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Topics

- What Menpo does

- \Why we made Menpo

- A tour of the Menpo Libraries

- Demonstration

- How IBUG researchers can use Menpo

- Upcoming talks



SEMANTIC
IMAGE
ANALYSIS
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IS this person how interested is
happy? this person?

BEHAVIOURAL
ANALYSIS

does this person IS this person
have a medical lying?
disorder?

FEATURE POINT

TRACKING RECOGNITION
how does the IS this James
nose tip move in Booth?
this video?
RECONSTRUCTION

how would this person  how would this sad person
look in 3D? look if they were happy?
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IS this person how interested is
happy? this person?
BEHAVIOURAL
ANALYSIS
I does this person IS this person
b u EEEs e EEEEEEEEEEEEEEES 2 have a medlca/ /y/ng7
O BJECT where is the face disorder?

in this image?

DETECTION FEATURE POINT

RECOGNITION
,,h ‘ TRACKING

how does the IS this James

et
I k * » ' nose tip move in Booth?
s A = this video?

O < 4/ RECONSTRUCTION

where is the how would this person  how would this sad person
FEATURE PO' NT nose-tip in this look in 3D? look if they were happy?

LOCALISATION image?

Menpo Is not

specific to faces



Motivation

- iIBUG @ Matlab
Each researcher prepares for papers independently
Isolated scripts, not reusable frameworks

+ Our dream in 2012:

What if we had a shared, well tested, ever improving
codebase that we all collaborated on?

- If we did we’d call it Menpo!



Python”? - the best of both worlds

4/12

Matlab

Mathematica

Octave



APPLICATIONS RESEARCH

emotion automatic
detector mage boothiccv2016 ...
. . annotation
facial point
tracker

menpo

MENPO LIBRARIES
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menpofit menpodetect

menpo

Transforms Statistical

/\ Models

d

Visualization

Vectorization

E S



Vectorization

Vector space

T — ~ arbl.f)’a)’ﬂ

(tnear algebra

| img. from_vector(v2)
imgl.as_vector()

Image space




Feature Point Localisation in development

mMenpofit

Active

Appearance
Models 3D Model Construction

Supervised
Descent

Method | |
Object detection

Constrained
onstraine menpodetect

|_ocal

NISEEE Frontal Face
Detector

M E N P O L I B R AR I E S g1



S

% matplotlib

computation 2D plotting

PIL Assnp g'l'lb

image importing 3D asset importing

GLFW & sckitimage  WHNECE) Melge

image features

OpenGL management  Image warping

Blending the best from the
scientific software community

3D plotting

object detection

‘Zewm

machine learning

IPLyl: PPV comcin
— Jupyter

Interactive computing

®

Anaconda

dependency management

and contributing back
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Adaptive and Constrained Algorithms for Inverse Compositional
Active Appearance Model Fitting

George Papandreou and Petros Maragos
ol of ECE., Nalona Teshricl Universt of thers Geece

Abstract

Paranerric models of shape and sesure such as Ac
tive Appearance Models (AAMS) ar diverse oos for de
ol objcet appearance modeling and ave found i

both image d analy

Adaptive and Constrained Algorithms for Inverse Compositional Active Appearance Model Fitting
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Active Appearance Models, AAMs, Active Blobs, Morphable Models, fiting, cffi-
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Unified design accentuates similarities
across papers
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Demo

Patrick



COMMAND LINE INTERFACE

Only scratches the surface of

Learn a new language : |
Juas what'’s possible

Can’t easily leverage existing
code (do you need it?)

Cannot contribute back to
improve Menpo




Upcoming talks

- Held with either ACM Student Chapter/IC Python

- Aim - Improve software engineering in research

Python Git (Version Control)
- Python basics - @it basics
- Python for Matlab users - Collaborating with Github
- Menpo basics - Advanced Git

+ Advanced Python



Site: menpo.org
Code: github.com/menpo
Google Group: Menpo-USers
Licence: New BSD
Unit tests: 500+

Menpofit menpodetect
v0.1.0 v0.1.0




