
are able to extract deformations (commonly described by
a set of sparse tracked landmarks), and then align the ex-
tracted deformations [34, 30, 17]. An additional advantage
of methodologies that can jointly spatio-temporally align
sequences of deformable objects is that the reliance on man-
ual annotations can be minimized.

The major challenge of performing joint spatio-temporal
alignment of sequences that display texture-varying de-
formable objects is the high dimensionality of the tex-
ture space. Hence, we need to device component anal-
ysis methodologies that can extract a small number of
components suitable for both spatial and temporal align-
ment. Then, spatial non-rigid, as well as temporal, align-
ment can be conducted using the low-dimensional space.
In this paper, motivated by the recent success on combin-
ing component analysis with (i) spatial non-rigid deforma-
tions by means of a statistical shape model for deformable
alignment of image sets [21, 2, 29, 9, 33], and (ii) tem-
poral deformations by means of Dynamic Time Warping
(DTW) [34, 30, 17], we propose, the first, to the best of our
knowledge, component analysis methodology which can
perform joint spatio-temporal alignment of two sequences.

The proposed methodology is radically different com-
pared to recent methods that perform joint component anal-
ysis and spatial alignment [21, 2, 29, 9, 33]. Specifically,
our technique is totally different than [21, 9, 33], which are
based on pre-trained models of appearance and require an-
notations of hundreds of images in order to achieve good
generalization properties. The most closely related methods
are the unsupervised method of [29] that performs compo-
nent analysis for unsupervised non-rigid spatial alignment
and the method of [34] that performs temporal alignment.
The component analysis methodology used in [34] for joint
dimensionality reduction and temporal alignment is based
on Canonical Correlation Analysis (CCA). CCA does not
use any temporal model or regularization, and most impor-
tantly, due to generalized orthogonality constraints, does
not provide good reconstruction of the sequences. Hence,
it is not ideal for spatial alignment (in Sec. 2.5.1 we thor-
oughly discuss the relationship of the proposed methodol-
ogy with CCA). Similarly, the recently proposed temporally
regularized Principal Component Analysis (PCA) (so called
Autoregressive Component Analysis (ARCA)) [29] is tai-
lored only to preserve the reconstruction of the sequence’s
images, without discovering common low-dimensional fea-
tures that can be used for temporal alignment.

2. Method
In this section, we start by reviewing the spatial

(Sec. 2.1) and temporal (Sec. 2.2) alignment methods of im-

age sequences that are closely related to the proposed tech-
nique. Then, we present our method for describing a spatio-
temporal phenomenon (Sec. 2.3). Finally, we discuss its
convergence (Sec. 2.4), its relationship with existing CCA
techniques and give a probabilistic interpretation (Sec. 2.5).

2.1. Unsupervised Deformable Spatial Alignment of
Image Sequences

Recently, the line of research of joint component analy-
sis and spatial alignment has received attention [21, 2, 29, 9,
33]. Some of the methods require a known set of bases that
is build from a set of already aligned objects [21, 9, 33]. In
this paper, we are interested in the unsupervised alignment
of image sequences. The most recently proposed method
for that task is [29]. In that work, it is assumed that only
a statistical model of the facial shape is given. Let us ex-
press a shape instance that comprises of a set of S land-
marks as s = [x1, y1, . . . , xS , yS ]T , where (xi, yi) are the
coordinates that correspond to the i-th landmark. A sta-
tistical shape model can be easily learned by performing
PCA on a set of training shapes in order to acquire a set of
bases US and the mean shape s̄. A new shape instance can
be approximately parametrised using the learned model, as
st ≈ s̄ + USp, where p is the set of parameters. Rigid
transformations can be incorporated in the bases US [16].
Given an image and a vector of parameters p that describes
a shape instance in the image, then the texture of the im-
age can be warped into a predefined reference frame. In
this paper, we denote the warped image as x(p). The warp
can be formulated in two ways: (i) as a non-linear function,
such as Piece-Wise Affine (PWA), in order to sample the
whole image, and (ii) as a simple translational model [25]
that samples only the local texture around landmarks.

