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Shared Space Component Analysis

Intro

Component Analysis (CA): Collection of statistical methods aiming at the
factorisation of a signal into components pertaining to a particular task
(e.g., predictive analysis, clustering), usually of reduced dimensionality.

• CA utilised in the vast majority of ML and CV systems (e.g., PCA).

• Closely related to the process of dimensionality reduction,

specifically wrt. feature extraction.
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Shared Space Component Analysis

Roots of CA lie in Principal CA (PCA)

On lines and planes of closest fit to systems of points in space (Pearson, 1901)

Figure from Pearson’s paper points out

that the line of best fit is the direction

with maximum variance. Also note, line

of worst fit is orthogonal to the line of

best fit.
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Shared Space Component Analysis

Roots of CA lie in Principal CA (PCA)

• PCA independently developed in 1933 by Hotelling, coining the
term “Principal Components”.

• In PCA and linear CA in general, we aim to learn a linear
transformation Y = WTX, where X is the observation matrix.

• Y is the latent, unobserved space which satisfies certain properties.
In case of PCA, Y needs to maximally preserve variance (Hotelling),
or equivalently, minimise the reconstruction error (Pearson).

• Similarly to PCA, many other well known CA techniques deal with
just one set of observations.

• In order to define a notion of a “shared space” though, we need
more than one set of observations.

Shared Space Component Analysis 4 / 28



Shared Space Component Analysis

Roots of CA lie in Principal CA (PCA)

• PCA independently developed in 1933 by Hotelling, coining the
term “Principal Components”.

• In PCA and linear CA in general, we aim to learn a linear
transformation Y = WTX, where X is the observation matrix.

• Y is the latent, unobserved space which satisfies certain properties.
In case of PCA, Y needs to maximally preserve variance (Hotelling),
or equivalently, minimise the reconstruction error (Pearson).

• Similarly to PCA, many other well known CA techniques deal with
just one set of observations.

• In order to define a notion of a “shared space” though, we need
more than one set of observations.

Shared Space Component Analysis 4 / 28



Shared Space Component Analysis

Roots of CA lie in Principal CA (PCA)

• PCA independently developed in 1933 by Hotelling, coining the
term “Principal Components”.

• In PCA and linear CA in general, we aim to learn a linear
transformation Y = WTX, where X is the observation matrix.

• Y is the latent, unobserved space which satisfies certain properties.
In case of PCA, Y needs to maximally preserve variance (Hotelling),
or equivalently, minimise the reconstruction error (Pearson).

• Similarly to PCA, many other well known CA techniques deal with
just one set of observations.

• In order to define a notion of a “shared space” though, we need
more than one set of observations.

Shared Space Component Analysis 4 / 28



Shared Space Component Analysis

Roots of CA lie in Principal CA (PCA)

• PCA independently developed in 1933 by Hotelling, coining the
term “Principal Components”.

• In PCA and linear CA in general, we aim to learn a linear
transformation Y = WTX, where X is the observation matrix.

• Y is the latent, unobserved space which satisfies certain properties.
In case of PCA, Y needs to maximally preserve variance (Hotelling),
or equivalently, minimise the reconstruction error (Pearson).

• Similarly to PCA, many other well known CA techniques deal with
just one set of observations.

• In order to define a notion of a “shared space” though, we need
more than one set of observations.

Shared Space Component Analysis 4 / 28



Shared Space Component Analysis

Roots of CA lie in Principal CA (PCA)

• PCA independently developed in 1933 by Hotelling, coining the
term “Principal Components”.

• In PCA and linear CA in general, we aim to learn a linear
transformation Y = WTX, where X is the observation matrix.

• Y is the latent, unobserved space which satisfies certain properties.
In case of PCA, Y needs to maximally preserve variance (Hotelling),
or equivalently, minimise the reconstruction error (Pearson).

• Similarly to PCA, many other well known CA techniques deal with
just one set of observations.

• In order to define a notion of a “shared space” though, we need
more than one set of observations.

Shared Space Component Analysis 4 / 28



Shared Space Component Analysis

Canonical Correlation Analysis

• Most well known method belonging in the so-called Shared-Space
Component Analysis family is Canonical Correlation Analysis (CCA).

• Introduced by Hotelling in 1936 (Relations Between Two Sets of
Variates, Biometrika), three years after he proposed PCA.

