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Abstract

Recently, deformable face alignment is synonymous to
the task of locating a set of 2D sparse landmarks in intensity
images. Currently, discriminatively trained Deep Convolu-
tional Neural Networks (DCNNs) are the state-of-the-art in
the task of face alignment. DCNNs exploit large amount
of high quality annotations that emerged the last few years.
Nevertheless, the provided 2D annotations rarely capture
the 3D structure of the face (this is especially evident in the
facial boundary). That is, the annotations neither provide
an estimate of the depth nor correspond to the 2D projec-
tions of the 3D facial structure. This paper summarises our
efforts to develop (a) a very large database suitable to be
used to train 3D face alignment algorithms in images cap-
tured “in-the-wild” and (b) to train and evaluate new meth-
ods for 3D face landmark tracking. Finally, we report the
results of the first challenge in 3D face tracking “in-the-
wild”.

1. Introduction

Face alignment and tracking on images/videos captured
under unconstrained recording conditions has recently re-
ceived considerable attention due to the numerous applica-
tions such as entertainment, security, human computer in-
teraction, graphics etc.

The current state-of-the-art in face alignment revolves
around Deep Convolutional Neural Networks (DCNN)
equipped with a multiscale structure, alleged Hourglass ar-
chitecture [15] ! or structures that combine a convolutional
network for feature extractions and Recurrent Neural Net-

*S. Zafeiriou, G. Chrysos and A. Roussos contributed equally and have
joint first authorship.

"Hourglass networks won the recent Menpo Challenge on multi-view
face alignment [22] and the recent 3D face alignment competition [3].

works (RNNs) for solving non-linear least square problems
[19]. The landscape is not different in deformable face
tracking, where DCNNs currently hold the state-of-the-art
[19,12]°.

Currently, it is feasible to robustly train DCNNs for face
alignment, since our group has provided large scale land-
mark annotations [17, 16, 18, 24]. In the first challenge, i.e.
300W [17], our group provided annotations for over 4,350
“in-the-wild” images (approximately 5,000 faces). In the
300VW [ 18] our group provided annotations for 114 videos,
aiming at evaluating efforts for deformable face tracking.
The 300W and 300VW benchmarks provided annotations
with regards to a frontal face shape of 68 landmarks. A
step forward was made in CVPR 2017 by our group in the
so-called Menpo Challenge [24]. In Menpo challenge we
provided annotations for over 12,000 faces including, for
the first time, annotations for over 4,000 profile faces (with
regards to to 39 landmarks). All the above benchmarks con-
stitute a very valuable asset for 2D deformable face align-
ment and tracking and have used to drive the research in the
field.

Even though all the above databases provide annotations
that correspond to semantically meaningful parts of the face
many of the landmarks hardly correspond to the 3D struc-
ture of the human face. That is, they do not accurately
correspond to the projections, in the image plane, of any
landmarks of the 3D facial structure. Furthermore, the 2D
annotations of the above benchmarks do not bare any infor-
mation regarding the depth of the 3D face. In this paper,
we call the 2D projections of the 3D landmarks in the im-
age plane as 3DA-2D landmarks to distinguish them from
the 3D coordinates of the facial landmarks in the 3D scene,
which we call 3D landmarks in this paper. An example of
2D landmark annotations provided by 300VW and the cor-

2For state-of-the-art techniques the readers may refer to the recent com-
prehensive survey [7].
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Figure 1. First row (a): The annotated 2D landmarks provided by the 300VW competition. Second row (b): The estimated 3DA-2D

landmarks provided by Menpo 3D challenge.

responding 3DA-2D landmarks, estimated by the proposed
procedure are shown in Fig. 1.

The major problem regarding extracting 3D and 3DA-
2D landmark annotations in images captured “in-the-wild”
is that: (a) the faithful reconstruction of the 3D facial sur-
face remains very challenging in unconstrained recording
conditions; (b) photo-realistic synthesis of face in arbitrary
poses and illumination conditions is not possible without
the facial albedo, which requires special setups in order to
be precisely captured (e.g., a light stage [1 1]). This is why
the first 3D landmark localisation challenge, which was or-
ganised in conjunction with ECCV 2016, used only data
captured in controlled conditions (i.e., Multi-PIE [13]) or
synthetically generated data using simple techniques (i.e.,
rendering a 3d face captured in controlled conditions using
arbitrary backgrounds [14]).