Given a set of N images stacked as the columns of a ma-
trix X = [x1, . . . ,xN ], the method proposed in [29] (so
called ARCA) learns a temporally regularized decomposi-
tion of X and, at the same time, estimates the shapes of the
faces included in the images by extracting a set of parame-
ters P = [p1, . . . ,pN ]. The optimization problem is

Po,Uo,Vo = argmin
P,U,V

||X(P)−UV||2F + λtr[VLVT ] (1)

where X(P) = [x1(p1), . . . ,xN (pN )], and ||.||2F and tr[.]
denote the squared Frobenius norm of matrices and the trace
matrix operator, respectively. Finally

L =


1 −φ
−φ 1 + φ2 −φ

. . .
. . .

. . .
−φ 1 + φ2 −φ

−φ 1

 (2)

is an appropriate Laplacian matrix that incorporates first or-
der Markov dependencies between data. The authors in [29]



follow an alternating minimization procedure and show that
the above optimization problem, not only can provide a non-
rigid alignment of the images, but the weights V contain
smooth information that can be used to perform unsuper-
vised analysis of facial behaviour (i.e., segment facial ex-
pressions with regards to several temporal segments). Fur-
thermore, they explore the relationship between the above
model and Slow Feature Analysis (SFA) [27].

2.2. Temporal Alignment of Image Sequences

DTW [15] is a popular algorithm for the temporal align-
ment of two sequences that have different lengths. In par-
ticular, given two sequences stored as the columns of two
matrices X1 ∈ RF×N1 and X2 ∈ RF×N2 , where N1 and
N2 are the respective number of frames, DTW finds two bi-
nary warping matrices ∆1 and ∆2 so that the least squares
error between the warped sequences is minimised. This is
expressed as

∆o
1,2 = argmin

∆1,2

‖X1∆1 −X2∆2‖2F

s.t. ∆1 ∈ {0, 1}T1×T , ∆2 ∈ {0, 1}T2×T
(3)

where T is the length of the common aligned path. DTW
is able to find the optimal alignment path by using dynamic
programming [4] despite the fact that the number of possi-
ble alignments is exponential with respect to T1 and T2.

However, DTW has some important limitations. Firstly,
it is largely affected by the dimensionality of the data and,
secondly, it is not able to align signals of different dimen-
sions. In order to accommodate for the above, as well as
for differences regarding the nature, style and subject vari-
ability of the signals, Canonical Time Warping (CTW) was
proposed in [34]. CTW combines DTW with CCA, in or-
der to add a principled feature selection and dimensionality
reduction mechanism within DTW. In particular, by taking
advantage of the similarities between the least squares func-
tional form of CCA [10] and Eq. 3, CTW simultaneously
discovers two linear operators (U1, U2) and applies DTW
on the low dimensional embedding of UT

1 X1 and UT
2 X2

by solving the following optimization problem

∆o
1,2,U

o
1,2 = argmin

∆1,2,U1,2

‖UT
1 X1∆1 −UT

2 X2∆2‖2F

s.t. ∆1 ∈ {0, 1}T1×T , ∆2 ∈ {0, 1}T2×T

UT
1 X1D1X1

TU1 = I, UT
2 X2D2X2

TU2 = I
(4)

where D1 = ∆1∆
T
1 and D2 = ∆2∆

T
2 . An alternating op-

timization approach was used in order to solve the above
problem. One of the drawbacks of CTW is that it does
not take into account the dynamic information of the sig-
nals. Furthermore, even though CTW can theoretically han-
dle high dimensional spaces, in [34] it has only been tested

on alignment problems that deal with sparse sets of land-
marks. According to our experiments, for the task of align-
ing facial behaviour using image pixel information, CTW
can perform well only if a dimensionality reduction step has
been applied on each video using PCA.

2.3. A Correlated Component Analysis for Describ-
ing a Spatio-Temporal Phenomenon

In this section, we build on the component analysis
model of ARCA [29] in order to describe a temporal phe-
nomenon which is common in two sequences that are
both spatially and temporally aligned (e.g. two video se-
quences depicting the same expression or Facial Action
Unit (AU) [13]). Then, we assume that the sequences’
frames are neither spatially nor temporally aligned and we
propose an optimization problem that jointly decomposes
the image sequences into maximally correlated subspaces
and performs spatial and temporal alignment.