• CCA is actually a natural extension of PCA to two datasets, only
instead of maximally preserving variance, we maximise the
correlation (covariance) between the datasets.

PCA→ WTΣXXW = WTXXTW, where Y = WTX

CCA→ WT
1 ΣX1X2 W2 = WT

1 X1X2W2, where Yi = WT
i Xi

where Cov(X,X) = Var(X)
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Shared Space Component Analysis

CCA is a natural extension of PCA (More Formally)

CCA: Given observations X1 ∈ <F1xT , X2 ∈ <F2xT infer maximally

correlated latent spaces Y1 ∈ <NxT , Y2 ∈ <NxT .

• Assuming linear projections, Yi = WT
i Xi , we can maximise the

standard, pearson correlation coefficient, i.e.:

Cov(Y1,Y2)

σY1σY2

=
E[Y1Y2]

E[Y2
1]E[Y2

2]
=

WT
1 ΣX1X2 W2√

WT
1 ΣX1X1 W1

√
WT

2 ΣX2X2 W2

• Due to scale invariance of correlation wrt. loadings, we have

max WT
1 ΣX1X2 W2, s.t. WT

i ΣXiXi Wi = I, i = {1, 2}.

• An equivalent least-squares formulation,

min ||WT
1 X1 −WT

2 X2||2F , s.t. WT
i ΣXiXi Wi = I, i = {1, 2}.
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Shared Space Component Analysis

Time Warping is closely related to CA

Dynamic Time Warping

Given X1 ∈ RD×T1 , X2 ∈ RD×T2 (equal D required)

arg min
∆

1
,∆2

||X1∆1 − X2∆2||2F , s.t. . . .

where ∆1 ∈ {0, 1}T1×T∆ ,∆2 ∈ {0, 1}T2×T∆ are binary selection matrices,
effectively re-mapping the samples in X1, X2. Optimal path inferred by
dynamic programming in O(TxTy ).

Least-Squares CCA

Given X1 ∈ RD1×T , X2 ∈ RD2×T (equal T required),

arg min
W

1
,W2

||WT
1 X1 −WT

2 X2||2F , s.t. . . .

Canonical Time Warping (CTW)

Given X1 ∈ RD1×T1 , X2 ∈ RD2×T2 ,

arg min
W

1
,W2,∆1

,∆2

||WT
1 X1∆1 −WT

2 X2∆2||2F , s.t. . . .
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Shared Space Component Analysis

So far...

• So far we have talked about PCA, and how CCA is a shared space
component analysis method which can be considered as a
generalisation of PCA to multiple datasets.

• We have also seen how the least-squares CCA can be elegantly
combined with Dynamic Time Warping (DTW).

• We will now look into probabilistic interpretations of CCA which are
of particular interest.
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Shared Space Component Analysis

A Probabilistic Interpretation of CCA

Given datasets X1 ∈ RD1×T ,X2 ∈ RD2×T , the gen. model is defined as:

Xi = {xi ,1, . . . , xi ,T}
x1,n = W1zn + ε1

x2,n = W2zn + ε2

εi ∼ N (0, σi I), zn ∼ N (0, I)

x1,n x2,n

zn

W1 W2

• The Maximum Likelihood (ML) parameter estimates of this model
have been shown to be equivalent to deterministic CCA (Bach and
Jordan, 2005).

• Note that in this generative model, the “shared-space” Z is now
defined explicitly.

This is actually a special case of a model introduced in 1958, the

Inter-battery Factor Analysis (IBFA).
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Shared Space Component Analysis

Inter-Battery Factor Analysis (IBFA)

Battery (tests) refers to a series of psychological, behaviour or cognitive
assessment tests. This term was often used in statistics since data from
multiple batteries were essentially the one of the first datasets which
consisted of multiple modalities.

• Many seminal works have been published in journals such as
Psychometrika (devoted to the advancement of theory and
methodology for behavioural data).

• A prominent example lies in Tucker’s Inter-Battery Factor Analysis
(IBFA), (1958, Psychometrika).

• CCA was introduced out of the increasing need for analysing
multiple sets of data. It is considered the first “shared-space” model.