In this paper, we make a significant step further and pro-
vide large scale 3DA-2D facial landmarks, as well as 3D
facial landmarks in a normalised facial model space. These
annotations can be used for training algorithms for esti-
mating 3DA-2D, as well as 3D landmarks in “in-the-wild”
images. We use these landmarks to train a DCNN based
on the Hourglass architecture [12] for estimating 3DA-2D
landmarks. The trained DCNN was used to provide a first
estimate of the 3DA-2D locations of landmarks in facial
videos. Then, an elaborate procedure combining Structure
from Motion (SfM) and 3DMM fitting is used to convert
these estimates to ground annotations which can be used
for training and evaluating algorithms 3DA-2D and 3D fa-
cial landmark tracking algorithms. Finally, we used these

data to evaluate efforts in 3D face tracking and present the
results. All in all, our contributions in this paper are the
following:

e We provide a large scale database of facial images
with 3DA-2D and 3D facial landmarks by applying the
state-of-the-art 3DMM fitting algorithm of [1] driven
by the ground-truth 2D landmarks.

e We propose an elaborate procedure for estimating
3DA-2D and 3D landmarks in arbitrary “in-the-wild”
videos. The procedure is highly accurate and was used
to provide more than 280,000 annotated frames.

e We present the results of the first challenge on 3DA-2D
and 3D landmark tracking.

2. Creating a Large Scale Database with 3DA -
2D and 3D landmarks

Recently in [25] a facial 3DMM has been fitted on the
2D landmarks and used in order to train a DCNN for the es-
timation of the 3D facial surface. In order to produce a large
scale dataset of 3DA-2D and 3D landmarks we utilised the
recently introduced 3DMM fitting strategy which is appli-
cable to “in-the-wild” images. The difference between the
method used in [25] and the one used in this work is that our
3DMM fitting strategy not only uses the facial landmarks
but the facial texture as well. Furthermore, in order to im-
prove accuracy we annotated all the images with regards to
(a) gender, (b) ethnicity and (d) apparent age and used the
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bespoke 3DMMs from the LSFM model [2]. We provide
3DA-2D and 3D landmarks for all the databases that we
have annotated with 2D landmarks, i.e 300W, Menpo etc. It
is worth noting that the 3D landmarks are provided in the
normalised space of the model.

Fitting the 3DMM in hundreds of thousands of video
frames is computationally expensive, we opted to train a
DCNN, based on the hourglass architecture, that regresses
to 3DA-2D landmarks. In particular, after the coarse step of
the architecture of [12], it regresses to 3DA-2D landmarks
(using as auxiliary input the 2D landmark locations) °.

3. Creation of Ground Truth 3D Facial Land-
marks on Videos

To extract accurate 3D landmarks from facial videos, a
semi-automated procedure is followed as described below
(the core steps are depicted in Figure 2). Initially, we em-
ploy the aforementioned DCNN network to estimate the
per frame 3DA-2D landmarks. The automatic personali-
sation method of [8] was utilised for refining certain facial
parts (i.e. the eyes). Sequentially, an energy minimisation
method was used to fit our combined identity and expres-
sion models on the landmarks of all frames of the video si-
multaneously. We apply this fitting twice, first by using the
global LSFM model for the identity variation and second by
using the corresponding bespoke LSFM model, based on
manual annotation of the demographics of the input face.
Finally, we sample the dense facial mesh that is generated
by the fitting result at every frame on the sparse landmark
locations. Via visual inspection of both the dense 3D and
the reprojected sparse 2D landmarks results in all frames,
we choose the best of the two results (global versus bespoke
identity models) and we retain it as ground truth only if the
result is plausible in all frames.

3.1. Dense 3D Face Shape Modelling

Let us denote the 3D mesh (shape) of a face with NV ver-
texes as a 3N x 1 vector

T T
s=[x{,....x5] =[z1,y1,21,...,zNn,yn, 2n] (D)

where x; = [z, s, zi]T are the object-centered Cartesian
coordinates of the i-th vertex.

In this work we unbundle the identity from the expres-
sion variation and then combine them to articulate the 3D
facial shape of any identity. An identity shape model is
considered first, i.e. a model of shape variation across dif-
ferent individuals, assuming that all shapes are under neu-
tral expression. For this, we adopt our LSFM models [2],
which consist the largest models of 3D Morphable Mod-
elling (3DMM) of facial identity built from approximately

3Simultaneously to this work we found that a similar method has been
proposed in [4] for transferring 2D to 3DA-2D landmarks.