Let us denote two image sequences as the stacked ma-
trices X1 = [x1

1, . . . ,x
1
N ] and X2 = [x2

1, . . . ,x
2
N ]. We

assume that both sequences are explained by a linear gen-
erative model. That is, we want to decompose the two se-
quences into two maximally correlated subspaces V1 and
V2 using the orthonormal bases U1 and U2, as

Uo
1,2,V

o
1,2 = argmin

U1,2,V1,2

||X1 −U1V1||2F + ||X2 −U2V2||2F

+ λtr[V1LVT
1 ] + λtr[V2LVT

2 ] + ||V1 −V2||2F
s.t. UT

1 U1 = I, UT
2 U2 = I

(5)
In Sec. 2.5.1 we show how the component analysis is linked
to CCA and explore the main modelling differences.

Assuming that the sequences X1 ∈ RF×N1 and X2 ∈
RF×N2 are neither temporally aligned, hence they do not
have the same length, nor spatially aligned, we propose the
following optimization problem

Po
1,2,∆

o
1,2,U

o
1,2,V

o
1,2 =

= argmin
P1,2,∆1,2,U1,2,V1,2

||(X1(P1)−U1V1)∆1||2F +

+ ||(X2(P2)−U2V2)∆2||2F + λtr[V1L1V
T
1 ]+

+ λtr[V2L2V
T
2 ] + ||V1∆1 −V2∆2||2F

s.t. ∆1 ∈ {0, 1}N1×N , ∆2 ∈ {0, 1}N2×N

UT
1 U1 = I, UT

2 U2 = I

(6)

where L1 ∈ RN1×N1 and L2 ∈ RN2×N2 are Laplacian ma-
trices and ∆1 and ∆2 are binary warping matrices. The
above optimization problem forms the bases of our frame-
work and enables us to perform joint spatio-temporal align-
ment of the sequences into a common frame defined as the
mean shape s̄. In Section 2.5 we discuss the relationship
between the above model and CCA/CTW. The advantages
of the proposed model over CTW is (a) the proposed model



Figure 1: Method overview. Given two video sequences, the proposed method performs joint deformable spatio-temporal alignment using an iterative procedure that gradually
improves the result. The initialization is acquired by applying ARCA [29] on both sequences.

incorporates temporal regularisation contraints, (b) we can
perform jointly temporal and spatial alignment and (c) we
can easily incorporate terms that account for gross corrup-
tions/error [18].

The sequences that consist of the warped frames’ vectors
are given by

Xi(Pi) =
[
xi
1(pi

1), . . . ,xi
Ni

(pi
Ni

)
]
, i = 1, 2 (7)

where Pi = [pi1, . . . ,p
i
Ni

] is the matrix of the shape param-
eters of each frame and i denotes the sequence index. As
shown in overview of Fig. 1, the above optimization prob-
lem is iteratively solved in an alternating manner. The first
step is to estimate matrices U1,2 and V1,2 based on the cur-
rent estimate of the shape parameters P1,2 and then apply
DTW on V1,2 in order to find ∆1,2. The second step is to
compute the parameters of the spatial alignment P1,2 given
the current estimation of U1,2, V1,2 and ∆1,2. The initial
shapes are estimated by applying ARCA on both sequences.
Therefore, the optimization of Eq. 6 is solved in the follow-
ing two steps:

2.3.1 Fix P1,2 and minimize with respect to U1,2,V1,2

and ∆1,2

In this step of the proposed method, we aim to update U1,2

and V1,2, assuming that we have a current estimate of the
shape parameters’ matrices P1,2, hence of the data matri-
ces X1,2(P1,2). Those updates are estimated by using an
alternating optimization framework. Specifically, we first
fix V1,2 and compute U1,2 and then we find V1,2 by fix-
ing U1,2. The warping matrices ∆1,2 are updated at the
beginning of each such iteration.

Update ∆1,2 In the first iteration, we assume that we have
the initial V1,2 obtained by applying the ARCA algorithm
on each sequence X1,2(P1,2). Thus, the warping matri-
ces ∆1,2 are estimated by applying DTW on these initial
V1,2. In every subsequent iteration, ∆1,2 are estimated

by applying DTW on the updated V1,2, thus (∆1,∆2) =
DTW(V1,V2).