• Similarly, IBFA is the first model which extends shared-space models
to the private-shared space paradigm.
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Shared Space Component Analysis

Private-Shared Space Models

Given datasets X1 ∈ RD1×T ,X2 ∈ RD2×T , the gen. model is defined as:

x1,n = W1zn + B1z1,n + ε1

x2,n = W2zn + B2z2,n + ε2

zn, z1, z2 ∼ N (0, I)

x1,n x2,n

z2,nz1,n zn

B1 B2

W1 W2

• Generative interpretation of CCA (Bach and Jordan, 2005) is
essentially equivalent to a special case of the probabilistic
interpretation of IBFA (Browne, 1979).

• Kaski and Klami (2008) re-introduce IBFA as Probabilistic CCA
(PCCA), providing an EM algorithm. Terms have been used
interchangeably (Kaski and Klami in JMLR, 2013).

• IBFA actually complements CCA by providing a description of the
variation not captured by the correlating components.
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Shared Space Component Analysis

An interesting observation...

Browne (1979) clarifies.

• The generative formulation maintains a single latent variable z that
captures the shared variation, whereas classical CCA results in two
separate but correlating variables obtained by projecting.

→ i.e. P(Z|X1,X2), P(Z|X1) vs. WTX1.

Based on this, Kaski and Klami (2013) note.

• “the extended model provides novel application opportunities not
immediately apparent in the more restricted CCA model”
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Shared Space Component Analysis

So far...

• We have talked about CCA (shared space) and IBFA (private-shared
space).

• We referred to their probabilistic interpretations.

• We have also seen how DTW can be elegantly combined with
component analysis.

• In what follows, we present a case-study of a private-shared space
model applied to the problem of fusing multiple subjective
annotations.
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Shared Space Component Analysis

Continuous Subjective Annotations

Problem: Given multiple annotations (time-series) X = {X1, . . . ,XN},
infer the common, consensus annotation (i.e., the “ground truth”).
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Challenges.

• Account for annotator-specific bias and noise

• Model the common signal shared by all annotators

• Account for temporal discrepancies amongst annot.
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Shared Space Component Analysis

Dynamic Probabilistic CCA (DPCCA)

The generative model of DPCCA is as follows1.

xi,t = Wi,tzt + Bizi,t + εi

εi ∼ N (0, σ2
i I)

P(zt |zt−1) ∼ N (Azzt−1,VZ ))

P(zi,t |zi,t−1) ∼ N (Azi zi,t−1,VZi )

xi ,t xk,t

zk,tzi ,t zt

Bi Bk

Wi Wk

zt−1 zk,t−1zi,t−1

• DPCCA models temporal dynamics in both private and shared
latent spaces by incorporating a linear dynamical system prior.

• First order moments attained by applying smoothing (RTS).

• Inherent model flexibility. Application-wise, translates to e.g., being
able to condition the shared space (i.e. “ground-truth”) on any
subset of the available annotators, i.e. P(Z|X1), P(Z|X1, . . . ,XN).

1
Nicolaou et al. @ ECCV ’12 & TPAMI ’14
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Shared Space Component Analysis

Dynamic Probabilistic CCA (DPCCA)

• DPCCA enables the inference of the individual, annotator-specific
bias, model the annotation variance and discover the underlying,
shared by all annotators signal, i.e. Z|X1, . . . ,XN while modelling
temporal dynamics.

• Nevertheless, temporal discrepancies in the annotations introduce
noise in the derived spaces (e.g., lagging peaks will remain
misaligned).
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Shared Space Component Analysis

DPCCA with Time Warpings

Solution

Incorporate warpings into DPCCA in order to eliminate temporal
discrepancies in the “clean”, shared space.

L(D)PCTW =
N∑
i

N∑
j,j 6=i

||E[Z|Xi ]∆i − E[Z|Xj ]∆j ||2F
N(N − 1)
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DPCCA with Time Warpings: Experiment I

(a) 2D spiral.
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DPCCA with Time Warpings: Experiment I

(b) Noisy spirals generated from (a).
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Shared Space Component Analysis

DPCCA with Time Warpings: Experiment I

(c) Shared space given all annotations (“ground-truth”, PCCA).
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Shared Space Component Analysis

DPCCA with Time Warpings: Experiment I

(d) Shared space given all annotations (“ground-truth”, DPCCA).
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Shared Space Component Analysis

DPCCA with Time Warpings: Experiment I

(e) Aligned shared space given each annotation (DPCCA).
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DPCCA with Time Warpings: Experiment II

DPCTW applied to continuous emotion annotations.
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DPCCA with Time Warpings: Experiment II

DPCTW applied to continuous emotion annotations.
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Shared Space Component Analysis

DPCCA and Annotator Ranking.