10,000 scans of different individuals®. The dataset that
LSFM models are trained on includes rich demographic in-
formation about each subject, allowing the construction of
not only a global 3DMM model but also bespoke models
tailored for specific age, gender or ethnicity groups. In this
work, we utilise both the global and the bespoke LSFM
models.

Each LSFM model (global or bespoke) forms a shape
subspace that allows the expression of any new mesh. To
construct such an LSFM model initially a set of 3D training
meshes are brought into dense correspondence so that each
mesh is described with the same number of vertices and all
samples have a shared semantic ordering. The rigid trans-
formations are removed from these semantically similar
meshes, {s;}, by applying Generalised Procrustes Analysis.
Sequentially, Principal Component Analysis (PCA) is per-
formed which results in {8;4, U;q, Ziq}, where 8,4 € R3V
is the mean shape vector, U4 € R3NV X7 ig the orthonor-
mal basis after keeping the first n,, principal components
and ¥;; € R"™*" is a diagonal matrix with the stan-
dard deviations of the corresponding principal components.
Let U;q = U;43,4 be the identity basis with basis vec-
tors that have absorbed the standard deviation of the cor-
responding mode of variation so that the shape parameters
p=[p1, - .Pn,) T are normalised to have unit variance.
Therefore, assuming normal prior distributions, we have
p ~ N(0,1,,), where I, denotes the n x n identity matrix.

A 3D shape instance of a novel identity can be generated
using this PCA model as a function of the parameters p:

Sia(p) = 8ia + Uiap ()

Furthermore, we also consider a 3D shape model of ex-
pression variations, as offsets from a given identity shape
S;q- The blendshapes model of Facewarehouse [5] are
utilised for this module. We adopt Nonrigid ICP [6] to ac-
curately register this model with the LSFM identity model.
Then the expression model can be represented with the
triplet {Seap, Ueap, Zeap}» Where Sq.p € R3Y is the mean
expression offset, U,,,, € R3N %74 ig the orthonormal ex-
pression basis having n, principal components and 3., €
R™2*™a ig the diagonal matrix with the corresponding stan-
dard deviations. Similarly with the identity model, we con-
sider the basis Uy, = Ueypdesp and the associated nor-
malised parameters q ~ N'(0, 1, ).

Combining the two aforementioned models, we end up
with the following combined model that represents the 3D
facial shape of any identity under any expression:

S(pa q) =s+ ﬁzdp + ﬁequ (3)

where § = §,q+8.,) is the overall mean shape, p is the vec-
tor with the identity parameters and q is the vector with the

4The LSFM models have recently become available upon application:
http://www.ibug.doc.ic.ac.uk/resources/lsfm.
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(b) Landmark
localisation

(a) Input video

(c) Camera estimation (d) Dense 3D shape
(rigid SfM)

(e) Sampling of 3D shape on face

estimation landmarks

Figure 2. Main steps of the adopted pipeline to create ground truth 3D facial landmarks on videos. We are based on a state-of-the-art
landmarker and an energy minimisation approach to fitting powerful dense 3D face models on the sequence of landmarks.

expression parameters. We construct one combined identity
and expression model for each LSFM model (global or be-
spoke). For example, Figure 3 visualises the first few com-
ponents of identity and expression for the case of global
LSFM model.

3.2. Dense 3D Model Fitting

First of all, on every frame of the input video the 2D co-
ordinates of a sparse set of facial landmarks are estimated
by using the state-of-the-art facial landmarker of [3, 12],
which can work under unconstrained conditions; see Fig-
ure 2(b). Crucially, this method provides a reliable estima-
tion of the 2D projection of the real 3D positions of self-
occluded landmarks even in cases of head poses close to
profile views. Afterwards we fit our LSFM models on the
extracted 2D landmarks locations. The rich dynamic infor-
mation available in sequential frames enables us to provide
very precise estimations of the ground truth shape, see Fig-
ure 2(d). More precisely, thanks to our combined identity
and expression shape model, we can fix the identity param-
eters throughout the whole video. This is an important con-
straint that greatly helps our estimations. In addition, we
impose temporal smoothness on the expression parameters,
which improves the estimation of the 3D facial deforma-

tions of the individual observed in the input video.