Update U1,2 Given the current estimate of V1,2, the op-
timization problem with regards to U1,2 is given by

f(V1,2) =‖(X1(P1)−U1V1)∆1‖2F + ‖(X2(P2)−U2V2)∆2‖2F
s.t. ∆1 ∈ {0, 1}N1×N ,∆2 ∈ {0, 1}N2×N

UT
1 U1 = I, UT

2 U2 = I
(8)

The updates from the above optimization problem are
derived by the Skinny Singular Value Decomposition
(SSVD) [37] of Xi(Pi)DiV

T
i . That is, given the SVD

Xi(Pi)DiV
T
i = RiSiM

T
i , then

Ui = RiM
T
i , i = 1, 2 (9)

where, for convenience, we set Di = ∆i∆
T
i , i = 1, 2

Update V1,2 Given U1,2, the optimization problem with
regards to V1,2 is formulated as

f(U1,2) =‖(X1(P1)−U1V1)∆1‖2F + λtr[V1L1V
T
1 ]

+ ‖(X2(P2)−U2V2)∆2‖2F + λtr[V2L2V
T
2 ]

+ ||V1∆1 −V2∆2||2F
s.t. ∆1 ∈ {0, 1}N1×N , ∆2 ∈ {0, 1}N2×N

UT
1 U1 = I, UT

2 U2 = I
(10)

By evaluating the partial derivatives with respect to
Vi, ∀i = {1, 2} and equalize them with zero, we derive

Vi = (UT
i XiDi + Ci)(2Di + λLi)

−1, i = 1, 2 (11)

where C1 = V2∆2∆
T
1 and C2 = V1∆1∆

T
2 .

2.3.2 Fix U1,2,V1,2,∆1,2 and minimize with respect to
P1,2

The aim of this step is to estimate the shape parameters’
matrices Pi, i = 1, 2 for each sequence, given the current



estimate of the bases U1,2 and the features V1,2. This is
performed for each sequence independently and it can be
expressed as the following optimization problem

Po
i = argmin

Pi

‖Xi(Pi)−UiVi‖2F =

= argmin
{pi

j}, j=1,...,Ni

Ni∑
j=1

‖xi
j(p

i
j)−Uiv

i
j‖22, i = 1, 2

(12)

where vij , ∀j = 1, . . . , Ni, ∀i = 1, 2 denotes the j-th col-
umn of the matrix Vi that corresponds to each sequence.
In other words, for each sequence (i = 1, 2), we aim to
minimize the Frobenius norm between the warped frames
Xi(Pi) and the templates UiVi. The solution is obtained
by employing the Inverse Compositional (IC) Image Align-
ment algorithm [3]. Note that the IC alignment is performed
separately for each frame of each sequence. In brief, the so-
lution can be derived by introducing an incremental warp
term (∆pij) on the part of the template of Eq. 12. Then,
by linearizing (first order Taylor expansion) around zero
(∆pij = 0), the incremental warp is given by

∆pi
j = H−1JT |p=0

[
xi
j(p

i
j)−Uiv

i
j

]
,

j = 1, . . . , Ni, i = 1, 2

where H = JT |p=0J|p=0 is the Gauss-Newton approxi-
mation of the Hessian matrix and JT |p=0 is the Jacobian of
each template Uiv

i
j . The biggest advantage of the IC al-

gorithm is that the Jacobian and the inverse of the Hessian
matrix are constant and can be precomputed once, because
the linearization of the solution is taken on the part of the
template.

2.4. Empirical Convergence

Herein, we empirically investigate the convergence of
the proposed optimization problem on MMI and UNS
databases. Figure 2 shows the values of the cost function
of Eq. 6, averaged over all the videos. The results show that
the proposed methodology converges monotonically and 4-
5 iterations are adequate to achieve good performance.
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Figure 2: Cost function error with respect to the iterations averaged over all (a) MMI
and (b) UNS videos.

2.5. Theoretical Interpretation

2.5.1 Relationship to Canonical Component Analysis

In this section, we analyze the relationship between the pro-
posed model of Sec. 2.3 and other methodologies that pro-
duce subspaces of correlated features. Naturally, this com-
parison is mostly targeted on the close related CCA. Let
us formulate the optimization problem of Eq. 5 without the
temporal regularization terms, as

Uo
1,2,V

o
1,2 = argmin

U1,U2,V1,V2

||X1 −U1V1||2F +

+ ||X2 −U2V2||2F + ||V1 −V2||2F
s.t. UT

1 U1 = I, UT
2 U2 = I

(13)

By assuming that the weights matrices V1 and V2 are
formed by projecting the sequences onto the respective or-
thonormal bases as V1 = UT

1 X1 and V2 = UT
2 X2, and

then substituting back to Eq. 13, we end up with

Uo
1,2 = argmax

U1,U2

tr

[(
U1

U2

)T (
0 X1X

T
2

X2X
T
1 0

)(
U1

U2

)]

s.t.
(

U1

U2

)T (
U1

U2

)
= I

(14)
which is a special case of CCA with orthogonal instead of
generalized orthogonal constraints1. The derivation of the
above problem is shown in the supplementary material and
its solution is given by performing eigen-analysis.