Aumann’s agreement theorem

“If two people are Bayesian rationalists with common priors, and if they
have common knowledge of their individual posteriors, then their
posteriors must be equal”.
- Agreeing to disagree, RJ Aumann, Annals of Statistics 1976.

• If annotators are rational in a Bayesian sense, the shared space
posterior (common knowledge) conditioned on each annotator
(Z|Xi ) should be close to each other.

• We can rank the annotators based on the latent posterior by
computing a probabilistic measure of difference (i.e. KL div.).

• Can detect “bad” annotators, e.g., adversarial or malicious,
spammers etc.
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DPCCA and Annotator Ranking: Experiment

A random, structured annotation (sinusoid).
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DPCCA and Annotator Ranking: Experiment

Set of random annotations.
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DPCCA and Annotator Ranking: Experiment

Two clusters of annotations with facial points as features.
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Shared Space Component Analysis

Robust Canonical Correlation Analysis (RCCA)

RCCA is a robust-to-gross-noise variant of CCA. It is motivated by
the wide presence of non-Gaussian noise in features extracted under
unregulated, real-world conditions, e.g.,

→ in Visual Features: texture occlusions, tracking errors, spike noise.

→ in Audio Features: irrelevant (uncorrelated) sounds, equipment noise.
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Shared Space Component Analysis

RCCA Formulation (1/2)

Given high-dimensional feature spaces Z ∈ Rdz×T and A ∈ Rda×T

(representing e.g., video/audio cues), we pose the problem

argmin
Pz ,Pa,Ez ,Ea

rank(Pz) + rank(Pa)

+λ1‖Ez‖0 + λ2‖Ea‖0 +
µ

2
‖PzZ− PaA‖2

F

s.t. Z = PzZ + Ez ,A = PaA + Ea. (1)

Pz ,Pa: Low-rank subspace spanning the correlated observations.

Ez ,Ea: Capturing uncorrelated components, accounting for noise/outliers.

λ1, λ2, µ: non-negative parameters.

→ λ tunes the contribution of each signal to the clean space.

Problem (1) deemed difficult to solve due to the discrete nature of the rank

function and the `0 norm (NP-Hard).
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Shared Space Component Analysis

Part II: RCCA Formulation (2/2)

Solution: Adopt convex relaxations of (1) by replacing the `0 norm and

rank function with their convex envelopes, the `1 and nuclear norm

respectively, as follows

argmin
Pz ,Pa,Ez ,Ea

‖Pz‖∗ + ‖Pa‖∗

+λ1‖Ez‖1 + λ2‖Ea‖1 +
µ

2
‖PzZ− PaA‖2

F

s.t. Z = PzZ + Ez ,A = PaA + Ea. (2)

→ Problem (2) can be solved by employing the Linearized Alternating
Directions Method (LADM), a variant of the Alternating Direction
Augmented Lagrange Multiplier method.
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Shared Space Component Analysis

Wrapping up

• There are many other private-shared space models, conceptually
similar to IBFA, such as Common and Individual Features Analysis
(COBE) and Joint and Individual Variation Explained (JIVE).

• The private (or individual) space can be extremely useful in many
applications since it can be discriminative (e.g., face clustering).
Prince, Elder et al. propose a PLDA (for inferences about identity,
ICCV 2007, TPAMI 2012) based on a similar setting as IBFA.

• Partial CCA is another interesting variant: Eliminate the influence
of a third variable, and subsequently project observations into
maximally correlated space (c.f., Mukuta, ICML 2014).

• There are also several works on non-linear shared-space models
based on GPs.
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ICCV 2007, TPAMI 2012) based on a similar setting as IBFA.

• Partial CCA is another interesting variant: Eliminate the influence
of a third variable, and subsequently project observations into
maximally correlated space (c.f., Mukuta, ICML 2014).

• There are also several works on non-linear shared-space models
based on GPs.
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