3.2.1 Camera Model

The purpose of a camera model is to map (project) the
object-centered Cartesian coordinates of a 3D mesh in-
stance s into 2D Cartesian coordinates on an image plane.

The projection of a 3D point x = [z, y, z]T into its 2D
location in the image plane x’ = [2/,4]" involves two
steps. First, the 3D point is rotated and translated using a
linear view transformation to bring it in the camera refer-
ence frame:

v = [Uma 'Uyavz]T =R,x+t, “4)

where R, € R3*3 and t, = [t,,1,, t.]" are the camera’s
3D rotation and translation components, respectively. This
is based on the fact that, without loss of generality, we can
assume that the observed facial shape is still and that the
relative change in 3D pose between camera and object is
only due to camera motion.

Then, the camera projection is applied. For the sake of
computational efficiency and stability of the estimations, we
consider a scaled orthographic camera, which simplifies the
involved optimisation problems by making the camera pro-
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Figure 3. Principal components of identity (case of LSFM global
model), expression variation and their combination, using the first
3 principal components for identity and the first 2 components
for expression. Note that the first row corresponds to the identity
model only.
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jection function to be linear. In more detail, the 2D location
of the 3D point x is given by:

x' = o [vg, vy]T 5)

where o is the scale parameter of the camera. Note that
since in the scaled orthographic case the translation compo-
nent ¢, is ambiguous, we will consider it fixed and omit it
from the subsequent formulations.

In addition, we represent the 3D rotation R, using the
three parameters of the axis-angle parametrisation q =
[q1, 2, Q3]T-

Camera function. The projection operation performed
by the camera model of the 3DMM can be expressed with
the function P(s,c) : R3*V — RN, which applies the
transformations of Egs. (4) and (5) on the points of provided
3D mesh s with

T
c= ig7qlaq27q3vtmatyi GRG (6)

being the vector of camera parameters with length n, = 6.
For abbreviation purposes, we represent the camera model
of the 3DMM with the function W : R"»>"e — R2N ag

W(p,q,¢) =P (S(p,a),c) (7)

where S(p, q) is a 3D mesh instance using Eq. (2). Finally,
we denote by Wi(p,qy,cy) : R"» ™ — R2%, where L is
the number of the considered sparse landmarks, the selec-
tion of the elements of W(p, g, ¢) that correspond to the x,

y and z coordinates of the 3D shape vertices associated with
the facial landmarks.

3.2.2 Energy Formulation

To achieve highly-accurate fitting results, even in especially
challenging cases, we design an energy minimisation strat-
egy that is tailored for video input and exploits the rich dy-
namic information usually contained in facial videos. Since
these estimations are intended for the creation of ground
truth and we are not constrained by the need of real-time
performance, we follow a batch approach, where we assume
that all frames of the video are available from the beginning.

Let £y = [:zzlf,ylf,...,fo,ny]T be the 2D facial
landmarks for the f-th frame estimated by the method
of [3]. Even though we consider the identity parame-
ters p as fixed over the frames of the video, we expect
that every frame has its own expression, camera, and tex-
ture parameters vectors, which we denote by qy, ¢ and
Ay respectively. We also denote by ¢, ¢ and A the con-
catenation of the corresponding parameter vectors over all
frames (with n; being the number of frames of the video):
q' = [q{,...,qlf}, ¢’ = [cI,...,cnf] and )\ =
[AI, o AH

To fit a 3D face model on the facial landmarks, we pro-
pose to minimise the following energy:

= Eland(p q )
+ Epriors( ) +c

E(p,q,¢) ®
mEsmooth(éi)

where Eland, Epn-ors and Esmooth are a multi-frame 2D land-
marks term, a prior regularisation term and a temporal
smoothness term respectively. Also c¢gp, is a balancing
weights for the temporal smoothness term.

The multi-frame 2D landmarks term (Eland) is a sum-
mation of the reprojection error of the sparse 2D landmarks
for all frames:

nf

> IWip.ag.cr) — 47 ©
f=1

Eland(p7 617 é) =

The shape priors term (Epﬁm) imposes priors on the re-
constructed 3D facial shape of every frame. Since the facial
shape at every frame is derived from the (zero-mean and
unit-variance) identity parameter vector p and the frame-
specific expression parameter vector gy (also zero-mean
and unit-variance), we define this term as:

ng
- A A 2 2
Epriors<p7 Q) = Cid ||P|| + Cexp Z ||qf||
= (10)

. 2 112
= Cia [PI” + Ceap [l
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where ¢;4 and c.,,, are the balancing weights for the prior
terms of identity and expression respectively.