Motivated by Eq. 14, it can be shown that the proposed
component analysis formulation of Eq. 6 is a case of orthog-
onal CCA with temporal regularized terms. Specifically, by
assuming that V1 = UT

1 X1 and V2 = UT
2 X2, the opti-

mization problem of Eq. 6 can be reformulated as

Uo
1,U

o
2 =

argmax
U1,U2

tr

[(
U1

U2

)T (−X1LXT
1 X1X

T
2

X2X
T
1 −X2LXT

2

)(
U1

U2

)]

s.t.
(

U1

U2

)T (
U1

U2

)
= I

(15)
which again can be solved by performing eigen-analysis.
The above problem is a kind of temporally regularized or-
thogonal CCA.Temporal regularisation is probably the rea-
son that the proposed approach outperforms CTW (which
does not employ any temporal regularisation).

Even though Laplacian regularization of component
analysis techniques has recently been significantly stud-
ied [7], Laplacian regularization for CCA models has not
received much attention [5]. To the best of our knowledge,
this is the first component analysis methodology which can

1CCA has as constraints UT
1 X1XT

1 U1 = I and UT
2 X2XT

2 U2 = I.



lead to a CCA with temporal regularization terms2. We
believe that the proposed component analysis method is
superior to the CCA model for both spatial and temporal
alignment, since (a) the bases are orthogonal and hence can
be used to build better statistical models for spatial align-
ment [16] and (b) we have applied temporal regularization
terms which produce smoother latent spaces V1 and V2

which are better for temporal alignment. Finally, note that
the reason why we solve the proposed decomposition using
the least-squares approach and not eigen-analysis is numer-
ical stability [10].

2.5.2 Probabilistic Interpretation

The proposed optimization problem also provides the
maximum-likelihood solution of a shared space generative
autoregressive model. That is, we assume we have two lin-
ear models that describe the generation of observations in
the two sequences

x1
i = U1v

1
i + e1

i , e1
i ∼ N (0, σ1I), i = 1, . . . , N1

x2
i = U2v

2
i + e2

i , e2
i ∼ N (0, σ2I), i = 1, . . . , N2

(16)

Let us also make the assumption that V1 = [v1
1, . . . ,v

1
N1

]
forms an autoregressive sequence. That is, V1 ∼
|LN |√
(2π)kN

exp{− 1
2 tr[V1LVT

1 ]} with L being the Laplacian

and V2 is the same as V1 up to a Gaussian noise, i.e.
v1
i = v2

i + ei with ei ∼ N (0, σI). It is straightforward to
show that maximizing the joint log likelihood of the above
probabilistic model with regards to U1,U2,V1 and V2 is
equivalent to optimizing the cost function in Eq. 13.

It is worthwhile to compare the proposed with the Dy-
namic Probabilistic CCA (DPCCA) method proposed in
[17]. The method in [17] models shared and individual
spaces in a probabilistic manner, i.e. by incorporating priors
over these spaces and marginalising them out. Time series
alignment is performed by applying DTW on the expecta-
tions of the shared space over the individual posteriors. Us-
ing the model in [17] to perform joint spatial alignment is
not trivial, that is why temporal alignment is performed on
facial shape only.