The temporal smoothness term (Esmooth) enforces
smoothness on the expression parameters vector g by pe-
nalising the squared norm of the discrimination of its 2"
temporal derivative. This corresponds to the regularisation
imposed in smoothing splines and leads to naturally smooth
trajectories over time. More specifically, this term is defined
as:

nf—l

Esmooth(q) = Z qu—l - qu + qf+l||2 = Hqu
f=2

2

1D
where the summation is done over all frames for which the
discretised 2" derivative can be expressed without having
to assume any form of padding outside the temporal win-
dow of the video. Also D? : R™™s — R™("s=2) is the
linear operator that instantiates the discretised 2"¢ deriva-
tive of the ng4-dimensional vector q¢. This means that D2q
is a vector that stacks the vectors (qy—1 — 2df + qf4+1),
for f=2,...,ny — 1. It is worth mentioning that we could
have imposed temporal smoothness on the parameters cy,
Af too. However, we have empirically observed that the
temporal smoothness on q, in conjunction with fixing the
identity parameters p over time, is adequate for accurate
and temporally smooth estimations. Following the Occam’s
razor principle, our design choice is to avoid expanding the
energy with additional unnecessary terms (it also keeps the
number of hyper-parameters as low as possible).

3.2.3 Optimisation of the Proposed Energy

As described next, we first estimate the camera parameters ¢
(see Figure 2(c)) and afterwards the shape parameters (p, q)
(see Figure 2(d)).

Camera Parameters Estimation. In this initial step, we
solely consider the 2D landmarks term Eland, which is the
only term of the energy E(p, §, ¢) that depends on &. We
minimise Eland by assuming that the unknown facial shape
is fixed over all frames, but does not necessarily lie on the
subspace defined by the combined shape model of Eq. (2).
In other words, the facial shape S is considered to have 3N
free parameters, corresponding to the 3D coordinates of the
N vertices of the 3D shape. However, since in this step
the energy that is minimized involves only the sparse land-
marks, only the 3D coordinates of the vertices that corre-
spond to the sparse landmarks can actually be estimated.
(i.e., 3L parameters in total for the 3D shape).

Note that the estimation of the rigid shape is only done
to facilitate the camera parameters’ estimation, which is the
main goal of this step. The assumption of facial shape rigid-
ity during the whole video is over-simplistic. However, as

verified experimentally, it provides a very robust initialisa-
tion of the camera parameters even in cases of large facial
deformation, provided that it is fed with significant amount
of frames. This is due to the nature of physical deforma-
tions observed in human faces, which can be modelled as
relatively localised deviations from a rigid shape.

Under the aforementioned assumptions, the 2D land-
marks term can be written as:

~ ~ N 2
Eland(srig>H) = HL - HSrig P (12)

where ||-||% denotes the Frobenius norm and Syg is a 3 x L
matrix with the unknown sparse rigid shape, where every
column of S, contains the 3D coordinates of a specific
landmark point. Also, L is a 2ny x L matrix that stacks the
matrices Ly (f=1,..,ny), which are the re-arrangements of
the landmarks vectors £ into 2 X L matrices:
L i i
-~ o . ~ o :L’lj e ':CL‘)‘
L= : L= - (13)
- ! Yif - YLf
L

nf

Note that, without loss of generality, the landmarks L f are
considered to have their centroid at the origin (0,0). This
means that the landmark coordinates (Z; s, §;s) are derived
from the original coordinates (z;y,y;s) after subtracting
their per-frame centroid.

In addition, IT = [IIT - Hgf]
trix that stacks the scaled orthographic projection matrices
II; € R?*3 from all the frames f. The matrix IT; is de-
rived by the first two rows of the 3D rotation matrix R, of
the camera (see Eq. (4)), after multiplying them with the
scale parameter oy of the camera for the frame f. There-

fore, an orthogonality constraint should be imposed on each
11 e

-
is a 2ny X L ma-

Hfl'[} =071y, forsome oy >0, f =1,...,n5 (14)

To summarise, our goal is to minimise Eland as described
in Eq. (12) with respect to Sy and fI, under the constraints
of Eq. (14). For this, we employ a simple yet effective rigid
Structure from Motion (SfM) approach [20]: We solve the
problem based on a rank-3 factorisation of the matrix L.