3. Experiments
In order to demonstrate the effectiveness of the pro-

posed framework, we conduct experiments on two datasets:
MMI [20, 26] which consists of videos with posed AUs and
UvA-Nemo Smile (UNS) [11] which contains videos with

2Our component analysis is not to be confused with the so-called Dy-
namic CCA model proposed in [17], where special probabilistic Linear
Dynamical Systems (LDS) are proposed with shared and common spaces.
The proposed model is deterministic. It is also radically different to the
so-called semi-supervised Laplacian CCA method of [5], where a semi-
supervised Linear Discriminant Analysis (LDA) is proposed.

posed and spontaneous smiles. The MMI database contains
more than 400 videos, in which a subject performs one or
more AUs that are annotated with respect to the following
temporal segments: (1) neutral when there is no facial mo-
tion, (2) onset when the facial motion starts, (3) apex, when
the muscles reach the peak intensity, and (4) offset when
the muscles begin to relax. The large-scale UNS database
consists of more than 1240 videos (597 spontaneous and
643 posed) with 400 subjects. Since this database does not
provide any annotations of temporal segments, we manu-
ally annotated 50 videos displaying spontaneous smiles and
50 videos displaying posed smiles using the same temporal
segments as in the case of MMI.

3.1. Temporal Alignment Results

In this section, we provide experimental results for the
temporal alignment of pairs of videos from both the MMI
and UNS databases. The pairs are selected so that the same
AU is activated. The aim of those experiments is (a) to
evaluate the performance of the proposed framework com-
pared to various commonly used temporal alignment meth-
ods, and (b) to show that by treating the problems of spatial
and temporal alignment jointly instead of independently we
achieve better results. We compare the proposed unsuper-
vised framework, labelled as joint ARCA+DTW, with (a)
CTW, (b) SFA+DTW, and (c) ARCA+DTW in which the
problems of temporal and spatial alignment are solved in-
dependently. For the joint ARCA+DTW, we set the pa-
rameter λ that regulates the contribution of the smoothness
constraints equal to 150 for both sequences. Furthermore,
the dimensionality of the latent space for all the examined
methods is set to 25, which was the dimensionality that
lead to the best performance in a validation set. The ma-
trices were initialised by applying first ARCA on both se-
quences. The shape parameters were initialised with ze-
ros and the mean shape was placed in the bounding box
returned by Viola-Jones face detector [31]. Finally, the pro-
posed method is applied for 5 global iterations. We would
like to note that we have run ARCA+DTW one and several
iterations but because there is no joint subspace learned be-
tween two videos we have not observed any improvement.

The temporal alignment accuracy is evaluated by em-
ploying the metric used in recent works [17]. Specifically,
let us assume that we have 2 video sequences with the cor-
responding features (Vi, i = 1, 2) and AU annotations
(Ai, i = 1, 2). Additionally, assume that we have recov-
ered the alignment binary matrices ∆i, i = 1, 2 for each
video. By applying these matrices on the AU annotations
(i.e., A1∆1 and A2∆2) we can find the temporal phase of
the AU that each aligned frame of each video corresponds
to. Therefore, for a given temporal phase (e.g., neutral), we
have a set of frame indices which are assigned to the specific
temporal phase in each video, i.e. N p

1 and N p
2 respectively.
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(i) Percentage of video pairs that achieve an accuracy less or equal than the respec-
tive value for mouth-related AUs. The subfigures correspond to the temporal phases
as: (a) neutral, (b) onset, (c) apex, (d) offset.
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(ii) Percentage of video pairs that achieve an accuracy less or equal than the respec-
tive value for eyes-related AUs. The subfigures correspond to the temporal phases
as: (a) neutral, (b) onset, (c) apex, (d) offset.
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(iii) Average accuracy over all the video pairs with respect to the temporal phase for (a) mouth-related AUs, (b) eyes-related AUs (c) brows-related AUs.
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Figure 3: Temporal alignment results on MMI database.

The accuracy is then estimated as |N
p
1 ∩N

p
2 |

|Np
1 ∪N

p
2 |

, which essen-
tially corresponds to the ratio of correctly aligned frames to
the total duration of the temporal phase p across the aligned
videos.

3.1.1 MMI database

In this section, we report the performance on MMI
database. The experiments are conducted on 480 pairs of
videos that depict the same AU. The results are split in three
categories, based on the region of the face that is activated
by the performed AU, i.e. mouth, eyes and brows. For each
facial region, the results are further separated per temporal
segment. The AUs that correspond to each facial region are:
• Mouth: Upper Lip Raiser, Nasolabial Deepener, Lip
Corner Puller, Cheek Puffer, Dimpler, Lip Corner Depres-
sor, Lower Lip Depressor, Chin Raiser, Lip Puckerer, Lip