Regarding the translation part of the camera motion, its
x and y components at frame f are derived by the centroid
of the original landmarks £ that has been subtracted in the
computation of the landmarks f;f in Eq. (13). This can be
easily verified that is the optimal choice . Regarding the z
component of the translation, this is inherently ambiguous
due to the orthographic projection, therefore we fix it to a
constant value over all frames.
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Finally, to yield the camera parameters that will be used
in conjunction with the shape model of Eq. (2), we per-
form a rigid registration between the model’s mean shape
S;q (sampled at the vertices that correspond to the land-
marks) and the rigid shape Sy, estimated by SfM. The
similarity transform that registers the two sparse shapes
is recovered using Procrustes Analysis and then combined
with each frame’s similarity transform that is estimated by
StM. This yields a sequence of estimated camera param-
eters €1,...,Cp,. As the final processing for this initiali-
sation step, this sequence is temporally smoothed by using
cubic smoothing splines.

Shape Parameters Estimation. Using the estimation of
camera parameters ¢, we minimise the energy E of Eq. (8)
with respect to the shape parameters p and q. This is a lin-
ear least squares problem that we can solve very efficiently.
In more detail, we can write F as follows:

E(p,q) =

Ce Z H(IL ® IIy) (5“) + U'Efl)p + Ugfb‘)qu) - ffH
f=1

. 2 ) ~ 112
+ ¢iq |lp|I” + Cexp lall” + 68”1"1)2(1

as)
where 59 R INJ'E?, GEQP are matrices with the rows of s, ﬁid,
INJWP respectively that correspond to the z, y and z coordi-
nates of 3D shape vertices associated with facial landmarks.
Also, “®” denotes Kronecker product, such that the multi-
plication with the 2L x 3L matrix I, ® IT; implements the
application of the camera projection Il on each one of the
L landmarks.

Note that the sparse landmarks, in conjunction with the
adopted high-quality shape models, are able to yield sur-
prisingly plausible estimations of the dynamic facial shape,
in most of the cases. However, in some very challenging
case (e.g. frames with very strong occlusions or gross er-
rors in the landmarks), this sparse information might not be
adequate for satisfactory results. One way to compensate
for that would be to increase the regularisation weights ¢;4
and c..p. Nevertheless, this would strongly affect also the
non-pathological cases, where the results are plausible ei-
ther way, leading to reconstructed shapes and expressions
that would be too similar with the mean shape s. To avoid
that, we follow a different approach by keeping the regu-
larisation weights as low as in the main optimisation and
imposing the following box constraints:

[(p)i| <Mp,i=1,...,n,

16
()il < Mg,i=1,...,ngand f =1,...,ny (16)

where (-); denotes the selection of the i-th component from
a vector. Also, M, and M, are positive constants corre-

sponding to the maximum values allowed for the compo-
nents of identity and expression parameter vectors respec-
tively. These are set so that the corresponding components
does not attain a value higher than a certain number of stan-
dard deviations (e.g. 4). These constraints are activated only
in pathological cases and do not play any role in all the rest
cases, which actually are the vast majority. Note also that
they are only used in this initialisation step, since when the
dense texture information is used as input, they are not re-
quired.

To summarise, our goal here is to minimise the en-
ergy E of Eq. (15) with respect to the shape parameters p
and q under the constraints of Eq. (16). This corresponds
to a large-scale linear least squares problem of the form
arg min,, ||Ax — b||?, under bound constraints on x, where
the matrix A is sparse. We solve this problem efficiently by
adopting the reflective Newton method of [9].

3.3. Sampling on Face Landmarks and Reprojec-
tion

After having estimated the shape parameters (p, qy) for
every frame of a video, the estimated dense facial mesh
in the model space can be synthesised by the model as
Sy(p,ay) = §+ Uigp + Ueypay. The ground truth 3D
landmarks S]lﬂ are then extracted by keeping the elements of
S that contain the x,y and z coordinates of vertices that cor-
respond to the facial landmarks. Note that for the extraction
of the 3D landmarks we do not apply the camera param-
eters, meaning that these landmarks lie on the normalised
model space. The reprojected ground truth 2D landmarks
(i.e., the 3DA-2D landmarks) are expressed in the image
space, therefore to extract them we utilise the estimated
camera parameters ¢y and apply the camera function P(-)
to Sfi. This corresponds to the quantity W;(p,qy, cy), see
Sec. 3.2.1.