Stretcher, Lip Funneler, Lip Tightener, Lip Pressor, Lips
Part, Jaw Drop, Mouth Stretch, Lip Suck
• Eyes: Upper Lid Raiser, Cheek Raiser, Lid Tightener,
Nose Wrinkler, Eyes Closed, Blink, Wink, Eyes Turn Left
and Eyes Turn Right
• Brows: Inner Brow Raiser, Outer Brow Raiser and Brow
Lowerer

Figure 3 summarizes the temporal alignment of three ex-
periments on the MMI database. Specifically, Figures 3i
and 3ii show the percentage of video pairs that achieved
an accuracy less or equal than the corresponding value for
mouth-related and eyes-related AUs, respectively. In other
words, these Cumulative Accuracy Distributions (CAD)
show the percentage of video pairs that achieved at most
a specific accuracy percentage. The plots for each facial
region are also separated with respect to the temporal seg-
ment in question. The results indicate that, for both mouth
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Figure 4: Average accuracy over all the video pairs with respect to the temporal phase for (a) spontaneous smiles, (b) posed smiles.

and eyes related AUs, our method outperforms the rest of
techniques for the neutral and apex phases, and has a com-
parable performance for onset and offset.

This is better illustrated in Fig. 3iii which reports the av-
erage accuracy over all the video pairs for each temporal
phase separately. The results for the brows-related AUs are
also included in this figure, which indicate that the proposed
method significantly outperforms the other techniques for
all the temporal phases. Due to limited space, the CAD
curves for the brows-related AUs for each temporal phase
is omitted and can be found in the supplementary mate-
rial. Moreover, note that our methodology outperforms
ARCA+DTW for all facial regions and temporal phases.
This is an important result which indicates that treating the
spatial and temporal alignment as a joint problem is more
advantageous than solving them independently.

Regarding the alignment of mouth-related AUs, it is
worth mentioning that a similar experiment with the one
provided in this section (Fig. 3iii (a)) was conducted in [17]
(section 7.3), which reports the average accuracy over 50
video pairs performing AU12 in MMI database. Specifi-
cally for this task, we obtained 71% accuracy over DPCTW
which obtained 55% for the neutral phase in the features.
Subsequently, we achieved 38% accuracy compared to 33%
for the onset phase, 61% over 60% for the apex phase and
39% compared to 37% for the offset phase. We have to
note that our algorithm is completely automatic in terms of
both spatial and temporal alignment (requiring only a face
detector) and uses raw pixel intensities. On the other hand
the method in [17] used, manually corrected, tracked land-
marks.

Figure 3iv reports the results of a second experiment that
aims to assess the effect of spatial alignment in the temporal
alignment procedure. Specifically, we apply the proposed
technique with different spatial alignment approaches, that
is (a) the proposed unsupervised spatial alignment, (b) using
the manually annotated landmarks, (c) adding random noise
to the manually annotated landmarks. The results indicate
that in most cases, the proposed method with automatic spa-
tial alignment greatly outperforms the case of random ini-
tialisation and has comparable performance with the case of
perfectly aligned images.

3.1.2 UNS database

In this section, we provide temporal alignment results on
the UNS database, which contains, not only posed, but also
spontaneous smiles which are more complex due to their
dynamics [32]. We conduct the experiments on 188 pairs of
videos with posed smiles and 122 pairs with spontaneous
smiles. Specifically, Fig. 4 reports the average accuracy
over all video pairs with respect to the temporal segments.
As can be seen, our technique outperforms all the other
methods for all temporal phases with an average margin of
7 − 8%. Furthermore, the results illustrate once more that
performing joint spatio-temporal alignemnt derives better
results than applying the spatial and temporal alignment in-
dependently. Finally, we further evaluate the performance
of the proposed method by applying different spatial align-
ment approaches (unsupervised, manual annotations, ran-
dom initialisation), similar to MMI case. Due to limited
space, this experiment is included in the supplementary ma-
terial along with the CAD curves for each temporal phase
separately as well as experiments in spatial alignment.

4. Conclusion

We proposed the first, to the best of our knowledge,
spatio-temporal methodology for deformable face align-
ment. We proposed a novel component analysis for the
task and we explored some of its theoretical properties,
as well as its relationship with other component analysis
(e.g., CCA). We showed that our methodology outperforms
state-of-the-art temporal alignment methods that make use
of manual image alignment. We also showed that it is ad-
vantageous to jointly solve the problems of spatial and tem-
poral alignment than solving them independently.
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