4. Experiments

During the challenge we provided approximately 14,000
static images with 3DA-2D and 3D landmarks, as well as
approximately 90 training videos annotated with the pro-
posed procedure. We believe that the followed procedure,
even though semi-automatic, is suitable for providing a
high quality ground-truth, since we have tested it in sim-
ulated videos and it provided extremely high accuracy (sub-
milimeter accuracy for some landmarks). Additionally, in
both the trainset and the testset, the parameter estimation
and fitting was performed in the whole video, however we
have exported the 3DA-2D and 3D only in the first couple
of thousand frames, hence there was information only avail-
able to us (latent for participants) to ensure the high quality
of our estimations.

The training data have been provided to over 25 groups
from all over the world. A tight schedule (a week) was pro-
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Figure 4. CED curvers for (left graph) the 3DA-2D landmark tracking and (right graph) pure 3D facial landmark tracking (the only group

that has sent results for this category was [10] ).

vided to return the results on the testset. The testset com-
prises of 110 videos with 1,000 frames each. The evaluation
was performed in the 30 most challenging videos’. Results
for 3DA-2D landmarks localisation have been returned by
three groups, while results for 3D landmarks have been re-
turned by one group only.

For assessing the performance of the submissions we
used standard evaluation metrics. That is, for localisation of
3DA-2D landmarks we used normalised root-mean square
error (for more details please refer to previous competitions
such as [24]). In this challenge, we used the face diagonal as
the normalisation factor which is more robust to changes of
the face pose. For localisation of 3D landmarks we used the
root-mean square error but appropriately normalised first so
that it is in cm scale. All three contestants submitted re-
sults for 3DA-2D landmark localisation, while we had only
one submission that returned results for 3D landmark lo-
calisation. In the following, we will briefly describe each
participating method:

The method in [10] (abbreviated as submission_max)
proposes to jointly estimate facial landmarks and dense
facial geometry using a Deep Convolutional Neura Net-
work (DCNN). The geometry is refined by fitting a linear
3D Morphable Model (3DMM) on the estimates from the
DCNN.

The method in [23] (submission_amir_zadeh) proposes
to apply an extension of the popular Constrained Local
Models (CLMs), the so-called Convolutional Experts (CE)-
CLMs for the problem of 3DA-2D facial landmark detec-
tion. The important module of CE-CLMs is a novel convo-
lutional local detector that brings together the advantages
of neural architectures and mixtures. In order to improve
further the performance on 3D face tracking the authors use
two complementary networks alongside CE-CLM: a net-
work that maps the output of CE-CLM to 84 landmarks
called Adjustment Network, and a Deep Residual Network

5There are 4 additional videos with multiple people, however the par-
ticipants opted for single person evaluation.

called Correction Networks that learns dataset specific cor-
rections for CE-CLM.

The method in [21] (submission2_pengfeixiong) pro-
poses a two stage shape regression method by combining
the powerful local heatmap regression and global shape
regression. The base of the method is the now popular
stacked hourglass network which is used to generate a set
of heatmaps for each 3d shape point by first. While these
heatmaps are independent on each other, a hierarchical at-
tention mechanism is applied from global to local heatmaps
into the network, in order to model the correlations among
neighboring regions. Then, all these heatmaps, alongside
the input aligned image are processed by a deep residual
network to further leanr the global features and produce the
final smooth 3D shape. The CED curves are summarised in
Figure 4. The best performing method on 3DA-2D facial
landmark tracking was the method [21]. For pure 3D face
tracking the only method that competed in this category was

[10].
5. Conclusion

In this paper we presented the 3D Menpo database and
the results of the first challenge on 3DA-2D and 3D facial
landmark tracking. The 3D Menpo database comprises of
(a) around 14,000 static images which are suitable for train-
ing or guiding 3D facial landmark localisation algorithms
and (b) around 280,000 annotated frames (the combined
model space and reprojected space). We introduced an
elaborate semi-automatic methodology for providing high
quality annotations for training and assessing the perfor-
mance of 3D facial landmark tracking algorithms. The chal-
lenge demonstrates that very good results can be attained for
3DA-2D facial landmark tracking.
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